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ABSTRACT The purpose of the image quality assessment is to evaluate image quality consistently with

human’s subjective evaluation. In image quality assessment, many structural features have been used to

measure the quality degradation of an image. However, most of the existing image quality assessment

methods are block-based, which ignores the features among neighboring blocks. In this paper, we argue

that the human visual system perceives distortions not only depends on local structural (intra-block struc-

ture) distortions, but also relates to the structural distortions of their neighborhoods (inter-block texture).

Based on this insight, we propose a novel image quality assessment method, called the diffusion speed

structure similarity (DSSIM), by considering both intra-block structure and inter-block texture. Specifically,

to characterize the inter-block texture, we devise a novel visual feature based on the image diffusion speed.

To measure the changes of the intra-block structure, we adopt the image gradient magnitude. Furthermore,

to differentiate the importance of a local region, we devise a weighting function based on the image diffusion

speed. Extensive experimental results on six benchmark databases demonstrate that our proposed method

yields a better performance than the state-of-the-art methods.

INDEX TERMS Image quality assessment, nonlinear diffusion, human visual system.

I. INTRODUCTION

The image quality assessment has become a widely used

method to improve the performance of image processing

and computer vision applications (e.g., image enhancement,

compression, restoration, and reproduction [1]–[3]). To get

an accurate image quality assessment, an alternative way

is to conduct a user survey, and get the Mean Opinion

Score (MOS) from a variety of demographics. However, this

method is expensive and time-consuming, especially when

a huge amount of images require to be assessed. Therefore,

it is imperative to devise an objective Image Quality Assess-

ment (IQA) metric, which can simulate people’s subjective

perception reliably and efficiently.

The associate editor coordinating the review of this manuscript and

approving it for publication was Feng Shao .

The objective IQA aims to predict the visual quality

by simulating subjective ratings with mathematical models.

According to the availability of a reference image, the objec-

tive IQA methods can be categorized into three categories:

(1) full reference (FR-IQA) [1], [4], [5], (2) no-reference

(NR-IQA) [6]–[8], and (3) reduced-reference (RR-IQA)

[9]–[11]. In this paper, we focus on the FR-IQA methods.

The mean square error (MSE) and peak signal-to-noise

ratio (PSNR) metrics are widely used in FR-IQA due to

its computational efficiency and clear physical meaning.

However, they cannot correlate well with the Human Visual

System (HVS). Subsequently, many HVS-based FR-IQA

methods are proposed during the recent ten years. Many

methods employ the properties of HVS, e.g., visual mask-

ing effect [12], contrast [13], and just noticeable differ-

ences [14], directly. Chandler and Hemami [15] proposed a

method called visual signal to noise ratio (VSNR), by using
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near-threshold and supra-threshold properties of HVS. How-

ever, due to the complexity of the HVS, and the uncertainty

of our current knowledge about it, it is difficult to construct

an efficient and accurate FR-IQA model.

Since the structural information is recognized as an

important feature to simulate HVS, some structure-based

methods are proposed. In these methods, the structural sim-

ilarity (SSIM) [1] index is considered to be one of the most

representative FR-IQA. In SSIM, the comparison of image

luminance, contrast, and structural features are adopted to

perceive the distortions of image quality. In a follow-up

study, many novel methods extending SSIM are proposed

[16]–[19], such as multi-scale SSIM, information weighted

SSIM, gradient-based SSIM, and complex wavelet SSIM.

Later on, inspired by the SSIM, some new structure fea-

tures are introduced to enhance the performance of FR-IQA

methods [20]–[25]. Based on the hypothesis that variations

of gradient magnitudes in image signals are important in

perceived visual quality, Liu et al. [20] proposed a gradient

similarity (GSM) index. Based on the assumption that image

low-level features are important for HVS to understand an

image, Zhang et al. [22] proposed a feature similarity (FSIM)

index. In FSIM, the comparison of the phase congruency and

gradient magnitude is adopted to perceive the local distor-

tions of image quality. Zhang et al. [23] proposed a visual

saliency-induced index (VSI). In VSI, the visual saliency

information is incorporated into the IQA model to improve

its performance. Recently, some FR-IQA methods using

other techniques are proposed. Yang et al. [24] proposed an

image decomposition based structural similarity (IDSSIM)

index, and evaluated the edge and texture components of

an image. Cakir and Cetin [26] proposed a FR-IQA using

two-dimensional complex mel-cepstrum. The method tries

to integrate Fourier transform phase information into the

two-dimensional mel-cepstrum, which is shown to be an effi-

cient feature extraction scheme. Nafchi et al. [27] proposed

a mean deviation similarity index using gradient similarity

and chrominance similarity, to measure the local distortions.

