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Full reconstruction of simplicial complexes from
binary contagion and Ising data
Huan Wang1,5, Chuang Ma 2,5, Han-Shuang Chen3, Ying-Cheng Lai 4 & Hai-Feng Zhang 1✉

Previous efforts on data-based reconstruction focused on complex networks with pairwise or

two-body interactions. There is a growing interest in networks with higher-order or many-

body interactions, raising the need to reconstruct such networks based on observational data.

We develop a general framework combining statistical inference and expectation max-

imization to fully reconstruct 2-simplicial complexes with two- and three-body interactions

based on binary time-series data from two types of discrete-state dynamics. We further

articulate a two-step scheme to improve the reconstruction accuracy while significantly

reducing the computational load. Through synthetic and real-world 2-simplicial complexes,

we validate the framework by showing that all the connections can be faithfully identified and

the full topology of the 2-simplicial complexes can be inferred. The effects of noisy data or

stochastic disturbance are studied, demonstrating the robustness of the proposed framework.
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In network science and engineering, a subfield of research is to
find the network topology and nodal dynamical equations
from data1. This is important because networks are ubiquitous in

the real world but the details of their connection topology and the
intrinsic dynamical systems governing the properties and physical
observables of the network are often unknown. The details are
desired not only for understanding but also for protecting, disabling,
or controlling the network dynamical behaviors (depending on the
specific applications), and a viable way is to solve the inverse problem
of determining the network details through observational data if they
are available. As for any inverse problems in mathematics and
physical sciences, the network inverse problem is challenging. Pre-
vious works in this area focused on “conventional” networks with
pairwise interactions only1–16. Existing methods include those which
are based on drive-response3,5, adaptive synchronization2,11, noise
correlation6,15, compressive sensing7,9,17, maximum likelihood
estimation13,14,16, and Granger causality4,8. The data can be from
continuous- or discrete-time dynamical processes. For example, the
drive-response and adaptive synchronization methods use data from
continuous-time nonlinear coupled systems2,3,5,11, while the max-
imum likelihood estimation method is suitable for data from
discrete-time dynamics13,14,16. In this paper, motivated by the fact
that higher-order networks have become a state-of-the-art subfield of
research in network science18–24, we develop a reconstruction fra-
mework for finding from time-series data network topology with
higher-order interactions.

While pairwise or node-to-node interactions are the familiar
type in networks, it has been recognized that higher-order
interactions are also ubiquitous and important. For example, in a
social network, the collective recommendation of multiple friends
can often be more persuasive than the recommendation of a
single friend to convince the individual to buy a new product. In a
rumor spreading process, a piece of false news is likely to be
accepted by an individual if it is shared or promoted simulta-
neously by many people25–27. A similar situation occurs in neu-
ronal networks, where a firing event is often the result of
excitatory and inhibitory interactions among many neurons. In
all these cases, the interaction arises simultaneously among a
group of nodes in the network, and to describe the network by the
conventional pairwise interactions is no longer adequate28:
higher-order interactions beyond the pairwise relationship must
be taken into account. Mathematically, higher-order interactions
can be described as hypergraphs or simplicial complexes29, i.e.,
networks containing higher-order simplexes. In particular, a k-
simplex describes the simultaneous interaction among (k+ 1)
nodes, where a zero-simplex specifies an isolated node (i.e.,
without any interaction), a 1-simplex represents the conventional
pairwise interaction, a 2-simplex underlies the simultaneous
interaction among three nodes, and so on.

The past three years have witnessed a growing interest in
higher-order networks30. For example, random walks on hyper-
graphs were studied, where a walker chooses the next destination
depending on the number and the size of the shared
hyperedges31. A family of random walks on hypergraphs with a
parameter controlling the bias of the dynamics towards hyper-
edges of small or large size was constructed and the impacts of
walk strategy and walk time on community detection were
elucidated32. The stability conditions of the general dynamical
processes on hypergraphs were found18, and a social contagion
model on hypergraphs was constructed which presents dynamical
phenomena such as first- and second-order transitions, bistability
and hysteresis33. A simplicial model of social contagion was
proposed and it was demonstrated that the reinforcement
mechanisms in 2-simplex can lead to a discontinuous phase
transition34. The impacts of the heterogeneity of simplicial
complexes on the SIS (susceptible-infected-susceptible) spreading

model with collective and individual contagion were analyzed35,
and a pair approximation theory to study the SIS dynamics in
simplicial complexes was developed, which was argued to be
more accurate than the Markov-chain and mean field methods36.
A social communication model including idea integration and
information transmission in simplicial complexes was proposed
and the critical condition leading to the outbreak of information
was identified37. A simplicial activity driven model was proposed
and the impact of both simplicial and temporally evolving
interactions were analyzed38. In terms of network reconstruction,
a statistical method to detect higher-order interactions from
network data of pairwise links has recently been developed21.

In this paper, we develop a framework to reconstruct complex
networks with higher-order interactions from data. To be con-
crete, we focus on networks with 2-simplexes and assume that the
dynamical processes on the network are social contagion and
simplicial Ising dynamics that generate binary time-series data.
Our method is of the statistical inference type pivoted on max-
imum likelihood estimation, with the aim to fully reconstruct
both pairwise interactions (links) and 2-simplexes at the same
time, thereby distinguishing our work from the recent method
based on link data21. In particular, the central task is to estimate
the probabilities of each node connecting to the reconstruction or
target node (pairwise interaction) and of any two nodes forming a
three-body 2-simplex with the target node. We articulate a two-
step process to greatly enhance the computational efficiency and
an effective truncation process to determine the final recon-
structed structure of the simplicial complex. Using three synthetic
and four real-world simplicial complexes, we demonstrate the
accuracy of our reconstruction method and establish its robust-
ness with respect to variations in the average degree of the net-
work and stochastic fluctuations. Our work represents an initial
effort in reconstructing complex networks with higher-order
interactions based on observed time-series data.

