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Abstract: To improve data transmission efficiency, image compression is a commonly used method
with the disadvantage of accompanying image distortion. There are many image restoration (IR) algo-
rithms, and one of the most advanced algorithms is the generative adversarial network (GAN)-based
method with a high correlation to the human visual system (HVS). To evaluate the performance of
GAN-based IR algorithms, we proposed an ensemble image quality assessment (IQA) called ATDIQA
(Auxiliary Transformer with DISTS IQA) to give weights on multiscale features global self-attention
transformers and local features of convolutional neural network (CNN) IQA of DISTS. The result not
only performed better on the perceptual image processing algorithms (PIPAL) dataset with images
by GAN IR algorithms but also has good model generalization over LIVE and TID2013 as traditional
distorted image datasets. The ATDIQA ensemble successfully demonstrates its performance with a
high correlation with the human judgment score of distorted images.

Keywords: image quality assessment (IQA); full-reference IQA; deep image structure and texture
similarity (DISTS); transformer IQA; PIPAL dataset; ensemble IQA

MSC: 68T07

1. Introduction

Due to the vigorous development of the Internet of Things (IoT), the necessary com-
pression and restoration of images in the transmission process have become increasingly
hot topics. With the progress of deep learning models including the convolutional neural
network (CNN) [1,2] and the generative and adversarial network (GAN) [3,4], the quality
of image restoration [5], image compression, and super-resolution [6] has been greatly
improved. Therefore, having a metric to quantify the image quality to the human visual sys-
tem (HVS) is always a tough task. Image quality assessment (IQA) [7–9] can be subjective
or objective.

Subjective IQA judged through human eyes is more reliable and accurate for HVS
and is named by mean opinion scores (MOS). However, subjective IQA is time-consuming
and expensive. Recently, more and more studies on objective IQA models have achieved
outstanding results, including full-reference IQA (FR-IQA) [9], reduced-reference IQA (RR-
IQA), and no-reference IQA (NR-IQA), which can be used to predict the image quality score.

FR-IQA compares the distance of the reference image and distorted image as a pair to
measure the distorted image quality. NR-IQA predicts the distorted image quality without
a reference image. That means NR-IQA has no prior knowledge for original information
and limited uses for measuring a distorted image compared to a restored image.

However, in these years, with neural network contribution, NR-IQA dud has achieved
a significant performance on metric distorted images, such as MetalIQA [10], proposed in
2020, and GraphIQA [11] and LIQA [12], proposed in 2022.

In this paper, we focus on FR-IQA since we are interested in not only distorted image
quality but image quality after the restoration algorithm. Hence, we propose an ensemble
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FR-IQA model named the auxiliary transformer with DISTS for image quality assessment
(ATDIQA)-weighted average of the quality score from the models of the transformer IQA
and CNN-based IQA.

ATDIQA was trained on the PIPAL [13] dataset to include distorted images and
restoration images with ensemble methodology. Then, we tested it on the distorted-based
dataset of LIVE [14] and TID2013 [15] for Pearson’s linear correlation coefficient (PLCC) [16]
correlation metric and Spearman’s rank correlation (SRCC). In the LIVE dataset, PLCC
and SRCC are over 0.9 with great correlation to human perception. In the TID2013 dataset,
PLCC and SRCC are over 0.8 with a still-good correlation to human perception. In the
PIPAL test set, we obtained over 0.83 PLCC and SRCC with good linearity. ATDIQA did
demonstrate its good model generalization capability and capability for image quality
assessment on both distorted images and images with various restored algorithms.

2. Background and Related Work
2.1. Full-Reference Image Quality Assessment (FR-IQA)

The FR-IQA algorithm as shown in Figure 1 inputs the original image, that is, the
reference image, and the distorted image, that is, the quality image to be judged. After the
image resolution is unified through preprocessing, the features of the images are extracted
through feature extraction, and then, the distance between the distorted image and the
reference image is calculated to obtain the image quality score of the distorted image.
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Figure 1. FR-IQA model.

In the distance computation, the mean square error (MSE) and peak signal-to-noise
ratio (PSNR) are commonly used methodology. However, metrics of MSE and PSNR cannot
obtain accurate image quality score for some images from deep-learning based image
restoration algorithms.