Sun et al. [28] proposed to incorporate image superpixel

analysis with IQA. In this method, superpixel luminance and

superpixel chrominance similarity are adopted to improve the

performance of IQA algorithms. Pei and Chen [29] proposed

the multiband IQAmethod. In this method, the IQAmeasure-

ment is obtained in several difference of Gaussian bands, and

then the importance of the distortion in different frequency

bands are learned by the random forest. Bosse et al. [30]

proposed a FR-IQA using the deep neural networks. Firstly,

the features of the reference image and the distorted image are

extracted by the Siamese network, then the extracted feature

are fused, finally, the quality score is obtained by a regres-

sion of the fused feature. Reisenhofer et al. [31] proposed

a Haar wavelet-based perceptual similarity index (HaarPSI).

In HaarPSI, the coefficients obtained from a Haar wavelet

decomposition is adopted to measure the local similarities

and image region weight. Gu et al. [32] proposed a FR-IQA

based on Perceptual SIMilarity (PSIM) measure. In this

method, the microstructural and macrostructural similarity

are adopted to improve the performance of IQA algorithms.

The existing structure features only take advantage of the

spatial correlations between image pixels in a local block,

while ignoring the inter-block spatial correlations. By con-

sidering that the image region of human visual perception

is much larger than the block sizes, in [33], the inter-block

similarity is taking into account in FR-IQA tasks. In this

method, the inter-block is represented by the spatial rela-

tionship between a central block and its neighbors within a

fixed radius. We argue that the Human Vision System (HVS)

perceives distortions, not only depends on local (intra-block)

structural distortions, but also relates to the distortions of

their neighborhoods (inter-block). For the same structure,

when located in a very smooth or rough region, HVS may

have different assessments accordingly. For example, a local

block with high structure value in smooth-region would have

a higher impact on HVS than that in texture region. This

indicates that the inter-block texture has an important impact

on HVS’s image distortion perception.

In this paper, we propose a FR-IQA method called the

diffusion speed structure similarity (DSSIM). Our method

handles the IQA by considering both intra-block structure

and inter-block texture. In this paper, the inter-block is

defined as ‘‘the background texture complexity’’, while the

intra-block is defined as ‘‘the local structural information’’.

In our method, we adopt the image gradient magnitude to

measure the changes of the intra-block structure. We devise

the normalized image diffusion speed to characterize the

inter-block texture. Specifically, we employ the Total Vari-

ation (TV) based nonlinear diffusion method to compute

the image diffusion speed. The speed that the pixels change

their values depends on their neighbouring pixels’ gradient,

pixels falling within a texture region move faster than those

belonging to a smooth region. Thus, we can use the diffusion

speed to measure the spatial correlations of neighbouring

blocks. Additionally, the normalized image diffusion speed,

the gradient magnitude map, and the chrominance informa-

tion are used together to evaluate the local image quality.

In the pooling stage, the normalized image diffusion speed is

further employed as aweighting coefficient to compute a final

similarity score. To improve the computational efficiency of

the nonlinear diffusion, we employ the Additive Operator

Splitting (AOS) scheme. The experimental results on six

benchmark databases demonstrate that our proposed method

yields a better performance than state-of-the-art methods.

The contributions of this paper are summarized as follows:

1) We propose to use the intra-block structure and

inter-block texture to measure the image quality.

2) We devise a novel visual feature based on the image

diffusion speed to characterize the inter-block texture.

3)We devise a weighting function based on the normalized

image diffusion speed to differentiate the importance of local

regions.

The rest of this paper is organized as follows. Section 2 ana-

lyzes our new observation for visual quality perception. The
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FIGURE 1. (a) is the original image, (b) and (c) are the corresponding distorted images. (b) is distorted by the high frequency noise (HFN), (c) is distorted
by the gaussian blur (GB). The red and yellow boxes bound the homogeneous and the complex texture images regions, respectively. The gray image is
displayed in the enlarged boxes (RGB to YIQ).

proposed FR-IQA method based on the image diffusion

speed is elaborated in section 3. Experimental results on six

databases are illustrated in Section 4, and the conclusion is

given in Section 5.