Results
Simplicial complexes. A k-simplex σ is formed by a filled clique
of a set of k+ 1 nodes v0; � � � ; vk

� �
, which defines a (k+ 1)-body

interaction39. A 1-simplex is two nodes connected by an edge, a
2-simplex is three nodes connected pairwisely by edges and with
an additional single face, i.e., a triangle, and a 3-simplex is four
vertices connected pairwisely by edges and joined by four faces,
which are filled in to form a solid tetrahedron, and so on. A
simplicial complex K composed of a set of nodes V is a collection
of simplexes, with the additional requirement39,40 that if a sim-
plex is in K (σ 2 K), then any simplex ϱ composed of subsets of
simplex σ should also be included in K. For example, a
2-simplicial complex K is a collection of 0-, 1- and 2-simplexes.

Social contagion dynamics. Peer influence and reinforcement
mechanisms are ubiquitous in the dynamical process of social
contagion41, from which higher-order interactions in the network
are originated. A social contagion model taking reinforcement
into account on 2-simplicial complexes was proposed34, which
exploits the SIS type of spreading dynamics with binary-state
dynamical variables. In particular, let Sti be the state of node i at
time t. Each node has two possible states: susceptible (Sti ¼ 0) or
infected (Sti ¼ 1). At the initial time, a fraction ρ0 of nodes is
infected. A susceptible node i can get infection from an infected
neighbor j through their pairwise interaction (i, j) with probability
β1. Node i can also be infected through a 2-simplex (i, j, k), where
both j and k have already been infected, with the probability β2,
and this event can be understood as a synergistic reinforcement
effect. For convenience, we set β1= α/k1 and β2= ω/k2, where α
and ω are two non-zero positive constants, k1 and k2 are the
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average degrees of the two-body and three-body interactions in a
2-simplicial complex, respectively. In general, we have α < ω so as
to ensure that the role of 2-simplex is embodied in the spreading
dynamics. Each infected node recovers to the susceptible state
with the probability μ. In our work, the values of β1 and β2 are
selected near their respective thresholds to facilitate efficient and
accurate reconstruction of 2-simplicial complexes. The effects of
varying the values of β1 and β2 on the reconstruction accuracy are
also studied (Sec. I of Supplementary Information (SI)).

Simplicial Ising dynamics. The Ising model arises in many fields
due to its fundamental role in phase transitions in statistical phy-
sics. It has also been applied to many social systems42,43. While the
Ising dynamics on networks have been extensively studied44–46,
previous studies were exclusively conducted for networks with
pairwise interactions only. To our knowledge, Ising dynamics on
networks with higher-order interactions have not been studied.

To address the synergistic reinforcement effect of 2-simplex,
we define a simplicial Ising dynamics on 2-simplicial complexes.
Each node has two possible states: spin-down (Sti ¼ �1) or spin-
up (Sti ¼ þ1). At the initial time, the state of each node i is
randomly assigned as +1 or −1 with equal probability. Defining
the Hamiltonian as:

HðtÞ ¼ �J1 ∑ði;jÞ
StiS

t
j � J2 ∑

ði;j;kÞ
StiS

t
j S

t
k; ð1Þ

where J1 and J2 are the strengths of two-body and three-body
interactions, and (i, j) and (i, j, k) denote the two-body and the
three-body connections in the 2-simplicial complex, respectively.
The first term in the Hamiltonian characterizes the interaction
between the edges (i.e., two-body connections) and the second
term contains three-body interactions from the 2-simplex. At
each time step, the spin-flipping probability of each node i is

given by ð1 þ eδΔE
t
i Þ�1

, where δ is the inverse temperature. The
quantity

ΔEt
i ¼ 2J1 ∑

ði;jÞ 2 ∂i
Sti S

t
j þ 2J2 ∑

ði;j;kÞ 2∇i

Sti S
t
j S

t
k

represents the change in the energy caused by a flipping of node i
at time t, where ∂i and ∇i are the 1-simplex set and the 2-simplex
set containing node i, respectively.

Statistical inference framework. For SIS and Ising processes taking
place on a 2-simplicial complex of size N, the available time-series
data representing the states of nodes at different time steps can be
stored in a data matrix S, where each row is a time string repre-
senting all nodes’ states at that time step and each column is a node’s
state at different time steps. We reconstruct 2-simplicial complexes
from the data matrix S with our statistical inference framework. This
task consists of three steps: (1) establishing the likelihood function
based on the available data matrix S; (2) obtaining the connection
probabilities of two- and three-body interactions by maximizing the
likelihood function according to the idea of the expectation max-
imization (EM) method, and (3) executing an improved two-step
reconstruction strategy to significantly increase the computational
efficiency. The details of the framework are described in Methods.

Quantification of reconstruction performance. We use F1 score
to quantify the reconstruction accuracy47, a global performance
indicator defined as

F1 ¼ 2P � R
P þ R

; ð2Þ

where P=TP/(TP+ FP) and R=TP/(TP+ FN), with TP, FP, TN,
FN being the numbers of true positive, false positive, true negative
and false negative classes, respectively. A larger value of F1

corresponds to a higher accuracy and F1= 1 indicates that the ori-
ginal network structure has been fully reconstructed with zero error.