To improve the poor performance of MSE and PSNR, structural similarity (SSIM) [17]
was proposed to include image luminance, contrast, and structure as an index in FR-IQA
to calculate the similarity of the image structure between a reference image and a distorted
image. Then, SSIM was extended to a multiscale structural similarity index called MS-
SSIM. Structural-based metric models of image luminance, contrast, and structure on
multiple scales.

The convolutional neural network (CNN) architecture shows significant achievement
in computer vision, including image classification, image segmentation, and object detec-
tion, due to its ability to extract different scales of image features. In FR-IQA, the use of
CNN architecture to extract multiple levels of features for distance computation was pro-
posed by learned perceptual image patch similarity (LPIPS) [18] and deep image structure
and texture similarity (DISTS) [19].

The generative adversarial network (GAN) has been proven to be a good approxima-
tor for natural image restoration (IR) [20–24]. In 2021, the perceptual image processing
algorithm (PIPAL) dataset [21] was developed with 116 distortions of traditional IR and
GAN-based IR as a novel large-scale IQA dataset. The PIPAL dataset had been used in the
CVPR NTIRE 2021 and 2022 challenge as a benchmark for IQA algorithms.

In the CVPR NTIRE 2021 challenge, the team that won first implemented the transformer-
based IQA named IQT-C [25] to demonstrate the global attention of transformer-to-IQA
capability. In the CVPR NTIRE 2022 challenge [26], the team that won first developed an
ensemble method with transformer and CNN for feature extraction named attention-based
hybrid image quality assessment network [27]. The ensemble deep learning model shows
its power in IQA as well.
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2.2. IQA Datasets

Numerous IQA datasets have been proposed over decades. The FR-IQA dataset
contains reference images and different types of distortion images as pairs. Each distorted
image is evaluated by MOS relative to the reference image by human judgment. The
distortion types [28,29] vary to include traditional JPEGs such as image compression, white
noise, Gaussian blur, and the traditional algorithm for image restoration.

Some of the well-known FR-IQA datasets are LIVE [14], TID2008 [30], TID2013 [15],
and KADID-10k [31], as shown in Table 1 with the increase in reference images, distortion
images, and distortion types yearly.

Table 1. Image Quality Assessment Datasets.

Image Restoration Dataset Year No.
Ref

No.
Dist.

No. Dist.
Type

Traditional
Algorithm

LIVE [24] 2004 29 0.8k 5

TID2013 [25] 2013 25 3k 24

KADID-10k [27] 2019 81 10.1k 25

Trad. + GAN Algorithm PIPAL [10] 2020 250 29k 40

PIPAL [13], first introduced in 2020 by Jinjin et al., increased the reference images
to 250 and distortion types to 40 and introduced distorted images using the GAN-based
restoration algorithm as the current state-of-the-art FR-IQA dataset today. It is also used
to evaluate FR-IQA models in distorted and restored images to include the GAN-based
algorithm in the CVPR NTIRE 2021 IQA challenge.

2.3. Feature Extraction Backbone in FR-IQA

Feature extraction backbones are key components in learning-based IQA algorithms as
published in recent years. In 2018, Zhang et al. investigated different CNN-based models
such as LPIPS [18] to demonstrate that deep features are representative of image semantics
for evaluating image quality.

In 2021, Guo et al. proposed the IQA of multiscale features as an image quality
multiscale assessment network (IQMA) [28] to demonstrate the power of the feature fusion
module with feature pyramid network (FPN) backbone for multiscale feature fusion.

Shi et al. significantly improved WResNet IQA models (W stands for weighted
averaging) [32] by modifying the residual block in the feature extraction backbone of the
fourth ranking in the NTIRE 2021 IQA challenge.

2.4. Ensemble Methods in FR-IQA

Ensemble learning has been shown to be effective in performance on deep learning
tasks. In FR-IQA, there are several models that use ensemble methodology to obtain high
correlation metrics: the IQMA [33] network, which won the 2nd award in the NTIRE 2021
competition, proposed to average predicted quality scores from different levels of feature
maps. EGB predicts image quality scores with three regressors and averages the three
predicted scores to obtain the final quality score.

