
Full Satisfiability of UML Class Diagrams

Alessandro Artale, Diego Calvanese, and Angélica Ibáñez-Garćıa

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{artale,calvanese,ibanezgarcia}@inf.unibz.it

Abstract. UML class diagrams (UCDs) are the de-facto standard
formalism for the analysis and design of information systems. By
adopting formal language techniques to capture constraints expressed
by UCDs one can exploit automated reasoning tools to detect relevant
properties, such as schema and class satisfiability and subsumption
between classes. Among the reasoning tasks of interest, the basic one
is detecting full satisfiability of a diagram, i.e., whether there exists
an instantiation of the diagram where all classes and associations of
the diagram are non-empty and all the constraints of the diagram are
respected. In this paper we establish tight complexity results for full
satisfiability for various fragments of UML class diagrams. This inves-
tigation shows that the full satisfiability problem is ExpTime-complete
in the full scenario, NP-complete if we drop isa between relationships,
and NLogSpace-complete if we further drop covering over classes.1

Keywords: Reasoning over Conceptual Models, Description Logics,
Complexity Analysis.

1 Introduction

UML (Unified Modeling Language - http://www.omg.org/spec/UML/) is the
de-facto standard formalism for the analysis and design of information systems.
One of the most important components of UML are class diagrams (UCDs).
UCDs describe the domain of interest in terms of objects organized in classes and
associations between them. The semantics of UCDs is by now well established,
and several works propose to represent it using various kinds of formal languages,
e.g., [2,3,4,5,6,7]. Thus, one can in principle reason on UCDs. The reasoning
tasks that one is interested in are, e.g., subsumption between two classes, i.e.,
the fact that each instance of one class is necessarily also an instance of another
class, satisfiability of a specific class (or association) in the diagram, i.e., the fact
that the information encoding that class (or association) in the diagram is not
contradictory, diagram satisfiability, which requires that at least one class in the
diagram is satisfiable, and full satisfiability of the diagram [8,9], i.e., the fact that
there exists an instantiation of the diagram where all classes and associations of
the diagram are non-empty.
1 A preliminary and shortened version of this paper has been presented at the 2009

Int. Workshop on Logic in Databases (LID 2009), with informal proceedings printed
as a technical report [1].

J. Parsons et al. (Eds.): ER 2010, LNCS 6412, pp. 317–331, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.omg.org/spec/UML/

318 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

The latter property is of importance since the presence of some unsatisfiable
class or association actually means either that the diagram contains unnecessary
information that should be removed, or that there is some modeling error that
leads to the loss of satisfiability.

In this paper, we adopt the well established formalization of UCDs in
terms of Description Logics (DLs). DLs [10] are decidable logics that are
specifically tailored for capturing various forms of conceptual data models
(cf. [11,12,13,14,15,16,5]), and they allow one to exploit state-of-the-art DL rea-
soners [17] to provide automated reasoning support over such data models.

The complexity of reasoning over UCDs has been addressed in [5] where it has
been shown that in the presence of the standard UML/EER constructs, such as
isa, disjointness and covering between entities and associations, cardinality con-
straints (also called participation constraints) for associations, and multiplicity
constraints for attributes makes checking class satisfiability and schema satisfi-
ability ExpTime-complete. This result has been strengthened in [6] to UCDs2

with simple isa between associations (and both disjointness and completeness
constraints on class hierarchies only), where it was also shown that by drop-
ping isa between associations reasoning becomes NP-complete, and by further
forbidding completeness in class hierarchies it drops to NLogSpace-complete.

The only works that addressed explicitly the complexity of full satisfiability
of UCDs are [8,9], which include a classification of UCDs based on inconsistency
triggers. Each inconsistency trigger is a pattern for recognizing possible incon-
sistencies of the diagram based on the interaction between different modelling
constraints. [8,9] introduce various algorithms for checking full satisfiability of
UCDs with different expressive power, together with an analysis of their com-
putational complexity (i.e., upper bounds are provided). In particular, checking
full satisfiability in the following scenarios is showed to be in:
1. ExpTime, if the standard constructs are used;
2. NP, if isa between associations and multiple and overwriting inheritance of

attributes is dropped—i.e., each attribute has a fixed type;
3. P, if diagrams are further restricted by forbidding completeness constraints;
4. PSpace (instead ofExpTime), if standard constructs are uses (as in sce-

nario 1) but types for attributes associated to sub-classes are sub-types of
types for the respective attributes associated to super-classes;

5. NP and P in the scenarios 2 and 3, respectively, if we further allow for
attributes with types restricted as in 4.

The main contributions of this paper can be summarised as follows:

– We show tight complexity results for checking full satisfiability proving that
the problem is ExpTime-complete in the standard scenario 1, NP-complete
in the scenario 2 and NLogSpace-complete (instead of P) in the scenario 3;

– We prove that full satisfiability in the scenario 4 is ExpTime-hard, thus
showing that the PSpace algorithm presented in [8,9] must be incomplete.