Reconstructing synthetic and real-world simplicial complexes.
For readability, the results from the social contagion dynamics are
presented in the main text, while those from the simplicial Ising
dynamics are presented in Sec. III of SI.

Figure 1 presents results of reconstructing three synthetic
2-simplicial complexes (see Sec. “Construction of synthetic and
real-world 2-simplicial complexes” in Methods on how these
networks are constructed), where squares, diamonds and circles
denote the performance of reconstructing the two-body connec-
tions while triangles with different orientations demonstrate the
performance of reconstructing three-body connections. Several
features can be seen from Fig. 1. First, the reconstruction accuracy
increases with the length T of the time series and can reach the
unity value for T≳ 8000. Second, the average degrees k1 and k2 of
two-body and three-body simplexes, respectively, have different
effects on the reconstruction accuracy. In particular, as shown in
Fig. 1a–c, a small value of k1 tends to increase the reconstruction
accuracy of both types of simplexes. This can be understood by
noting that a small value of k1 means that there are fewer two-
body connections that need to be reconstructed, thereby
enhancing the accuracy of the two-body connections for the
same length of the time series. At the same time, fewer two-body
connections reduce the complexity in reconstructing three-body
connections and thereby improving the reconstruction accuracy.
Regarding the effects of k2, Fig. 1d–f reveal that its value affects
only the reconstruction accuracy of three-body connections and
has little effect on the accuracy of reconstructing two-body
connections that have no dependence on the three-body
connections in a 2-simplicial complex. Third, the reconstruction
accuracy of three-body interactions is lower than that of two-
body interactions owing to the complicated structure of former
and its dependence on the latter.

Figure 2 shows the results of reconstructing four real-world 2-
simplicial complexes: Hypertext200948, Thiers1249, InVS1550,
and LyonSchool51,52 (see Sec. “Construction of synthetic and real-
world 2-simplicial complexes” in Methods for the details of these
real-world networks). The basic parameters of these 2-simplicial
complexes constructed from the datasets are listed in Table 1. It
can be seen from Fig. 2 that, as for the real-world networks, the
reconstruction accuracies for both the two-body and three-body
interactions increase with the length of the time series.
Remarkably, these network structures are quite irregular,
complicating the reconstruction. Nonetheless, for T= 20,000,
the F1 score can exceed 80%.

An issue of practical significance is the robustness of our
reconstruction framework against random perturbations. To
address this issue, we randomly flip a fraction f of infected states
and the same number of susceptible states in the data matrix S
(see Sec. “Details of the statistical inference framework” in
Methods) and investigate the effect of f on the reconstruction
accuracy as characterized by F1. The results are shown in Fig. 3
for three synthetic 2-simplicial complexes and three real-world 2-
simplicial complexes. It can be seen that increasing the fraction f
of flipping leads to a reduction of F1. In particular, the value of F1
for the two-body connections can be as high as 50% even when
30% of the infected states have been flipped (f= 0.3), attesting to
the robustness of our framework in reconstructing pairwise links
against stochastic fluctuations in the data.

Discussion
To find the network structure from observational data has been
an active research field for more than fifteen years1. In previous
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studies, the term “network structure” is largely referred to as the
collection of pairwise connections as characterized by the adja-
cency matrix of the network. Since the goal is to figure out
whether there is a link between any two nodes, the existing
methods focused on measures that are suitable for ascertaining
the “two-body” interactions, such as those based on pairwise
correlation or synchronization. From the beginning of modern
network science and engineering slightly over two decades ago,

networks with only pairwise connections have represented the
standard setting of study. Likewise, the inverse problem of data-
based discovery of the network structure has been exclusively
carried out in this setting. To our knowledge, in the current lit-
erature, the problem of finding higher-order connections in
complex networks from time-series data has not been addressed.

Higher-order interactions are nonetheless ubiquitous in com-
plex networks and its importance has been gradually recognized
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Fig. 1 Reconstruction performance for synthetic 2-simplicial complexes. Shown is F1 score as a function of the length T of the observational binary time
series for three synthetic 2-simplicial complexes: (a, d) random simplicial complex (ERSC), (b, e) scale-free simplicial complex (SFSC), and (c, f) small-
world simplicial complex (SWSC). In each panel, squares, diamonds and circles denote the performance of reconstructing the two-body connections while
triangles with different orientations demonstrate the performance of reconstructing three-body connections, and different values of the average degree are
distinguished by colors. All simplicial complexes have the same size N= 200. Other parameter values are α= 0.8, ω= 2.4, ρ0= 0.2, and μ= 1. The results
are averaged over five realizations.
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Fig. 2 Visualization and reconstruction performance for real-world 2-simplicial complexes. Visualization results for (a) Hypertext2009, (b) Thiers12, (c)
InVS15, and (d) LyonSchool. The corresponding reconstruction performances are shown in panels (e–h) in terms of F1 score versus the length T of the
available time series. The blue squares and red circles demonstrate the reconstruction performance of two-body and three-body connections, respectively.
Parameter values are α= 0.3, ω= 1, ρ0= 0.2, and μ= 1. Each data point is the result of averaging over five realizations.
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with an accumulating interest, eventually generating an explosive
growth of research recently18–24. The structure of networks with
higher-order connections, also known as simplicial complexes,
are represented by tensors of high orders. For example, three-
body interactions or 2-simplexes in a network can be described by
a tensor of rank 3. Structurally, simplicial complexes are sig-
nificantly more sophisticated than the conventional networks
with pairwise links only, and richer dynamics can be anticipated
in the former, which have begun to be studied. From the point of
view of inverse problem, to reconstruct simplicial complexes from
time-series data represents a great challenge.