Ensemble methodology [34] is commonly used to solve statistical and computational
problems while maintaining model generalization. It has been demonstrated successfully
in various fields including face recognition [35], emotion recognition [36,37], medical treat-
ment [38,39], etc. In the NTIRE 2021 IQA challenge, the team proposing an IQA metric
named the gradient boosting (EGB) ensemble [40], with three regressors for the image qual-
ity score, won the second prize for outstanding performance of the IQA ensemble metric.
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3. Methodology

In 2022, S.S. Lao et al. proposed an attention-based hybrid image quality assessment
network (AHIQ) [27] to fuse the transformer-based IQA and CNN-based IQA with feature
fusion module. This inspired us to ensemble the IQT and CNN-based DISTS IQA models
as an ensemble IQA. In our model, we used VGG16 to reduce computational cost since the
AHIQ model uses the deep backbone of Resnet50 as the CNN backbone. In that case, our
ATDIQA is an ensemble model with the multi-metric of CNN IQA and transformer IQA,
as shown in Figure 2.
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Figure 2. ATDIQA model architecture with a weighted average of IQT-L, IQT-M, IQT-H, IQT-Mixed,
and DISTS-Tuned.

During training, we fine-tuned the weights of the feature extraction backbone for all
models as transfer learning for the IQA task.

In 2021, Google proposed a multiscale image quality transformer (MUSIQ) [41] that
trained their model on four scales of the input in IQA datasets. MUSIQ showed that
multiscale training images can capture image quality of granularities.

Instead of increasing the training images with multiple scales, we tend to apply multi-
level features. Hence, we built three different levels of feature extraction IQA models of
IQT-L, IQT-M, and IQT-H models for the weighted sum score.

The approach is similar to the multi-level fusion of IQMA [33]. After training, ATDIQA
can be observed regarding the weight of different scales of the IQA model’s contribution to
IQA, and we can compare the PLCC and SRCC to human perception.

3.1. DISTS-Based Methods

Deep image structure and texture similarity (DISTS) is a CNN-based FR-IQA, as
shown in Figure 3, proposed by K. Ding et al. in 2020. DISTS has two components: a feature
extraction backbone and image structure and texture similarity computation as the quality
score. The feature extraction backbone is pre-trained by VGG16 [42] to extract feature
maps from layer conv1_2, conv2_2, conv3_3, conv4_3, and conv5_3. It contains different
levels of features including structure and texture information. The other component is
the weighted summation of texture and structure similarity for each feature level and the
output quality score.
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Figure 3. Deep image structure and texture similarity (DISTS) with feature extraction by VGG16 of
pre-trained weight, including six stages of feature maps of five layers of 3, 64, 128, 256, 512 and 512
for similarity distance computation and output quality score.

DISTS is trained on the KADID-10k dataset and shows the improved performance
of PLCC and KRCC on conventional image quality datasets as a baseline of SSIM, with
its self-learned weight for structure and texture similarity with high tolerance to texture
resampling. DISTS shows its capability with a pre-trained fixed VGG16 backbone to extract
features from the reference image and distorted image as IQA input. The metric of weighted
structural similarity and texture structure summation in multiple levels as a quality score
of distorted images is given in Equations (1)–(3).
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)
=

2σ
(i)
x̃j ỹj

+ c2(
σ
(i)
x̃j

)2
+
(

σ
(i)
ỹj
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3.2. IQT-Based Methods

The transformer model [12] demonstrated its great power in NLP (Natural Language
Processing) with a global self-attention module. In 2017, transformer was extended to
computer vision, proposed as ViT (Vision Transformer) [43], with a self-attention algorithm
to calculate weighted images as global image contents. Multi-head attention is functional
as convolution kernels and can compute parallelly. The global self-attention module
makes transformer models even more powerful compared to local feature extraction in
CNN models.

ViT models also extend from image classification and object detection (DETR) [44] to
IQA such as TRIQ (Transformer in Image Quality) [45] and IQT-C [25], proposed in 2021.
The team that proposed IQT-C, as shown in Figure 4, won the first in the 2021 NTIRE IQA
challenge in the PIPAL dataset.
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The IQT-C architecture consists of four main components:

• Feature extraction backbone: Inception-Resnet-V2 [46] of six layers of low-level fea-
tures in Figure 5 with a fixed pre-trained weight from ImageNet [47];

• Feature projection: To reduce the dimension of the feature map with 1 × 1 convolution
as an embedded feature;

• Transformer encoder-decoder: embedded feature to input the encoder and decoder
for multiple self-attention;

• MLP Head + output of quality score.
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IQT-C obtained a significant improvement in test results in PLCC and SRCC to beat
the baseline of DISTS on PIPAL. It demonstrates the power of global self-attention for
distorted image quality in the GAN-based IR algorithm. The ablation study shows that the
difference of features between the reference and the distorted image is key as an input of
the encoder to predict human perception of a distorted image.