2 The results in [6] are formulated in terms of the Entity-Relationship model, but they
also carry directly over to UML class diagrams.

Full Satisfiability of UML Class Diagrams 319

Our results build on the formalization of UCDs in terms of DLs given in [5,6].
In fact, our upper bounds for full satisfiability are an almost direct consequence
of the corresponding upper bounds of the DL formalization. On the other hand,
the obtained lower bounds for full satisfiability are more involved, and in some
cases require a careful analysis of the corresponding proof for class satisfiability.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTime-complete. In Section 3, we recall the FOL semantics of UCDs.
In Sections 4 and 5, we provide our results on full satisfiability for various variants
of UCDs. Finally, in Section 6, we draw some conclusions.

2 Full Satisfiability in the Description Logic ALC
We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [10]. The basic elements of ALC are atomic concepts and roles, denoted
by A and P , respectively. Complex concepts C, D are defined as follows:

C, D ::= A | ¬C | C � D | ∃P.C

The semantics of ALC, as usual in DLs, is specified in terms of interpreta-
tions. An interpretation I = (ΔI , ·I), with a non-empty domain ΔI and an
interpretation function ·I , assigns to each concept C a subset CI of ΔI , and
to each role name P a binary relation P I in ΔI × ΔI such that the following
conditions are satisfied:

AI ⊆ ΔI ,
(¬C)I = ΔI \ CI ,

(C � D)I = CI ∩ DI ,
(∃P.C)I = {a ∈ ΔI | ∃b. (a, b) ∈ P I ∧ b ∈ CI} .

We use the standard abbreviations C1 � C2 := ¬(¬C1 � ¬C2), and ∀P.C :=
¬∃P.¬C, with the corresponding semantics.

An ALC terminological box (TBox) T is a finite set of (concept inclusion)
assertions of the form C
 D. An interpretation I satisfies an assertion of
the form C
 D if and only if CI ⊆ DI . A TBox T is satisfiable if there is
an interpretation I, called a model of T , that satisfies every assertion in T . A
concept C is satisfiable w.r.t. a TBox T if there is a model I of T such that
CI �= ∅. It can be shown that TBox satisfiability and concept satisfiability w.r.t.
a TBox are reducible to each other in polynomial time. Moreover, reasoning
w.r.t. ALC TBoxes is ExpTime-complete (see e.g., [10]).

We now define the notion of full satisfiability of a TBox and show that for
ALC it has the same complexity as classical satisfiability.

Definition 1 (TBox Full Satisfiability). An ALC TBox T is said to be fully
satisfiable if there exists a model I of T such that AI �= ∅, for every atomic
concept A in T . We say that I is a full model of T .

We first prove that full satisfiability in ALC is ExpTime-hard.

320 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [18],
C is satisfiable w.r.t. T if and only if C � AT is satisfiable w.r.t. the TBox T1

consisting of the single assertion, AT

�

C1�C2∈T (¬C1 �C2)�
�

1≤i≤n ∀Pi.AT ,
where AT is a fresh atomic concept and P1, . . . , Pn are all the atomic roles in T
and C. In order to reduce the latter problem to full satisfiability, we extend T1

to T2 = T1 ∪ {AC
 C � AT }, with AC a fresh atomic concept, and prove that:
C � AT is satisfiable w.r.t. T1 if and only if T2 is fully satisfiable.
“⇒” Let I be a model of T1 such that (C � AT)I �= ∅. We construct an
interpretation of T2, J = (ΔI ∪ {dtop}, ·J), with dtop �∈ ΔI , such that:

AJ
T = AI

T , AJ
C = (C � AT)I ,

AJ = AI ∪ {dtop}, for each atomic concept A in T and C,

PJ = P I , for each atomic role P in T and C.
Obviously, the extension of every atomic concept is non-empty in J . Next, we
show that J is a model of T2, by relying on the fact (easily proved by structural
induction) that DI ⊆ DJ , for each subconcept D of concepts in T1 or of C.
Then, it is easy to show that J satisfies the two assertion in T2.