We have taken the first step to address this inverse problem.
Focusing on complex networks with 2-simplexes, we have
developed a statistical inference framework by which all two-body
and three-body interactions in the network can be found simul-
taneously from binary time-series data only, i.e., no prior

knowledge about the network to be reconstructed is required. The
backbone of our reconstruction framework is maximum like-
lihood estimation that yields the probabilities of all the possible
pairwise and three-body connections and a criterion to associate
the probabilities with the actual interactions. To significantly
increase the computational efficiency, we have proposed and
tested a two-step process and a truncation process to determine
the true structure of the simplicial complexes. The reconstruction
framework has withstood tests on synthetic and real-world sim-
plicial complexes with respect to accuracy and robustness against
random fluctuations.

Many open problems remain. For example, our reconstruction
framework is formulated in terms of binary time-series data from
social contagion dynamics and simplicial Ising dynamics (Sec. III
of SI). How to reconstruct higher-order networks from data
generated by different dynamical processes needs to be studied.
Also, our statistical inference method is developed for 2-simplicial
complexes that are perhaps the “simplest” network structure
beyond the conventional networks with pairwise interactions. To
reconstruct networks with higher-order interactions such as
3-simplicial complexes and hypergraphs is worth pursuing. It is
also necessary to develop methods to improve the reconstruction
accuracy with shorter time series. We hope our work will stimulate
further research in this emerging subfield of data-based recon-
struction of complex networks with higher-order interactions.

Methods
Details of the statistical inference framework. We describe the details of our
statistical inference framework through an illustrative example, as shown in Fig. 4,
where a 2-simplicial complex with N= 30 nodes and its data matrix are illustrated

Table 1 Basic parameters of the four 2-simplicial complexes
constructed from real-world datasets.

Data set Context N k1 k2 ζ

Hypertext2009 Conference 85 4.52 1.16 20
Thiers12 High school 156 4.56 1.21 20
InVS15 Workplace 211 7.52 2.19 20
LyonSchool Primary school 222 5.42 2.18 50

N is the number of nodes, k1 and k2 are the average degrees of two-body and three-body
connections, respectively, ζ is a threshold to filter out certain connections with low interaction
frequency.
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Fig. 3 Effect of random flipping ratio f on reconstruction performance for synthetic and real-world simplicial complexes. Shown is the F1 score for (a)
random simplicial complex (ERSC), (b) scale-free simplicial complex (SFSC), (c) small-world simplicial complex (SWSC), (d) Thiers12, (e) InVS15, and (f)
LyonSchool. The blue squares and red circles demonstrate the reconstruction performance of two-body and three-body connections, respectively. The
parameter values for the synthetic simplicial complexes are N= 200, k1= 12, k2= 4, T= 10,000, α= 0.8, ω= 2.4, ρ0= 0.2, and μ= 1. For the real-world
simplicial complexes, the parameter values are T= 20,000, α= 0.3, ω= 1, ρ0= 0.2, and μ= 1. Each data point is the result of averaging over ten
realizations.
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in Fig. 4a, b, respectively. For such a network hosting SIS dynamics, the probability
of a susceptible node i (i.e., Sti ¼ 0) being infected (i.e., Stþ 1

i ¼ 1) is determined
only by the infected neighbors and the infected 2-simplexes in which two other
nodes in the 2-simplex are both infected, at time t. The transition probability from
the infected state to the susceptible state does not depend on the states of the
neighbors, so it is only necessary to consider the transition probability from the
susceptible state to the infected state for constructing the network. We stress that
the details of the dynamical process, such as the infection probabilities β1 and β2 as

well as the recovery probability μ, are assumed to be unknown but only the binary
time series of the nodal states are available. Figure 4 presents an illustrative
example to describe the details of our method.

Establishing the likelihood function. Let j→ i denote the event that node j has a
direct impact on the state of node i. For example, node j can directly spread the
virus or send a piece of information to node i, which means that node j is one of
immediate neighbors of node i. Nodes i and j thus form a 1-simplex, a property

b
1 5 62 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 301 5 62 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 301 5 62 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t

t+2

t+1

t+3

t+4

t

t+2

t+1

t+3

t+4

t+5

t+6

t+7

t+8

t+9

t

t+2

t+1

t+3

t+4

t+5

t+6

t+7

t+8

t+9

1 5 62 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t

t+2

t+1

t+3

t+4

t+5

t+6

t+7

t+8

t+9

a fc

b
1 5 62 43 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

t

t+2

t+1

t+3

t+4

t+5

t+6

t+7

t+8

t+9

a fc

5     0.4492
6     0.0002
7     0.5372
8     0.3735
11    0.4025
14    0.0006
18    0.3964
21    0.4036
29    0.5393
30    0.4494

j

5     0.4492
6     0.0002
7     0.5372
8     0.3735
11    0.4025
14    0.0006
18    0.3964
21    0.4036
29    0.5393
30    0.4494

j

5     0.4492
6     0.0002
7     0.5372
8     0.3735
11    0.4025
14    0.0006
18    0.3964
21    0.4036
29    0.5393
30    0.4494

j

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

jj

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

j

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

j

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

j

5    8     0.4895
29  30    0.4819
2    7     0.4734
18  29    0.4449
8   10    0.4347
14  24    0.4204
8   20    0.3795
1   21    0.3687
17  30    0.3635
12  21    0.3542

j k
5    8     0.4895
29  30    0.4819
2    7     0.4734
18  29    0.4449
8   10    0.4347
14  24    0.4204
8   20    0.3795
1   21    0.3687
17  30    0.3635
12  21    0.3542

j k
5    8     0.4895
29  30    0.4819
2    7     0.4734
18  29    0.4449
8   10    0.4347
14  24    0.4204
8   20    0.3795
1   21    0.3687
17  30    0.3635
12  21    0.3542

j k

5     0.2837
7     0.3118
8     0.0901
11    0.3061
18    0.2750
21    0.1033
29    0.3252
30    0.2189

j

5    8     0.4895
29  30    0.4819
2    7     0.4734
18  29    0.4449
8   10    0.4347
14  24    0.4204
8   20    0.3795
1   21    0.3687
17  30    0.3635
12  21    0.3542

j k

d i g
5 6 7 8 11 1314 18 21 29 305 6 7 8 11 1314 18 21 29 305 6 7 8 11 1314 18 21 29 305 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