II. MOTIVATION

The existing FR-IQA methods propose to use the structural

information to represent perceived visual quality character-

istics of HVS, such as variance [1], gradient operators [22],

[23], four directional high-pass filter (4D-HF) [20].

However, in many scenarios, the structural based FR-IQA

is inconsistent with the HVS perceptions [34]. As indicated

by the HVS’s contrast masking (CM) effect [35], the HVS has

different sensitivities to distortions based on different texture

characteristics in the background image region.

To illustrate this, we give an example in Fig. 1. Images

in Fig. 1 are obtained from the TID2013. To help describe the

changes of image structure information on different distortion

types, the gray image are displayed in the enlarged boxes.

Fig. 1-(a) is the original image, Fig. 1-(b) is the distorted

image caused byHigh FrequencyNoise (HFN), and Fig. 1-(c)

is the distorted image caused by Gaussian Blur (GB). The

red and yellow boxes bound the homogeneous, and the com-

plex texture images regions, respectively. To estimate the

local structural distortions, we use the absolute differences

between two gradient values, calculated as |f (x) − f (y)|,

where f (·) is a gradient operator. The pixels in the yellow

and the red box have similar gradient difference value in

Fig. 1-(b) and Fig. 1-(c). Obviously, for these two kinds of

distortions, the gradient features yield similar distortions,

which cannot make clear distinctions.

However, HVS has different strategies for these two kinds

of distortions. For HFN distortions, as shown in Fig. 1-(a),

and Fig. 1-(b), HVS is more sensitive to the quality degrada-

tions in the red box than that in the yellow box. In contrast, for

GB distortions, as shown in Fig. 1-(a), and Fig. 1-(c), HVS is

more sensitive to the quality degradations in the yellow box

than that in the red box. From Fig. 1-(b), we observe that

the structural degradations in homogeneous regions are more

serious than that in complex texture regions. From Fig. 1-(c),

conversely, the structural degradations in complex texture

regions are more serious than that in homogeneous regions.

This phenomenon illustrates that, for different distortion

types, the HVS has different perceive capability for texture

regions with different complexity. In this paper, we define the

inter-block feature, i.e., the background texture complexity,

to capture this characteristics of HVS.

As pointed out in [36], the inter-block texture should be

considered when modeling HVS’s CM effect. In this paper,

we devise a novel feature based on diffusion speed to char-

acterize the inter-block texture. Furthermore, we adopt the

image gradientmagnitude to capture the intra-block structure.

Based on these features, we propose the DSSIM. In the

following section, we explain the proposed method in detail.

III. PROPOSED DSSIM

The design of the proposed method is shown in Fig. 2.

In our method, the normalized image diffusion speed, which

represents the inter-block texture, is adopted as the primary

feature when computing our proposed DSSIM. Meanwhile,

the gradient magnitude, and chrominance information are

employed to estimate the local structure (intra-block) and

color degeneration, respectively.

A. INTER-BLOCK TEXTURE FEATURE

The inter-block is the area with the same texture characteris-

tics. In our method, we propose to adopt the normalized dif-

fusion speed to represent the texture characteristics. Inspired

by the study [37] proposed by Brox and Weickert, which

exploited the total variational (TV) flow based nonlinear

diffusion to measure local scale, we adopt the TV-flow based

nonlinear diffusion to calculate the image diffusion speed.

For a given image I , the TV-flow based nonlinear diffusion

calculates a filtered image wt as a solution of the diffusion

equation

wt+1 = wt + div
[

(g
(∣

∣

∣

h
wt

∣

∣

∣

) h
wt

]

(1)

179704 VOLUME 8, 2020



J. Yang et al.: FR-IQA by Considering Intra-Block Structure and Inter-Block Texture

FIGURE 2. The framework of the proposed approach.

FIGURE 3. Example images from TID2013 (the first row), the normalized diffusion speed map and the gradient map (the second row). (a) Original image;
(b) Additive Gaussian noise; (c) High frequency noise; (d) Gaussian blur; (e) JPEG compression.

with the original image as initial state

w0 = I (2)

where t denotes the total number of iterations, div denotes the

divergence operator,
`

denotes the gradient operator. For the

diffusivity function g (·), we choose the TV flow [38], which

is given as

g (x) =
1

ǫ + x
(3)

where ǫ is a small positive constant.