”⇐” Conversely, every full model J of T2 is also a model of T1 with (C�AT)J �=
∅, as AJ

C ⊆ (C � AT)J . ��

Theorem 3. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward since full satisfiability of
an ALC TBox T can be reduced to satisfiability of the TBox T ∪

⋃
1≤i≤n{�

∃P ′.Ai}, where A1, . . . , An are all the atomic concepts in T , and P ′ is a fresh
atomic role. The ExpTime-hardness follows from Lemma 2. ��

We now modify the reduction of Lemma 2 so that it applies also to primitive
ALC− TBoxes, i.e., TBoxes that contain only assertions of the form:

A
 B, A
 ¬B, A
 B � B′, A
 ∀P.B, A
 ∃P.B,

where A, B, B′ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC− TBoxes is ExpTime-
complete.

Proof. The ExpTime membership follows from Theorem 3. For proving the
ExpTime-hardness, we use a result in [5] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC−

TBoxes. Let T − = {Aj
 Dj | 1 ≤ j ≤ m} be a primitive ALC− TBox, and
A0 an atomic concept. By the proof of Lemma 2, we have that A0 is satisfiable
w.r.t. T − if and only if the TBox T ′

2 consisting of the assertions

AT −

�

Aj�Dj∈T −
(¬Aj � Dj) �

�

1≤i≤n

∀Pi.AT − , A′
0
 A0 � AT − ,

Full Satisfiability of UML Class Diagrams 321

is fully satisfiable, with AT − , A′
0 fresh atomic concepts.

T ′
2 is not a primitive ALC− TBox, but it is equivalent to the TBox containing

the assertions:

A′
0
 AT −

A′
0
 A0

AT −
 ¬A1 � D1

...
AT −
 ¬Am � Dm

AT −
 ∀P1. AT −
...

AT −
 ∀Pn. AT − ,

Finally, to get a primitive ALC− TBox, T −
2 , we replace each assertion of the

form AT −
 ¬Aj � Dj by AT −
 B1
j � B2

j , B1
j
 ¬Aj , and B2

j
 Dj , with B1
j

and B2
j fresh atomic concepts, for j ∈ {1, . . . , m}.

We show now that T ′
2 is fully satisfiable iff T −

2 is fully satisfiable:

(⇒) Let I = (ΔI , ·I) be a full model of T ′
2 . We extend I to an interpretation

J of T −
2 . Let ΔJ = ΔI ∪ {d+, d−}, with {d+, d−} ∩ ΔI = ∅, and define ·J

as follows:

AJ
T − = AI

T − , A′
0
J = A′

0
I
,

AJ = AI ∪ {d+}, for every other atomic concept A in T ′
2 ,

B1
j
J

= (¬Aj)J and B2
j
J

= DJ
j , for each AT −
 B1

j � B2
j ∈ T −

2 ,

PJ = P I ∪ {(d+, d+)}, for each atomic role P in T −
2 .

It is easy to see that J is a full model of T −
2 .

(⇐) Trivial, since every model of T −
2 is a model of T ′

2 . ��

3 Formalizing UML Class Diagrams

In this section, we briefly describe UCDs and provide their semantics in terms
of First Order Logic (the formalization adopted here is based on previous pre-
sentations in [5,15]).

A class in UCDs denotes a set of objects with common features. Formally, a
class C corresponds to a unary predicate C. An n-ary association (also called
relationship) in UCDs represents a relation between instances n ≥ 2 classes.
Names of associations (as names of classes) are unique in a UCD. A binary
association between two classes C1 and C2 is graphically rendered as in Fig. 1.
The multiplicity constraint nl..nu (also called participation constraint) written
on one end of the binary association specifies that each instance of the class C1

participates at least nl times and at most nu times in the association R, and the
multiplicity constraint ml..mu specifies an analogous constraint for each instance
of the class C2. When a multiplicity constraint is omitted, it is intended to be 0..∗.
Formally, an association R between the classes C1 and C2 is captured by a binary
predicate R that satisfies the FOL axiom ∀x1, x2. (R(x1, x2) → C1(x1)∧C2(x2)),
while multiplicities are formalized by the following FOL assertions:

∀x. (C1(x) → ∃≥nl
y. R(x, y) ∧ ∃≤nuy. R(x, y))

∀y. (C2(y) → ∃≥ml
x. R(x, y) ∧ ∃≤mux. R(x, y)),

322 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

 ml..mu nl..nu

R
C1 C2

Fig. 1. Binary association

ml..mu nl..nuC1 C2

CR

Fig. 2. Binary association with related class

{complete, disjoint}

. . .