5 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

5 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

e
h

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

5 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

e
h

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

d i g
5 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4

e
h

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

d i g
5 6 7 8 11 1314 18 21 29 30

t+5

t+6

t+7

t+8

t+9

t

t+1

t+2

t+3

t+4t+4

t+3

t+2

t+1

e
h

5   0.1583
7   0.3420
8   0.1031
11  0.1704
18  0.1784
21  0.1447
29  0.2261
30  0.1568

j j k

5    8     0.5480
29  30    0.5072
18  29    0.4842
6    7     0.3416
6   14    0.2977
14  21    0.2586
5   30    0.2145
6   11    0.1995
6   30    0.1917
11  21    0.1822

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30706-9

6 NATURE COMMUNICATIONS |         (2022) 13:3043 | https://doi.org/10.1038/s41467-022-30706-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


that is independent of time t. Similarly, let jk→ i denote the event that the
synergistic reinforcement effect coming from nodes j and k has a direct impact on
the state of node i, which is also independent of time. In the following, we
determine the probabilities of node i and node j being connected and of three
nodes i, j, k forming a three-body connection (i, j, k).

The conditional probability of Stþ 1
i ¼ 1 and j→ i given Stj ¼ 1 and Sti ¼ 0

can be written as

P Stþ 1
i ¼ 1; j ! i Sti ¼ 0; Stj ¼ 1

���� �
¼P j ! i Sti ¼ 0; Stj ¼ 1; Stþ 1

i ¼ 1
���� �

� P Stþ 1
i ¼ 1 Sti ¼ 0; Stj ¼ 1

���� �
¼Pj!iP

i
j;

ð3Þ

where Pj! i≜Pðj ! ijSti ¼ 0; Stj ¼ 1; Stþ 1
i ¼ 1Þ is the probability of node i being

infected by node j under the conditions Sti ¼ 0, Stj ¼ 1 and Stþ 1
i ¼ 1, Pj→i > 0

indicates that node j is a neighbor of node i, and Pij≜PðStþ 1
i ¼ 1jSti ¼ 0; Stj ¼ 1Þ

is the probability of Stþ 1
i ¼ 1 under the conditions Sti ¼ 0 and Stj ¼ 1, which can

be estimated from the data matrix S. Take the matrix in Fig. 4b as an example and
suppose we wish to estimate the value of P137 , where nodes 13 (i.e., node 13 is the
target node) and 7 are highlighted by red and green frames, respectively. It is
necessary to extract each pair including the time string with St13 ¼ 0 and its next
time strings at t+ 1. It can be seen that seven pairs of time strings can be extracted:
(t, t+ 1), (t+ 1, t+ 2), (t+ 2, t+ 3), (t+ 3, t+ 4), (t+ 4, t+ 5), (t+ 6, t+ 7), and
(t+ 8, t+ 9). It can also be seen that two time moments: t+ 1 and t+ 8, satisfy the
conditions that node 13 is in the susceptible state and node 7 is in the infected state.
The only time at which node 13 can be infected at the next time step is t+ 8. As a
result, we have P137 ¼ 1=2.

Similarly, the conditional probability of Stþ1
i ¼ 1 and jk→ i given Stj S

t
k ¼ 1 and

Sti ¼ 0 can be written as

P Stþ 1
i ¼ 1; jk ! i Sti ¼ 0; Stj S

t
k ¼ 1

���� �
¼P jk ! i Sti ¼ 0; Stj S

t
k ¼ 1

��� ; Stþ 1
i ¼ 1

� �
� P Stþ 1

i ¼ 1 Sti ¼ 0; Stj S
t
k ¼ 1

���� �
¼Pjk!iP

i
jk;

ð4Þ
where Pjk!i ≜Pðjk ! ijSti ¼ 0; Stj S

t
k ¼ 1; Stþ 1

i ¼ 1Þ is the probability of node i
being infected through the synergistic interaction from nodes j and k, under the
conditions Sti ¼ 0, Stj S

t
k ¼ 1, and Stþ 1

i ¼ 1, and Pjk→i > 0 indicates that the three

nodes i, j, k form a 2-simplex. The probability Pijk ≜ ðStþ 1
i ¼ 1jSti ¼ 0; Stj S

t
k ¼ 1Þ

can be estimated from the data matrix S in a similar way. Again, take the three
nodes 13, 28, and 30 in Fig. 4b as an example. It can be seen that the time instants
at which St13 ¼ 0, St28 ¼ 1 and St30 ¼ 1 are fulfilled are t+ 6 and t+ 8. Because
Stþ 7
13 ¼ 1 and Stþ 9