The TV flow has been proven to comply with the following

rules [37]. (1) The pixels diffusion speed depends on the

size of the region they belong to. (2) The two boundary

pixels adapt their value with half of that speed. These rules

lead to a very useful consequence: by simply computing the

difference in pixel values of the original image and diffused

image generated by the TVflow,we can obtain the inter-block

texture effectively. The image diffusion speed is defined as

DS = I − wt (4)

where t is the number of iterations. Due to the reflecting

boundary conditions in TV-flow based nonlinear diffusion,

some edge pixels will have higher diffusion values. There-

fore, we use the gradient value of the pixel to normalize the

diffusion speed, which is given as

NDS(x) =
DS(x))

GM (x) + θ
(5)

where GM is the gradient operator, θ is a small positive

constant. The second row in Fig. 3 shows an example of

normalized diffusion speed map. In Fig. 3, the original image

and four distorted images corrupted by ‘‘Additive Gaus-

sian noise’’, ‘‘High frequency noise’’, ‘‘Gaussian blur’’, and
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FIGURE 4. The distortion maps of the HFN-distorted image (Fig. 1(b)), and the GB-distorted image (Fig. 1(c)), respectively, for the original image
(Fig. 1(a)). A higher intensity value (bright) indicates a relatively larger distortion (difference) in each image.

‘‘JPEG compression’’ are selected from TID2013. We can

observe that the normalized diffusion speed map can repre-

sent the region distortion effectively. To support our claim,

we compare the normalized diffusion speed with other two

popular structural features: variance [1] and gradient oper-

ator [22], [23]. Fig. 4 shows the distortion maps of images

in Fig. 1(a)-(c). The distortion map between two feature

values are calculated by |f (x) − f (y)|, where f (·) is a feature

function. The first and second rows in Fig. 4 illustrate the

distortion maps for Fig. 1-(b) and Fig. 1-(c), respectively.

A higher intensity value indicates a relatively larger distor-

tion (difference) in each image. For HFN distortion, the vari-

ance exhibits slightly positive correlations with the perceived

distortions as shown in Fig. 4-(a), the gradient operator pro-

duces similar distortions both in homogeneous and texture

regions. For GB distortion, as shown in Fig. 4-(d) and (e),

the variance and gradient operator can only reflect the

perceived distortions in structural regions.

From Fig. 4-(c) and (f), we can see that diffusion speed

map can effectively reflect the perceived distortions for both

HFN and GB distortions. For HFN distortions, the diffusion

speed map yields small distortion values in complex tex-

ture regions (e.g., green ellipse) and lager distortion values

in flat regions (e.g., red ellipse), as shown in Fig. 4-(c).

In Fig. 4-(f), it produces lager distortion values in complex

texture regions (e.g., green ellipse) and small distortion

values in homogeneous regions (e.g., red ellipse). Therefore,

the normalized diffusion speed map can be used to stimulate

the human’s perception. Based on the observation, we adopt

the normalized diffusion speed as a primary feature in our

DSSIM.

In some case, the low efficiency of nonlinear diffusion lim-

its its practical application. To overcome its limitation, several

approaches, which based on the simplest finite difference

discretization by means of explicit or Euler-forward scheme,

are proposed. However, these methods require very small

time steps in order to be stable. Hence, thewhole filtering pro-

cedure is rather time-consuming [39]. Here, we adopt an effi-

cient approach, called the additive operator splitting (AOS)

scheme, which is defined as

ut+1 =
1

2

(

(

I − 2τAx
(

ut
))−1

+
(

i− 2τAy
(

ut
))

ut
−1

)

ut

(6)

where τ is the time step, the Ax and Ay denote the diffusion

matrices computed in the horizontal and vertical directions,

respectively. More details about the method can be found

in [39].

B. INTRA-BLOCK STRUCTURE FEATURE

The image gradient has been successfully applied in many

FR-IQA methods to capture image structures. In this paper,
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the image gradient is used to extract the image local

structure(intra-block) information. For a given image f ,

the gradient is defined as

GM (f ) =

√

G2
v (f ) + G2

h (f ) (7)

where Gv = Ov ∗ f and Gh = Oh ∗ f with the symbol ∗

being the convolution operation. Oh and Ov are horizontal

and vertical gradient operators. There are several operators

that can accomplish this task, such as Sobel operator, Prewitt

operator and Scharr operator. In our method, these operators

perform almost the same. In this paper, we choose Prewitt

operator, which is defined as

px =





−1 0 1

−1 0 1

−1 0 1



 , py =





1 1 1

0 0 0

−1 −1 −1





Fig. 3 shows an example of gradient magnitude map. The

original image and four distorted images corrupted by ‘‘Addi-

tive Gaussian noise’’, ‘‘High frequency noise’’, ‘‘Gaussian

blur’’, and ‘‘JPEG compression’’ are selected from TID2013.