3.3. Testing Protocol

In the test phase, the image is cropped into five overlapping H ×W patches: left-top,
right-top, left-bottom, right-bottom, and center. The predicted score of a distorted image is
an average of five patches of the test image. Each test image has five predicted scores of
five models, namely IQT-L, IQT-M, IQT-H, IQT-Mixed, and DISTS-Tuned. Then, the sum
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of weights is obtained with the predicted score of each distorted image as the ATDIQA
predicted score.

The same test is applied to the PIPAL test set, LIVE, and TID2013 for the generalization
capability of the model with PLCC, SRCC, and KRCC metrics.

3.4. Weighted Averaging

DISTS-based methods use the distance to represent the image quality score. The
shorter the distance between the pair of images, the higher the IQA score of the distorted
image.

However, IQT-based methods calculate the score directly: the higher the score of the
distorted image, the better the quality compared to the reference image.

In that case, we performed the normalization of the predicted IQA score with third-
order polynomial nonlinear regression to the score of MOS score for all models and optimize
to obtain the best weight average for the five models.

4. Experiments
4.1. IQA Datasets

The PIPAL [13] dataset is the main dataset used for training with 250 reference images
of 288× 288 using 40 distortion types in 29k distorted images, as shown in Table 1. However,
the public PIPAL dataset does not include a validation and testing set for the NTIRE 2021
IQA competition. Therefore, we divided the public training dataset with ratios of 80%, 10%,
and 10% as our training set, validation set, and test set, respectively, as described in Table 2.
Overall, 80% of the public data was used for model training, and a 10% validation set was
used to optimize the hyperparameters. Then, 10% of the test set was used to predict the
quality score and evaluate the IQA model with correlation metrics. We also included the
LIVE and TID2013 as test datasets to compare the correlation metrics in different datasets
for the model’s capability for data generalization.

Table 2. IQA datasets for model training, validation, and test.

Training Set Validation Set Test Set

Public PIPAL [13] 80% 10% 10%
LIVE [14] - - 100%

TID2013 [15] - - 100%

4.2. Evaluation Metrics

To evaluate the objective IQA performance, a correlation between MOS and the
objective IQA quality score is commonly used. There are three correlation metrics: PLCC,
SRCC, and KRCC.

SRCC and KRCC measure the monotonicity of the predicted quality score, while PLCC
measures the linearity of the predicted quality score. The higher the correlation metrics,
the better the performance of the IQA prediction.

On the other hand, PLCC is sensitive to the difference between the ground truth score of
MOS and the predicted score. In that case, we employed a nonlinear third-order polynomial
regression to normalize the predicted scores on the MOS range scale [13,15]. In that case, the
PLCC was calculated between the MOS scores and the normalized predicted scores.

4.3. DISTS-Based Methods
4.3.1. Ablation Study for Dataset and Weight Tuning

In this section, we perform the ablation study to discuss the performance with fine-
tuning of weights, as DISTIS in Figure 3 uses the backbone of VGG16 with fixed weight
for feature extraction with the pre-trained weight of ImageNet [47,48], which is commonly
used as a feature extraction in an image classification task.
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However, fine-tuning weight [49] to fit a specific task [50] is commonly used to improve
performance to fit a specific task and accelerate training to convergence. The training
dataset is 80% the public PIPAL instead of KADID-10k since PIPAL has 29k image pairs
with 40 distortion types. Diversity datasets are known to improve model generalization
ability.

In the feature extraction backbone, we kept the VGG16 and the weights backpropagate:
not only structure and texture similarity parameters but also the VGG16 feature extraction
parameters.

Then, we calculated the three correlations of DISTS-Tuned and MOS on the 10% PIPAL
test datasets, as shown in Table 3. It shows that DISTS with fine-tuned backbone weights
improves performance by up to 5% in correlation coefficients. Weights’ fine tuning will
improve the model to fit the IQA task.