C

C1 C2 Cn

Fig. 3. A class hierarchy in UML

where we use counting quantifiers to abbreviate the FOL formula encoding the
multiplicity constraints.

A more general form of multiplicity is the so called refinement of multiplicity
constraints for sub-classes participating in associations. With such a construct we
are able to change (and thus refine) the multiplicity constraints for sub-classes.
Refinement involving a binary association, R, between classes C1 and C2, and a
sub-class of C1, say C′

1, can be formalized with the following FOL axioms:

∀x. (C′
1(x) → C1(x)), ∀x. (C′

1(x) → ∃≥n′
l
y. R(x, y) ∧ ∃≤n′

u
y. R(x, y)).

An association class describes properties of the association, such as attributes,
operations, etc. (see Fig. 2). A binary association between classes C1 and C2 with
a related association class CR is formalized in FOL by reifying the association
into a unary predicate CR with two binary predicates P1, P2, one for each com-
ponent of the association. We enforce the following semantics, for i ∈ {1, 2}:

∀x.(CR(x) → ∃y. Pi(x, y)),
∀x, y.(CR(x) ∧ Pi(x, y) → Ci(y)),

∀x, y, y′.(CR(x) ∧ Pi(x, y) ∧ Pi(x, y′) → y = y′),
∀y1, y2, x, x′.(CR(x) ∧ CR(x′) ∧ (

∧
i∈{1,2} Pi(x, yi) ∧ Pi(x′, yi)) → x = x′).

For associations with a related class, the multiplicity constraints are formalized
by the following FOL assertions:

∀y1.(C1(y1) → ∃≥nl
x. (CR(x) ∧ P1(x, y1)) ∧ ∃≤nux. (CR(x) ∧ P1(x, y1))) ,

∀y2.(C2(y2) → ∃≥ml
x. (CR(x) ∧ P2(x, y2)) ∧ ∃≤mux. (CR(x) ∧ P2(x, y2))) .

Classes can have attributes, formalized similarly to binary associations, relat-
ing the class with values of a given type. As for associations, we can specify
multiplicity constraints over attributes.

A generalization (called also ISA constraint) between two classes C1 and C,
formalized as ∀x. C1(x) → C(x), specifies that each instance of C1 is also an

Full Satisfiability of UML Class Diagrams 323

Table 1. Complexity of Full Satisfiability in UML (sub)languages

Language
Constraints Complexity

Classes Associations/Attributes of Full
isa disjoint complete isa multiplicity refinement Satisfiability

UCDfull � � � � � � ExpTime [Th.7]

UCDbool � � � ✗ � � NP [Th.9]

UCDref � � ✗ ✗ � � NLogSpace [Th.11]

instance of C. Several generalizations can be grouped together to form a class
hierarchy, as shown in Fig. 3. Such a hierarchy is formally captured by means of
the FOL axioms ∀x. Ci(x) → C(x) for i ∈ {1, . . . , n}. Disjointness and complete-
ness constraints can also be enforced on a class hierarchy, by adding suitable
labels to the diagram. Disjointness among the classes C1, . . . , Cn is expressed by
∀x. Ci(x) →

∧n
j=i+1 ¬Cj(x), for i ∈ {1, . . . , n−1}. The completeness constraint,

expressing that each instance of C is an instance of at least one of C1, . . . , Cn, is
captured by ∀x. C(x) →

∨n
i=1 Ci(x). We can also have generalization, disjoint-

ness and completeness constraints between associations and between association
classes with the obvious semantics.

In this paper, we denote with UCDfull the class diagram language that com-
prises all the standard constructs as discussed above (i.e., what we called sce-
nario 1 in Section 1). With UCDbool we denote the language without general-
ization between associations (i.e., scenario 2 in Section 1), and with UCDref we
further drop completeness constraints over classes (i.e., scenario 3 in Section 1).
The constructors allowed in these languages are summarized in Table 1, together
with the tight complexity results obtained in this paper.