It is evident that the gradient magnitude can extract the image

intra-block structure effectively.

C. DIFFUSION SPEED STRUCTURE SIMILARITY (DSSIM)

InDSSIM,wefirst measure the local similaritymaps between

the reference image F ref and its distorted one Fdis, then an

overall quality score is obtained though the pooling stage.

To argument the FR-IQAmetric with the capability of deal-

ing with color distortions, chrominance information should

be given special considerations. Therefore, the original RGB

color images need to be converted into another color space,

where the luminance can be separated from the chrominance.

To this end, there are some standard color spaces, such as

YIQ, YUV, YCbCr and LMN. In this paper, we choose the

YIQ color space.

Before computing the diffusion speed and gradient magni-

tudemaps, we first transformRGB color images into an oppo-

nent color space [40], where the luminance can be separated

from the chrominance. The RGB color inputs are converted

into YIQ color space according to





Y

I

Q



 =





0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312









R

G

B



 (8)

Then, the diffusion speed and gradient magnitude maps

are computed form Y channel, and the I and Q channels of

image are used as the chromatic feature to measure color

differences. The diffusion speed, the gradient magnitude, and

the chromatic similarities between F ref (x) and Fdis (x) are

defined as follow.

1) for the intra-block structure comparison, we use the

gradient magnitude similarity

GS (x) =
2 · GM ref (x) · GMdis (x) + C1

GM ref (x)2 + GMdis (x)
2 + C1

(9)

2) for the inter-block texture comparison, we use the nor-

malized diffusion speed similarity

NDSS (x) =
2 · NDSref (x) · NDSdis (x) + C2

NDSref (x)2 + NDSdis (x)
2 + C2

(10)

3) for the color information comparison, we compute it

with

CSI (x) =
2Iref (x) · Idis (x) + C3

Iref (x)2 + Idis (x)
2 + C3

(11)

CSQ (x) =
2Qref (x) · Qdis (x) + C4

Qref (x)2 + Qdis (x)
2 + C4

(12)

where C1, C2, C3, and C4 are positive fixed number to avoid

the instability. Finally, the local comparison is defined as

M (x) = [NDSS (x)]α · [GS (x)]β ·
[

CSI (x) · CSQ (x)
]γ

(13)

where α, β, and γ are three parameters used to adjust the rela-

tive importance of diffusion speed, gradient, and chrominance

features.

Numerous studies have shown that, the pooling is very

important for achieving an IQA metric, which is highly cor-

related with the perception. The most commonly used pool-

ing strategy is average pooling, which simply averages the

local quality map as the final FR-IQA score. However, such

pooling strategies are not consistent with the intuition that

different locations on an image would have different contri-

butions to HVS’ perception. A recent study reveals that, less

complex texture regions play more important roles in visual

quality perception [36]. From the Eq. 5, we know that the

normalized image diffusion speed can express the difference

between the local area and the background area of the pixel.

The higher the normalized diffusion speed value, the less

complex texture the located region. Therefore, we utilize

the normalized diffusion speed as the weighting coefficient

in the pooling stage. The weighting function is defined as

W = max
(

NDSref ,NDSdis
)

, and the DSSIM index is defined

as

DSSIM =

∑

x∈η M (x) ·W (x)
∑

x∈η W (x)
(14)

where η means the whole image spatial domain.

IV. SIMULATION RESULT AND DISCUSSION

In this section, we testify and compare the performance

of the DSSIM with 13 state-of-the-art FR-IQA metrics to

verify its effectiveness on five benchmark IQA databases.

These 13 methods include VIF [41], PSNR [42], VSNR [15],

SSIM [1], GSM [20], RFSIM [21], FSIMc [22], SFF [43],

DSCSI [44], IISIM [33], HaarPSI [31], VSI [23] and

PSIM [32].

A. DATABASES AND EVALUATION CRITERIA

The five benchmark databases used in the following

experiments include TID2013 database [45], TID2008

VOLUME 8, 2020 179707
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database [46], CSIQ database [47], LIVE database [48], IVC

database [49] and LIVEMD database [50]. The detailed char-

acteristics of these databases are shown in Table 1.

TABLE 1. Benchmark datasets.