13 ¼ 1, we have P1328;30 ¼ 1.
According to Eqs. 3, 4, the expected number of susceptible node i being infected

at tm+ 1 is given by

Etm þ 1
i ¼ ∑

j j≠ ið Þ
P Stm þ 1

i ¼ 1; j ! i Stmi ¼ 0; Stmj ¼ 1
���� �

Ψtm
j
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i
jkΨ

tm
jk þ εi;

ð5Þ
where Ψtm

j represents the events that nodes j are infected at time tm, similarly, Ψtm
jk

is the events that both nodes j and k are infected at time tm, and their values are
zero or one. For example, if Ψtm

j ¼ 1, it means that node j is infected at time tm;

otherwise, Ψtm
j ¼ 0 when it is not infected at time tm. The quantity εi represents

the noise due to the errors from the collected data.
In general, the probability of a given number of events occurring in a fixed

interval of time is characterized by the Poisson distribution, so we use it to capture
the random nature of the times that node i is infected. An advantage of the Poisson
distribution is that it makes a mathematical analysis and computations with the
EM algorithm feasible53–56. Specifically, the likelihood function can be described as
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tm þ 1
i

n o
m¼ 1;���;M

Θ; Ψ
tm
j

n o
m¼ 1;���;M;j¼ 1;���;N

����
� �

¼
Y

m Ψtm
i ¼ 0ð Þ

e�Etm þ 1
i Etm þ 1

i

� �Ψtm þ 1
i

Ψ
tm þ 1
i !

;

ð6Þ
where Θ denotes the set of variables Pj→i, Pjk→i and εi. We have Ψtm þ 1

i ! � 1 since
Ψtm þ 1

i is either zero or one.

Maximizing the likelihood function based on EM algorithm. We next use the EM
method to maximize the likelihood function57 for determining the parameter Θ in
Eq. 6. Taking the logarithm form of Eq. 6, we get
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Applying the Jensen’s inequality to the logarithmic term on the right side of Eq. 7
yields
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where the equality holds if
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Fig. 4 Schematic illustration of reconstructing a 2-simplicial complex based on binary social contagion. a A 2-simplicial complex of size N= 30, where
the black links represent 1-simplexes and the orange shadows represent 2-simplexes. b Data matrix S that stores all nodes’ states at different time steps,
where each row is a time string representing all nodes’ states at that time step and each column is a node’s state at different time steps, where the black
and blank squares denote the 1 and 0 states, respectively. Take node 13 as an example (the red frame), the values of P13j 8j≠ 13ð Þ and P13jk 8j≠ k ≠ 13ð Þ can be
calculated from data matrix S: P137 ¼ 1=2 (the green frame) and P1328;30 ¼ 1 (the purple frame). c The values of Pj→13 and Pjk→13 are obtained through the EM
algorithm, where only non-zero values of Pj→13 and the top 10 values of Pjk→13 are shown. d The values of Pj→i (each column in the left subgraph) and Pjk→i

(each column in the right subgraph) for each node i based on the method described in Secs. 4.1.1 and 4.1.2, where the blue and red dots denote the actual
and nonexistent two-body or three-body connections, respectively. e The 2-simplicial complex is inferred based on the probabilities in (d), in which the
two-body connections are exactly predicted, but two 2-simplexes (5, 20, 22) and (13, 18, 29) in (a) cannot be predicted (marked by the light-yellow
shadows). f The values of P0j!13 for node 13 obtained by iterating Eqs. 22–25, and only non-zero values are shown. g Compressed data matrix that records
only the columns in S giving P0j!13 >0. h The values of Pj→13 and Pjk→13 for node 13 based on the compressed data in (g). i The values of Pj→i and Pjk→i for
each node i. Finally, the full 2-simplicial complex in (a) can be exactly reconstructed by determining whether Pj→i > 0 or Pjk!i > Δ̂i.
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The maximization problem of Eq. 7 can then be transformed into maximizing the
following equation:
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Calculating the partial derivative of L̂ Θð Þ with respect to Pj→i, Pjk→i and εi and
setting them to zero, we get

∂L̂ Θð Þ
∂Pj! i

¼ ∑
m Ψ

tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmj
Pj! i

� PijΨ
tm
j

 !
¼ 0; ð13Þ

∂L̂ Θð Þ
∂Pjk! i

¼ ∑
m Ψ

tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmjk
Pjk! i

� Pi
jkΨ

tm
jk

 !
¼ 0; ð14Þ

∂L̂ Θð Þ
∂εi

¼ ∑
m Ψ

tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmεi
εi

� 1

 !
¼ 0; ð15Þ

which give

Pj! i ¼
∑

m Ψ
tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmj

� �

∑
m Ψ

tm
i ¼ 0ð Þ

PijΨ
tm
j

� � ; ð16Þ

Pjk! i ¼
∑

m Ψ
tm
i ¼ 0ð Þ

Ψ
tm þ 1
i ρ

tm
jk

� �

∑
m Ψ

tm
i ¼ 0ð Þ

Pi
jkΨ

tm
jk

� � ; ð17Þ

εi ¼
∑

m Ψ
tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmεi

� �
∑

m Ψ
tm
i ¼ 0ð Þ

1ð Þ : ð18Þ

The six equations Eqs. 9–11 and Eqs. 16–18 can be used to solve Pj→i, Pjk→i and εi.
In particular, by initializing all values of Pj! i;Pjk! i;εi 8j≠ k≠ i

	 

to be one and

then calculating the values of ρtmj , ρtmjk and ρ
tm
εi in Eqs. 9–11, we substitute them into

Eqs. 16–18 to find the values of Pj→i, Pjk→i, and εi. We repeat this process until
convergence is achieved. Since a single iterative process does not ensure global
optimization, we carry out the above iteration process a number of times and
choose the proper values that give the maximum of the quantity in Eq. 12.