4 Full Satisfiability of UML Class Diagrams

Three notions of UCD satisfiability have been proposed in the litera-
ture [19,5,6,20,9]. First, diagram satisfiability refers to the existence of a model,
i.e., a FOL interpretation that satisfies all the FOL assertions associated to the
diagram and where at least one class has a nonempty extension. Second, class
satisfiability refers to the existence of a model of the diagram where the given
class has a nonempty extension. Third, we can check whether there is a model
of an UML diagram that satisfies all classes and all relationships in a diagram.
This last notion of satisfiability, referred here as full satisfiability and introduced
in [8,9] is thus stronger than diagram satisfiability, since a model of a diagram
that satisfies all classes is, by definition, also a model of that diagram.

Definition 5 (UML Full Satisfiability). A UCD, D, is fully satisfiable if
there is a FOL interpretation, I, that satisfies all the constraints expressed in D
and such that CI �= ∅ for every class C in D, and RI �= ∅ for every association
R in D. We say that I is a full model of D.

324 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

{disjoint}

O

A B

Fig. 4. Encoding of A � ¬B

{complete}

A B

B1 B2

Fig. 5. Encoding of A � B1 � B2

{disjoint}

{complete}

1..1

P1

1..1

P2

1..1

PAB1

PĀB1

1..1

PAB2

1..1

O

B

A APB ĀPB

CPAB CPAB

CP

Fig. 6. Encoding of A � ∀P.B

1..1

PAB1

1..1

1..*

PAB2 P2P1

1..1 1..1O

A B

CP

CPAB

Fig. 7. Encoding of A � ∃P.B

We now address the complexity of full satisfiability for UCDs with the stan-
dard set of constructs, i.e., UCDfull. For the lower bounds, we use the results
presented in Section 2 and reduce full satisfiability of primitive ALC− TBoxes
to full satisfiability of UCDfull. This reduction is based on the ones used in [5,6]
for the lower complexity bound of schema satisfiability in the extended Entity-
Relationship model, but the proof of their correctness is more involved here.

Given a primitive ALC− TBox T , construct a UCDfull diagram Σ(T) as fol-
lows: for each atomic concept A in T , introduce a class A in Σ(T). Additionally,
introduce a class O that generalizes (possibly indirectly) all the classes in Σ(T)
that encode an atomic concept in T . For each atomic role P , introduce a class
CP , which reifies the binary relation P . Further, introduce two functional asso-
ciations P1, and P2 that represent, respectively, the first and second component
of P . The assertions in T are encoded as follows:

– For each assertion of the form A
 B, introduce a generalization between
the classes A and B.

– For each assertion of the form A
 ¬B, construct the hierarchy in Fig. 4.
– For each assertion of the form A
 B1 �B2, introduce an auxiliary class B,

and construct the diagram shown in in Fig. 5.
– For each assertion of the form A
 ∀P.B, add the auxiliary classes CPAB ,

CPAB , APB , and ĀPB , and the associations PAB1, PĀB1, and PAB2, and
construct the diagram shown in Fig. 6.

Full Satisfiability of UML Class Diagrams 325

– For each assertion of the form A
 ∃P.B, add the auxiliary class CPAB and
the associations PAB1 and PAB2, and construct the diagram shown in Fig. 7.

Notice that Σ(T) is a UCD in UCDfull.

Lemma 6. A primitive ALC− TBox T is fully satisfiable if and only if the UCD
Σ(T), constructed as above, is fully satisfiable.

Proof. “⇐” Let J = (ΔJ , ·J) be a full model of Σ(T). We construct a full
model I = (ΔI , ·I) of T by taking ΔI = ΔJ . Further, for every concept name
A and for every atomic role P in T , we define respectively AI = AJ and
P I = (P−

1)J ◦ PJ
2 (r1 ◦ r2 denotes the composition of two binary relations

r1 and r2). Let us show that I satisfies every assertion in T .

– For assertions of the form A
 B, A
 ¬B, and A
 B1 �B2, the statement
easily follows from the construction of I.

– For assertions of the form A
 ∀P.B and A
 ∃P.B, the proof uses argu-
ments similar to those in the proof of Lemma 1 in [6].