To make a thorough comparison on the FR-IQA perfor-

mance, we use four benchmark criteria in our experiments,

i.e., Spearman rank order correlation coefficient (SROCC),

Pearson linear correlation coefficient (PLCC), Kendall rank

order correlation coefficient (KROCC), and the root mean

squared error (RMSE).

Before computing the four criteria, we first compute the

correlation between the subjective mean opinion scores and

the the objective scores with a non-linear transform. To mea-

sure the prediction monotonicity, we compute the SROCC

and KROCC. To get the similarity degree between subjective

mean opinion scores (MOS) and objective scores, we com-

pute PLCC. To measure the prediction consistency, we com-

pute RMSE. In the above four indices, an excellent IQA

model should attain high values in SROCC, KROCC, and

PLCC, while low values in RMSE.

B. DETERMINATION OF PARAMETERS

The nonlinear regression function is computed as [48]

f (x)=β1 ·

(

1

2
−

1

1+exp (β2 · (x − β3))

)

+ β4 · x + β5

(15)

where βi, i = 1, 2, . . . , 5, are parameters to be fitted. More

detailed illustration for the four criteria is elaborated in [17].

In this paper, we used the method proposed by Wang [1]

to reduce the complexity. First, the scale S for images

viewed from a typical distance is calculated as S =

max(1, round(Num/256)), where Num is the the number of

pixels in image height or width. Then, the image is down-

scaled by a factor of S. In the LIVE, CSIQ, TID2008, and

TID2013 databases, S is equal to 2. We find that this down-

sizing process helps reduce computational complexity while

slightly degrading the performances of the DSSIM. To obtain

the best performance of our proposed method, we need to

tune the value of parameters. In this paper, we divide the

TID2013 database into training set and test set. The training

set contains 960 distorted images from 8 reference images,

and the test set contains the remaining 1920 distorted images.

First, the training data set is used to get the initialization

parameters. Second, the initialization parameters are fine

tuned on the test set, and we choose the parameters that get

the highest SROCC value. To investigate the impact of the

diffusion speed map parameters on the final performance,

we set the size of the time step τ to different values. In this

experiment, we set t = 5. Fig. 5 plots the SROCC curves

against τ , by applying DSSIM to the LIVE, CSIQ, TID2008,

and TID 2013 databases. Note that for all these databases,

DSSIM shows similar preference to the value of τ . In our

implementation, we set τ = 400. The parameters of DSSIM

are listed in Table 2.

FIGURE 5. The performance of DSSIM in terms of SROCC vs. constant τ on
the four databases.

TABLE 2. Parameters setting for DSSIM.

In DSSIM, the role of the diffusion speed map is twofold:

first, the diffusion speed map is used as a critical feature to

characterize the distortions of image local quality. Second,

the diffusion speedmap is used to differentiate the importance

of a local region. In our method, the diffusion speed map is

used as a weighting coefficient to compute the final score.

To demonstrate the effectiveness of our weighting function,

we conduct a series experiments on four databases, and

employ the SROCC as our evaluation criterion. As demon-

strated in Fig. 6, the weighted DSSIM, which uses the

FIGURE 6. The SROCC of DSSIM with weight function and DSSIM without
weight function evaluated on LIVE, TID2008, TID2013, and CSIQ.
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diffusion speed map as the weighting coefficient, is better

than the DSSIM that does not use it.

In our method, the original RGB color images are

converted into another color space, where the luminance

is separated from the chrominance. There are some stan-

dard color spaces, such as YIQ, YUV, YCbCr, and LMN.

To determine which color space should be chosen, we tested

DSSIM with different color space in TID2013, the experi-

mental results are recorded in Table 3. As shown in table 3,

the DSSIM achieves better performance when using YIQ and

LMN. Since the YIQ and LMN have similar performance,

in the following experiments, we choose the YIQ color space.

TABLE 3. Performance comparison for DSSIM on TID2013 with four color
spaces.

There are three commonly used gradient operators,

the Sobel operator, the Prewitt operator, and the Scharr opera-

tor. To determine which operator should be chosen, we tested

DSSIMwith gradient operators in TID2013, the experimental

results are recorded in Table 4. It should be noted that, all

the DSSIM parameters used in this experiment are fixed.

As shown in Table 4, the DSSIM achieves slightly better per-

formance when using the Prewitt operator. Therefore, in this

paper, we choose the Prewitt operator.

TABLE 4. Performance comparison for DSSIM on TID2013 using three
gradient operators.