Table 3. Ablation Study for DISTS with Fixed and Tuned Weight on PIPAL test datasets.

Correlation Result

Model Training Dataset Tuned Weight PLCC SRCC KRCC

DISTS PIPAL 80%
8 0.661 0.648 0.466

3 0.723 0.703 0.518

We also applied the same methodology to the IQT-C model [25] to observe how it
affects performance on the transformer-based IQA as in Table 4. It showed no significant
improvement in the performance of the correlation with MOS. This may be the reason that
global attention has good performance in the IQA task as well. That is not surprising since
transformer-based IQA won the top four spots in the past two years of the NTIRE IQA
competition in 2021 and 2022 [26].

Table 4. Ablation Study for IQT-C with Fixed and Tuned Weight on PIPAL Test Datasets.

Correlation Result

Model Training Dataset Tuned Weight PLCC SRCC KRCC

IQT-C PIPAL 80%
8 0.839 0.810 0.621

3 0.845 0.814 0.629

4.3.2. DISTS-Tuned Model Performance

In Figure 5, the scatter plots show the comparison between, with, and without DISTS
backbone weight. It can be observed that the backbone-weight-tuned DISTS model obtained
better correlation with MOS with smaller variance, shown by the 5% model performance
improvement given in Table 4.

It is shown in Figure 6 that the DISTS-Tuned weight model will be able to adopt
different kinds of image restoration (IR), including traditional SR, CNN-based SR, and
GAN-based SR with its model generalization capability. Moreover, the model can adopt
the IQA metric for GAN-based SR images with same trend, which is viewed as a tough
IQA task.
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4.4. IQT-Based Methods
4.4.1. Multiscale Feature Projection in IQT

In CNN-style transfer [51], low-level features of the image are used to extract infor-
mation about image texture, such as color, edge and corner, and pixel, while high-level
features are used to extract information about image structure, such as image semantics.
For GAN-based distortion in PIPAL, IQT-C uses low-level features as the input of the
self-attention module. However, high-level features that contain information about the
image structure may be useful as difference information between reference and distorted
images.

In this hypothesis, we built four feature projection modules, namely low-level feature
projection of IQT-L, medium-level feature projection of IQT-M, high-level feature projection
of IQT-H, and three levels of feature projection of IQT-Mixed to improve IQT-C with only
low-level features.

The feature projection module in IQT-Mixed includes low-level features, medium-level
features, and high-level features in Figure 7 as the corresponding layers of Inception-ResNet-
V2 for IQT-Mixed multiscale feature extraction layers.
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Parameters of model training with 80% training data are as follows:

• Training epochs = 200;
• Learning rate = 1 × 10−4;
• Loss function = MSE;
• Optimizer = Adam with batch size 16;
• Pre-train weight of ImageNet;
• Weight-tuned in backpropagation.

The training converges for each model within 100 epochs with pre-trained weight
from ImageNet.

Next, 10% validation data were used to optimize hyperparameters in the transformer
structure for IQT-L, IQT-M, IQT-H, and IQT-Mixed.

4.4.2. Performance of the Multiscale Feature Extraction Backbone

We compared the multiscale backbone of IQT models in three datasets including
PIPAL, LIVE, and TID2013 in Table 5. Transformer-based IQA showed a huge improvement
for its self-attention mechanism compared to CNN-based DISTS-Tuned IQA. Multi-level
feature extraction models of IQT-L, IQT-M, IQT-H, and IQT-Mixed showed about 4%
improvement in LIVE and TID2013 datasets rather than in PIPAL, which showed good
model generalization.
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Table 5. Correlation Comparison for IQT-C and Multiscale Feature-Extraction-Tuned Backbone of
IQT in PLCC and SRCC.

Model
PIPAL Test Set [10] LIVE [24] TID2013 [26]

PLCC SRCC PLCC + SRCC PLCC SRCC PLCC + SRCC PLCC SRCC PLCC + SRCC

IQT-C (Baseline) 0.839 0.810 1.649 0.873 0.863 1.736 0.801 0.757 1.558

IQT-L 0.845↑ 0.814↑ 1.659↑ 0.901↑ 0.910↑ 1.811 (2) 0.808↑ 0.751↑ 1.559 (4)
IQT-M 0.834 0.807 1.641 0.890↑ 0.902↑ 1.792 (4) 0.834↑ 0.790↑ 1.624 (2)
IQT-H 0.822 0.795 1.617 0.899↑ 0.910↑ 1.809 (3) 0.821↑ 0.784↑ 1.605 (3)

IQT-Mixed 0.840↑ 0.817↑ 1.656↑ 0.912↑ 0.922↑ 1.834 (1) 0.855↑ 0.826↑ 1.681 (1)

“↑” shows improvement in PLCC and SRCC comparing to IQT-C (Baseline).