“⇒” Let I = (ΔI , ·I) be a full model of T , and let role(T) be the set of
role names in T . We extend I to an instantiation J = (ΔJ , ·J) of Σ(T), by
assigning suitable extensions to the auxiliary classes and associations in Σ(T).
Let ΔJ = ΔI∪Γ ∪Λ, where: Λ =

⊎
A�∀P.B∈T {aAPB

, aĀPB
}, such that ΔI∩Λ =

∅, and Γ =
⊎

P∈role(T) ΔP , with ΔP = P I ∪
⋃

A�∀P.B∈T {(aAPB
, b), (aĀPB

, ō)}
where b is an arbitrary instance of B, and ō an arbitrary element of ΔI . We set
OJ = ΔI ∪ Λ, AJ = AI for each class A corresponding to an atomic concept
in T , and CJ

P = ΔP for each P ∈ role(T). Additionally, the extensions of the
associations P1 and P2 are defined as follows: PJ

1 = {((o1, o2), o1) | (o1, o2) ∈
CJ

P }, PJ
2 = {((o1, o2), o2) | (o1, o2) ∈ CJ

P }. We now show that J is a full model
of Σ(T).

– For the portions of Σ(T) due to TBox assertions of the form A
 B, A
 ¬B,
and A
 B1 � B2, the statement follows from the construction of J .

– For each TBox assertion in T of the form A
 ∀P.B, let us define the
extensions for the auxiliary classes and associations as follows:

AJ
PB

= AI ∪ {aAPB
}, ĀJ

PB
= OJ \ AJ

PB
,

CJ
PAB

= {(o, o′) ∈ CJ
P | o ∈ AJ

PB
}, C

J
PAB

= {(o, o′) ∈ CJ
P | o ∈ ĀJ

PB
},

PJ
AB1 = {((o, o′), o) ∈ PJ

1 | o ∈ AJ
PB

}, PJ
ĀB1

={((o, o′), o)∈PJ
1 |o ∈ ĀJ

PB
},

PJ
AB2 = {((o, o′), o′) ∈ PJ

2 | o ∈ AJ
PB

} .

It is not difficult to see that J satisfies the fragment of Σ(T) as shown
in Fig. 6. It remains to show that each class and each association has a
non-empty extension. This is clearly the case for classes that encode atomic
concepts in T . For the classes APB , ĀPB , CPAB , and CPAB we have that

aAPB
∈ AJ

PB
, aĀPB

∈ ĀJ
PB

, (aAPB
, b) ∈ CJ

PAB
, (aĀPB

, ō) ∈ C
J
PAB

.

326 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

 C� Ci1..*Ri

 Ci CP Cj

C�

1..1 1..1

1..*

P1 P2

Rp

Fig. 8. Reducing UML full satisfiability to class satisfiability

For the associations P1, P2, PAB1, PAB2, and PĀB1 we have that
((aAPB

, b), aAPB
) ∈ PJ

AB1 ⊆ PJ
1 , ((aĀPB

, ō), aĀPB
) ∈ PJ

ĀB1
, ((aAPB

, b), b) ∈
PJ

AB2 ⊆ PJ
2 .

– For each TBox assertion in T of the form A
 ∃P.B, let us define:
CJ

PAB
= {(o, o′) ∈ CJ

P | o ∈ AI and o′ ∈ BI},
PJ

AB1 = {((o, o′), o) ∈ PJ
1 | (o, o′) ∈ CJ

PAB
},

PJ
AB2 = {((o, o′), o′) ∈ PJ

2 | (o, o′) ∈ CJ
PAB

} .

We have that CJ
PAB

�= ∅ as there exists a pair (a, b) ∈ ΔP with a ∈ AI , and
b ∈ BI . Since CJ

PAB
�= ∅, we have that PJ

AB1 �= ∅ and PJ
AB2 �= ∅. ��

Theorem 7. Full satisfiability of UCDfull diagrams is ExpTime-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in
UCDs, which is known to be ExpTime-complete [5]. Given a UCD D, with
classes C1, . . . , Cn, we construct a UCD D′ by adding to D a new class C	
and new associations Ri, for i ∈ {1, . . . , n}, as shown in the left part of Fig. 8.
Furthermore, to check that every association is populated we use reification,
i.e., we replace each association P in the diagram D between the classes Ci

and Cj (such that neither Ci nor Cj is constrained to participate at least once
to P) with a class CP and two functional associations P1 and P2 to represent
each component of P . Finally, we add the constraints shown in the right part of
Fig. 8. Intuitively, we have that if there is a model I of the extended diagram
D′ in which CI

	 �= ∅, then the multiplicity constraint 1..∗ on the association RP

forces the existence of at least one instance o of CP . By the functionality of P1

and P2 there are at least two elements oi and oj , such that oi ∈ CI
i , oj ∈ CI

j ,
(o, oi) ∈ P I

1 and (o, oj) ∈ P I
2 . Then, one instance of P can be the pair (oi, oj).