C. PERFORMANCE EVALUATION

We conduct the experiment on five benchmark FR-IQA

databases, and compare DSSIM with the state-of-the-art,

the comparison is conducted based on four evaluation cri-

teria, i.e., the SROCC, KROCC, PLCC, and RMSE. The

experimental results are recorded in Table 5. In Table 5,

we highlight the top three FR-IQA methods with boldface

font that achieve the top results. As shown in Table 5,

it can be observed that none of the methods can work well

on all databases. The proposed DSSIM achieves top 3 on

TID2013, TID2008 and IVC databases. HaarPSI works well

on TID2008, CSIQ and LIVE. PSIM achieves better predic-

tion accuracy on TID2013, TID2008, CSIQ and IVC. For

the largest database TID2013, the proposed DSSIM is the

third best method on all criteria. Compared with the VSI and

PSIM, our DSSIM show similar performances. For the CSIQ

and LIVE database, the proposed DSSIM also achieves a

comparable performance compared with the state-of-the-art.

Since the performance of the existing methods varies

according to different databases, for easy comparison,

we compute a weighted-average evaluation score for each

method, where the weight coefficient assigned to each

database is based on the size of the database. The evaluation

criteria are SROCC, KROCC, and PLCC. Table 5 records

the results. The FR-IQA method that achieves the top 3 best

performance is also highlighted with boldface font. As illus-

trated in Table 5, our proposed DSSIM achieves the 3 best

performance in SROCC and PLCC values.

In Fig. 7, we demonstrate the scatter plots that records

the subjective scores and its corresponding objective scores,

the objective scores are computed on the TID2013. As we can

see from the result, the objective score computed by the pro-

posedDSSIMfits consistentlywith the objective score, which

means that DSSIM is an excellent feature to characterize the

HVS behavior.

In order to recommend a more reliable IQA model,

we evaluated the 14 FR-IQAmethods on TID2008, TID2013,

and LIVE databases with the perceptually weighted rank

correlation (PWRC) indicator [51]. The PWRC evaluates the

rank accuracy though a confidence-aware rank correlation

from the area under the curve (AUC). For a given threshold

range [Tmin,Tmax], the measurement is defined as

AUCca =

∫ Tmax

Tmin

S(x, y,T )dT (16)

where S(x, y,T ) is the overall sorting accuracy indicator,

AUCca is a scalar that reflects the overall sorting performance

under a given confidence interval. More details about the

PWRC can be found in [51].

The experimental results are listed in Table 6. In Table 6,

we highlight the top 3 FR-IQA methods with bold-

face font that achieve the top results. As demonstrated

in Table 6, PSIM and our proposed DSSIM rank the top 3

on TID2013 and TID2008, HaarPSI ranks the top 3 on

TID2008 and LIVE. As we can see, compared with most of

the existing methods, our proposed DSSIM achieves compet-

itive and promising performance on all the five benchmark

databases.

D. PERFORMANCE MEASURES ON MULTIPLY

DISTORTIONS

To verify the performance of the proposed DSSIM, we con-

ducted the performance comparison on LIVEMD, which is a

multiply distorted dataset. The results are listed in Table 7.

We highlight the top 3 FR-IQA methods with boldface font

that achieve the top results. As shown in Table 7, the methods

(such as the VIF, SSF, and FSIMc) having the best perfor-

mance on LIVEMD, also have competitive performance on

LIVE. On the LIVE and LIVEMD dataset, the proposed

DSSIM behaves worse slightly than these methods. How-

ever, as shown in Table 5, the proposed DSSIM method
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TABLE 5. Comparison of 14 IQA indices on five benchmark datasets.

TABLE 6. Comparison of 14 IQA indices with PWRC.

TABLE 7. Performance comparison of 14 IQA indices on LIVEMD.

outperforms these methods on TID2008 and TID 2013. The

main reason is that, the LIVE and LIVEMD dataset have

less distorted types, and smaller number of distorted images,

while TID2008 and TID2013 have more distorted types, and

larger number of distorted images. This result indicates that

the proposed DSSIM would have a higher generalization

capability. Additionally, compared with the methods (such

as VSI and IISIM) that have excellent performance on TID

2008 and TID 2013, the proposed DSSIM not only outper-

forms them on TID 2008 and TID 2013, but also has better

performance on LIVE and LIVEMD.