As an example, as shown in Fig. 4c, the values of Pj→13 and Pjk→13 are given
according to this iteration process, where Pj→13 > 0 and the top 10 values of Pjk→13 are
demonstrated. Similarly, all the values of Pj→i and Pjk→i can be calculated for each
node i. As presented in Fig. 4d, each column above the abscissa corresponds to the
predicted 1-simplex probabilities (the left subgraph of Fig. 4d) and 2-simplex
probabilities (the right subgraph of Fig. 4d) of a node, and the blue and red dots denote
the actual and nonexistent two-body or three-body connections, respectively.

An improved two-step reconstruction strategy. For a 2-simplicial complex structure
with N nodes, when predicting the 2-simplexes of a node i, we randomly choose
two nodes (e.g., j and k) and calculate the probability Pjk→i, which requires cal-
culating 0:0ptN � 12

	 

values. To reduce the computational load and increase the

reconstruction accuracy, we articulate an improved two-step strategy. The parti-
cularity of simplicial complexes stipulates that the other two nodes forming a
2-simplex with node i must be the neighbors of node i, so it is not necessary to
calculate the probability Pjk→i if node j or node k is not a neighbor of node i. The
reconstruction process can then be divided into two steps. At the first step, the
“approximate” neighborhood of each node is predicted and their corresponding
columns in the data matrix S are extracted, leading to a compressed data matrix. At
the second step, based on the compressed data matrix, the values of Pj→i and Pjk→i

for each node i are predicted by iterating Eqs. 9–11 and 16–18. Our two-step
method was not designed for the general challenging task of consistently inferring
all the subfaces for arbitrarily higher-order simplices. In fact, our method requires
the closure condition of simplicial complexes: it is necessary to know in advance
that the network under reconstruction is a 2-simplicial complex. Given this pre-
mise, the two-step strategy infers first the two-body and then the three-body
interactions (i.e., 2-simplex) from the inferred two-body interactions. While the
two-step method is efficient to reconstruct 2-simplicial complexes, at the present it

cannot be used to reconstruct the hypergraphs because its second step is to find the
triangles from the neighbors (i.e., edges).

For the first step, the predicted neighbors are not accurate because the three-
body interactions have been ignored. In fact, the main purpose of this step is to
determine an approximate range of neighbors to reduce the time for calculating
Pjk! i 8j≠ k≠ i

	 

. Without taking into account three-body interactions, the expected

number of susceptible nodes being infected at tm+ 1 can simply be expressed as

~E
tm þ 1
i ¼ ∑

j j≠ ið Þ
P Stm þ 1

i ¼ 1; j ! i Stmi ¼ 0; Stmj ¼ 1
���� �

� Ψtm
j þ εi

¼ ∑
j j≠ ið Þ

P0
j! iP

i
jΨ

tm
j þ εi;

ð19Þ

where the notation P0j!i is used to emphasize that node j is only an “approximate”
neighbor of node i. Assuming that the number Ψi of times of node i being infected in
each time period obeys the Poisson distribution, we obtain the likelihood function as

P Ψtm þ 1
i

n o
m¼ 1;���;M

~Θ; Ψtm
j

n o
m¼ 1;���;M; j¼ 1;���;N

����
� �

¼
Y

m Ψ
tm
i ¼ 0ð Þ

e�~E
tm þ 1
i ~E

tm þ 1
i

� �Ψtm þ 1
i

Ψtm þ 1
i !

;

ð20Þ

where ~Θ denotes the set of variables P0
j!i and εi. Taking the logarithm of Eq. 20, we

have

L ~Θ
	 
 ¼ ∑

m Ψtm
i ¼ 0ð Þ

Ψ
tm þ 1
i log ~E

tm þ 1
i � ~E

tm þ 1
i

� �
¼ ∑

m Ψtm
i ¼ 0ð Þ

Ψ
tm þ 1
i log ∑

j j≠ ið Þ
P0j!iP

i
jΨ

tm
j þ εi

 !

� ∑
j j≠ ið Þ

P0
j! iP

i
jΨ

tm
j þ εi

 !
2
666664

3
777775:

ð21Þ
Using the EM method to maximize the likelihood function, we obtain the final

parameters ~Θ as

P0
j! i ¼

∑
m Ψ

tm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmj

� �

∑
m Ψ

tm
i ¼ 0ð Þ

PijΨ
tm
j

� � ; ð22Þ

εi ¼
∑

m Ψtm
i ¼ 0ð Þ

Ψtm þ 1
i ρtmεi

� �
∑

m Ψ
tm
i ¼ 0ð Þ

1ð Þ ; ð23Þ

where

ρtmj ¼
P0j! iP

i
jΨ

tm
j

∑
j0 j0 ≠ ið Þ

P0j0 ! iP
i
j0Ψ

tm
j0 þ εi

; ð24Þ

ρtmεi ¼ εi
∑

j0 j0 ≠ ið Þ
P0j0 ! iP

i
j0Ψ

tm
j0 þ εi

: ð25Þ

With the initial conditions for P0
j!i and εi, the values of P0j!i and εi can be obtained

by iterating Eqs. 22–25 until convergence is achieved. It is worth noting that P0
j!i is

a probability and we need to determine the “approximate” neighbors of the node
under reconstruction. Theoretically, the “approximate” neighbors can be
determined by testing whether P0j!i is non-zero. However, practically this is not
feasible due to noise or deviations from the assumptions. For example, as shown in
Fig. 4f, nodes 6 and 14 are not neighbors of node 13 even though P06!13 ¼ 0:0002
and P014!13 ¼ 0:0006. To overcome this difficulty, we articulate a truncation
method for determining the neighbors of node i, as follows.