The high correlation of models with MOS shows that human perception is sensitive
to low-level features such as colors and brightness-related textures as well as high-level
features such as structural patterns. Human perception to image quality is a combination of
multilevel features with different sensitivity. This inspired us to combine these transformer-
based multiscale IQA models into one ensemble model.

4.5. Ensemble Model as an Auxilary Transformer with DISTS IQA(ATDIQA)

To combine global and local features of images, we tested the ensemble multiscale IQT,
as in Section 4.4, and DISTS-Tuned, described in Section 4.3, as an ensemble for evaluation.
Using differential evolution [52] for the determination of the weights of the five models of
IQT-L, IQT- M, IQT-H, IQT-Mixed, and DISTS-Tuned, we then performed normalization
to make them sum up to 1. The results were weights of 0.365, 0.072, 0.08, 0.396, and 0.088,
respectively, according to our ATDIQA model in Table 6.

Table 6. Weights in ensemble models of ATDIQA.

IQT-L IQT-M IQT-H IQT-Mixed DISTS-Tuned

0.365 0.072 0.08 0.396 0.088

The results show that human perception is sensitive to low-level features of images
such as color and fine texture. However, medium- and high-level features still play an
important role in human perception of image quality judgment.

5. Discussion

The evaluation results comprise the three datasets of the PIPAL test set, LIVE and
TID2013 for PLCC, and SRCC. We compared the correlation MOS with IQT-C (transformer-
based IQA) [25], which is our baseline; DISTS-Tuned (CNN-based IQA) [17]; and our
ATDIQA (ensemble IQA) with performance comparison and improvement.

5.1. Model Performance on Super Resolution Image Restoration Algorithm

Our goal was to build an ensemble IQA model with capability for not only the
traditional SR algorithm but the GAN-based SR algorithm since to build an objective IQA
for the GAN-based SR algorithm is a tough task regarding achieving a good correlation
with human perception.

To compare the performance, we sampled images from PIPAL test dataset since PIPAL
is the only dataset with a GAN-based and traditional SR algorithm.

We sampled one of the reference images and obtained scores with different distorted
levels, as listed in Table 7 from left to right and as MOS from high to low. The distortion
type is super-resolution, including GAN and traditional algorithms. The calculated quality
score includes MSE, PSNR, SSIM [7], DISTS [9], IQT-C [13], and the ATDIQA metric as
FR-IQA with the reference image from the left side.
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Table 7. Example image from the PIPAL test dataset for different IQA models (Data from the PIPAL
dataset 2020 [13]).
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MOS↑ 1571.249 1492.574 1394.923 1324.865 1235.043 1133.264
MSE↓ 211.725 (4) 144.199 (2) 135.347 (1) 294.221 (6) 202.091 (3) 294.158 (5)

PSNR↑ 24.873 (4) 26.541 (2) 26.816 (1) 23.444 (6) 25.075 (3) 23.445 (5)
SSIM↑ [17] 0.617 (4) 0.704 (1) 0.703 (2) 0.521 (5) 0.622 (3) 0.517 (6)
DISTS↓ [19] 0.126 (1) 0.127 (2) 0.131 (3) 0.185 (4) 0.268 (5) 0.308 (6)
IQT-C↑ [25] 0.604 (1) 0.534 (2) 0.500 (3) 0.449 (4) 0.321 (5) 0.151 (6)
ATDIQA↑ 0.639 (1) 0.580 (2) 0.552 (3) 0.480 (4) 0.364 (5) 0.226 (6)

GAN-SR1, GAN-based super-resolution algorithm; Traditional-SR2, traditional super-resolution algorithm. The
images listed from left to right based on image quality after distortion or restoration. “↑” is IQA scores of list of
images from low to high; “↓” is IQA scores of list of images from high to low.