E. PERFORMANCE COMPARISON ON INDIVIDUAL

DISTORTION TYPES

An excellent IQA model should not only have high pre-

diction accuracy on a whole databases, but also have high

performance on a specific distortion type. To compare the

generalization ability of DSSIM with the-state-of-the-art on

different distortion types, we conduct a series of experiments

on the database TID2013 and TID2008. For the evaluation

criterion, we adopt the SROCC due to its stable performance

for fitting the objective scores. The experimental results are

recorded in Table 8. We highlight the top 3 results with

boldface font. As demonstrated in Table 8, our proposed

DSSIMoutperforms the state-of-the-art. Specifically, DSSIM

ranks the top three on TID2013 for 14 distortion types.

On TID2008, DSSIM also ranks the top three for 8 distortion

types. With these results, we can conclude that, compared

with the VSI, PSIM and HaarPSI, our proposed DSSIM

has an excellent capability of generalization for different

distortion types.

F. STATISTICAL SIGNIFICANCE

To make a through comparison with the state-of-the-art,

we conduct the statistical significance tests with F-test. The

F-test is computed for every two methods, the detailed
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FIGURE 7. Scatter plots that record the subjective MOS and its corresponding objective scores based on the TID2013 database. (a)VIF, (b) PSNR,
(c) VSNR, (d) GSM, (e) IWSSIM, (f) RFSIM, (g) FSIMc, (h) SFF, (i) DSCSI, (j) IISIM, (k) HaarPSI, (l) VSI, (m) PSIM and (n) DSSIM.

computation process is demonstrated as follows: 1. compute

the prediction residual of each method, where the residual

is the absolute difference between the prediction value (the

result of non-linear mapping) and the objective score. 2. for

eachmethod, compute its residual variance ratio with all other

methods, the residual variance ratio is denoted with F . 3.

compute Fcritical , which is computed based on the residuals

and a given confidence level. 4. if F is larger than Fcritical ,

then the difference of the two methods is considered to be

significant with that confidence level.

We set the confidence level as 95%, and the results of all

methods on the four databases are demonstrated in Fig. 8.

+1 in Fig. 8 means the method on the row is statistically

superior than the method on the column, while−1 means that

the method on the row is statistically inferior than the method

on the column, meanwhile, 0 means the method on the row

behaves relatively the same with the method on the column.

As we can see from Fig. 8, our proposed DSSIM out-

performs most of the state-of-the-art. Specifically, for the

database TID2013, DSSIM only behaves worse than PSIM,

and behaves significantly better than the other methods. For

the database TID2008, DSSIM behaves significantly better

than the other methods except HaarPSI and PSIM. For the

database LIVE, besides the VIF, FSIMc, and SFF, DSSIM

behaves significantly better than the other methods.

G. COMPUTATIONAL COST

Computational cost is another important factor that deter-

mines whether an IQA method can be widely adopted.

We conduct a series of experiments to test the computational

efficiency. The experiments are conducted on a computer

with 2.5GHz Intel core i5 processor, and 10 GB RAM. The

program runs on Matlab R2014a. We use all the distorted
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TABLE 8. SROCC value of IQA indices for each type of distortion in TID2008 and TID2013.

TABLE 9. Time cost of each FR-IQA Index.

images in the TID2013 database, and record the average

processing time in Table 9.

As demonstrated in Table 9, the PSNR is the fastest

method. However, they achieve fairly worse evaluation

performance than DSSIM and the other methods. Compared

with the VSI, the performance of the proposed DSSIM is

slightly lower on the TID2013. But the DSSIM only spends

0.0813 second per image, i.e. the DSSIM runs three times
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FIGURE 8. Statistical significance test on evaluation databases. ‘1’ at location (i, j ) indicates method i is significantly better than j with
95% confidence level. ‘−1’ indicates the opposite and ‘0’ indicates there is no significant difference between two methods.

faster than the VSI, whichmeans our proposed DSSIMwould

be more appropriate for real time applications.

V. CONCLUSION

In this paper, we demonstrate that the HVS perceives

distortions depending on intra-block structure and inter-block

texture. Based on this insight, we adopt the image gradient

magnitude to measure the changes of the intra-block struc-

ture. Meanwhile, we devise a novel visual feature called

region contrast based on the normalized image diffusion

speed to characterize the inter-block texture. Additionally,

we adopt the normalized diffusion speed, the gradient mag-

nitude, and the chrominance information to evaluate the local

image quality. In the pooling stage, we employ the normal-

ized diffusion speed as a weighting coefficient to derive the

final similarity score. The experimental results on six pub-

lic benchmark databases confirm that our proposed DSSIM

achieves a superior performance than the state-of-the-art

methods.
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