First, note that the time complexity of the second step can be significantly
reduced when fewer neighbors are predicted, but too few predicted neighbors can
lead to missing neighbors. On the contrary, too many neighbors would increase the
time complexity. A solution is to use a reasonable truncation to determine the
“approximate” neighbors of each node. To this end, we re-rank the probability
P0
j! i 8j≠ i
	 


in a descending order and place a threshold Δi in the maximum gap
defined as14:

Δi ¼ argmax
l

P
0
l

P
0
lþ 1

P
0
l � P

0
lþ 1

	 
" #
: ð26Þ

Next, we use Eq. 26 again to find a new threshold �Δi which is smaller than Δi.
Finally, node j is regarded as an “approximate” neighbor of node i if P0j! i > �Δi. The
truncation method can ensure the detection of all real neighbors and 2-simplexes.

Once the “approximate” neighbors of node i have been obtained, the time series of
these neighbors can be extracted (Fig. 4f, g). The neighbors of node i and its
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2-simplexes can be quickly re-predicted based on the second step, i.e., by iterating Eqs.
9–11 and Eqs. 16–18 based on the compressed data matrix. For example, the
prediction results for node 13 are shown in Fig. 4h and the values of Pj! i 8j≠ i

	 

and

Pjk! i 8j≠ k≠ i
	 


for each node are presented in Fig. 4i. The actual two- and three-
body connections of each node can then be determined based on the results in Fig. 4i.
Because the identification of two-body connections has been refined in the second step,
we simply assume that node j is a neighbor of node i if Pj→i > 0. Following previous
work14,58, we assume that nodes i and j are connected when Pj→i > 0 or Pi→j > 0.

The case of three-body interactions is more complicated and the solution is
sensitive to noise or errors. In fact, using the condition Pjk→i > 0 as a criterion to
detect (i, j, k) as a 2-simplex can lead to many false positives. Our solution is to re-
rank Pjk! i 8j≠ k≠ i

	 

in a descending order and obtain a new threshold Δ̂i by

using Eq. 26 again. As a result, an actual 2-simplex (i, j, k) is formed when
Pjk! i ≥ Δ̂i . To remove the conflicts in the prediction, we assume that there exists a

2-simplex (i, j, k) when two of three conditions hold at least, e.g., Pjk! i ≥ Δ̂i ,

Pik! j ≥ Δ̂j , and Pij! k < Δ̂k , but a three-body cannot form when Pjk! i ≥ Δ̂i,

Pik! j < Δ̂j, and Pij! k < Δ̂k . Implementing the two-step strategy, we can reconstruct
the whole 2-simplicial complexes. As shown in Fig. 4a, the 2-simplicial complex
has been accurately reconstructed. Overall, the two-step strategy not only greatly
reduces the computational time but also significantly improves the reconstruction
accuracy (more details in Sec. II in SI).

Construction of synthetic and real-world 2-simplicial complexes
Synthetic 2-simplicial complexes. Here we describe the main steps of constructing
synthetic 2-simplicial complexes of size N, average degrees of two-body and three-
body interactions k1 and k2, respectively.

Random simplicial complex (ERSC): First, a random graph is generated by con-
necting any two nodes with the probability p1. We then add 2-simplexes between
any three nodes with the probability p2, where the formulas of p1 and p2 are34:

p1 ¼ k1 � 2k2
N � 1ð Þ � 2k2

; ð27Þ

p2 ¼ 2k2
N � 1ð Þ N � 2ð Þ : ð28Þ

A random 2-simplicial complex with the specified average degrees can then be
constructed using the probabilities p1 and p2.

Scale-free simplicial complex (SFSC): First, a scale-free network is generated, in
which each new node connects m edges to the old nodes with degree preference59.
We then add 2-simplexes between any three nodes according to probability p2 in
Eq. 28. The average degree of 1-simplexes can be calculated as

k1 ¼ 2m þ 2k2 1 � 2m
N

� �
: ð29Þ

Small-world simplicial complex (SWSC): First, a small-world network60 is gener-
ated from a regular lattice (all the nodes have the same degree 2m) with rewiring
probability p. We then add 2-simplexes between any three nodes according to
probability p2 in Eq. 28. The average degree of 1-simplexes is given by Eq. 29.

2-simplicial complexes from real-world data. In each real-world data set, the face-to-
face interactions have been measured with a temporal resolution of 20 s. First, we
generate a weighted network according to the data, where a weight represents the
number of interactions between a pair of nodes in the whole time window. Second,
we remove any link whose weight is less than a given threshold ζ and set the
weights of retained links to one to generate an unweighted network. Finally, we cut
the data into multiple segments with a temporal window of 5 min and record all
the 2-simplexes. In particular, if three nodes communicate with each other in a
short time, they are regarded as constituting a three-body connection. We record
the frequencies of the 2-simplexes in each segment. According to the total fre-
quency in all segments, we retain the first 50% of the 2-simplexes with the highest
frequencies and count them as the actual 2-simplexes. The visualization of four
real-world 2-simplicial complexes is shown in Fig. 2a–d.

Data availability
The SocioPatterns datasets were downloaded from http://www.sociopatterns.org/
datasets/61. The source data generated in this study have been deposited on GitHub at:
https://github.com/HuanWang2022/reconstruct_simplicial_complex.

Code availability
The code and datasets are available at: https://github.com/HuanWang2022/reconstruct_
simplicial_complex62.
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