DISTS, IQT-C, and ATDIQA have a high correlation to MOS, and even when the
distorted type of distorted images is GAN-based super-resolution, these algorithms can
predict the quality scores accurately. This shows the power of the feature extraction
backbone for image content extraction.

IQT-C and ATDIQA have better resolution to different levels of distortion in GAN-
based super-resolution images with the global attention power of the transformer-based
algorithm.

ATDIQA shows the best overall resolution for distorted levels from left to right. This is
quite impressive in terms in terms of the power of the IQA group for image quality. ATDIQA
not only performs linearly to MOS, but also has the highest resolution for distortion level
on the GAN-based algorithm.

5.2. Linearity of ATDIQA to Human Perception

The ATDIQA scatter plot shows linearity with linear regression adjustment in the
PIPAL dataset, as given in Figure 8. The good R-squared indicates that ATDIQA can
measure distorted levels of an image from low to high as linear to human perception.
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5.3. Model Generalization in Different Datasets

To compare different feature extraction backbones, we tested each model over the
three datasets. We list PLCC, SRCC, and KRCC in Table 8.
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Table 8. Comparison of ATDIQA and baseline models of IQT_C and DISTS on the PIPAL test set,
LIVE, and TID2013.

Model
PIPAL Test Dataset [10] LIVE [24] TID2013 [26]

PLCC SRCC PLCC + SRCC PLCC SRCC PLCC + SRCC PLCC SRCC PLCC + SRCC

DISTS-Tuned 0.799 0.703 0.518 0.948 0.929 0.776 0.741 0.637 0.468
IQT_C 0.839 0.810 1.649 0.873 0.863 1.736 0.801 0.757 1.558

ATDIQA 0.854 0.830 1.684 0.931 0.931 1.862 0.837 0.795 1.632

IQT-Mixed with a fusion of low-level, medium-level, and high-level feature projection
significantly improved the correlation metrics compared to IQT-C of low-level feature
projection, with a weight of 36.5% in IQT-L. This gives evidence that human perception is
quite sensitive to changes in image texture. However, high-level features such as image
structure still impact human perception of image quality by a weight of 8%.

The bar chart in Figure 9 compares the IQT-C of transformer-based IQA, DISTS
of CNN-based IQA, and ATDIQA as a group IQA. It shows that ATDIQA has a stable
performance across the three datasets and provides good model generalization to score
distorted image quality on different types of data in different IQA datasets.
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6. Conclusions

In this paper, we propose the auxiliary transformer of DISTS IQA (ATDIQA) as a
FR-IQA ensemble. In Table 7, we compare the performance of different IQAs of the
quality assessment methodology with the corresponding type of feature extraction. It is
not surprising that human perception is a complicated system that requires a deep neural
network for IQA.

There are mainly three-fold improvements and findings in our study:
First, by fine-tuning the weight of the feature extraction backbone, the model can

better fit the quality score prediction task and improve performance compared to fixed
backbone weight.

Second, fusing different levels of feature maps can further improve attention to the
image content of structure and texture with the feature projection module. ATDIQA with
IQC-L, IQT-M, IQT-H, IQT-Mixed, and DISTS-Tuned with a weighted sum for global and
local feature attention provides outstanding model generalization to PIPAL, TID2013, and
LIVE datasets and shows improvement over IQT-C [25] as well.

Third, the weights of different submodules in ATDIQA show that human perception
is extremely sensitive to low-level features of image texture, while medium-level and
high-level features of image structures are considered at the same time when scoring image
quality. The fusion of feature extraction IQA was proposed by Guo et al. [33] as well as
IQMA.

These are the three key reasons that ATDIQA showed a significant improvement
correlation in predicting distorted image quality. In the future, we can try to modify the
feature extraction from the pyramidal feature hierarchy of ATDIQA to the feature pyramid
network as IQMA and give global attention to fusion features with transformer. Fusion
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feature extraction for global attention may reduce the model parameters with prediction
efficiency improvement and provide the same or even better scoring performance for
GAN-based algorithm-distorted images.

Since the deep learning model is data-driven, augmented data with GAN [53] to
increase training data diversity are another possible method, as more and more GAN-based
super-resolution algorithms [53–56] have successfully demonstrated their ability for image
restoration in the recent years.
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