Conversely, if there is a full model J of D, it is easy to extend it to a model I
of D′ that satisfies C	.

The ExpTime-hardness follows from Lemma 6 and Theorem 4. ��

Note that, the proof of the above theorem does not involve attributes. Thus, the
ExpTime complexity result is valid for both scenarios 1 and 4 in Section 1.

5 Full Satisfiability of Restricted UML Class Diagrams

In this section, we investigate the complexity of the full satisfiability problem
for the two sub-languages UCDbool and UCDref defined in Section 3. By building

Full Satisfiability of UML Class Diagrams 327

on the techniques used for the satisfiability proofs in [6], we show that also in
this case checking for full satisfiability does not change the complexity of the
problem.

We consider first UCDbool diagrams, by showing that deciding full satisfiability
is NP-complete. For the lower bound, we provide a polynomial reduction of
the 3sat problem (which is known to be NP-complete) to full satisfiability of
UCDbool CDs.

Let an instance of 3sat be given by a set φ = {c1, . . . , cm} of 3-clauses over a
finite set Π of propositional variables. Each clause is such that ci = �1

i ∨ �2
i ∨ �3

i ,
for i ∈ {1, . . . , m}, where each �k

j is a literal, i.e., a variable or its negation. We
construct an UCDbool diagram Dφ as follows: Dφ contains the classes Cφ, C	,
one class Ci for each clause ci ∈ φ, and two classes Cp and C¬p for each variable
p ∈ Π . To describe the constraints imposed by Dφ, we provide the corresponding
DL inclusion assertions, since they are more compact to write than an UCD. For
every i ∈ {1, . . . , m}, j ∈ {1, 2, 3}, and p ∈ Π , we have the assertions

Cφ
 C	
Cp
 C	

C¬p
 C	

Ci
 C	
Cφ
 Ci

C	
 Cp � C¬p

Clji

 Ci

Ci
 C�1i
� C�2i

� C�3i
C¬p
 ¬Cp

Clearly, the size of Dφ is polynomial in the size of φ.

Lemma 8. A set φ of 3-clauses is satisfiable if and only if the UCDbool class
diagram Dφ, constructed as above, is fully satisfiable.

Proof. “⇒” Let J |= φ. Define an interpretation I = ({0, 1}, ·I), with

CI
	 = {0, 1}

CI
� =

{
{1}, if J |= �

{0}, otherwise

CI
i = CI

�1i
∪ CI

�2i
∪ CI

�3i
, for ci = �1

i ∨ �2
i ∨ �3

i

CI
φ = CI

1 ∩ · · · ∩ CI
m.

Clearly, CI �= ∅ for every class C representing a clause or a literal, and for
C = C	. Moreover, as at least one literal �j

i in each clause is such that J |= �j
i ,

then 1 ∈ CI
i for every i ∈ {1, . . . , m}, and therefore 1 ∈ CI

φ . It is straightforward
to check that I satisfies T .

“⇐” Let I = (ΔI , ·I) be a full model of Dφ. We construct a model J of φ by
taking an element o ∈ CI

φ , and setting, for every variable p ∈ Π , J |= p if and
only if o ∈ CI

p . Let us show that J |= φ. Indeed, for each i ∈ {1, . . . , m}, since
o ∈ CI

φ and by the generalization Cφ
 Ci, we have that o ∈ CI
i , and by the

completeness constraint Ci
 C�1i
� C�2i

� C�3i
, there is some ji ∈ {1, 2, 3} such

that o ∈ C
�

ji
i

. If �ji

i is a variable, then J |= �ji

i by construction, and thus J |= ci.

Otherwise, if �ji

i = ¬p for some variable p, then, by the disjointness constraint
C¬p
 ¬Cp, we have that o /∈ CI

p . Thus, J |= ¬p, and therefore, J |= ci. ��

328 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

Theorem 9. Full satisfiability of UCDbool is NP-complete

Proof. To prove the NP upper bound, we reduce full satisfiability to class sat-
isfiability, which, for the case of UCDbool, is known to be in NP [6]. We use an
encoding similar to the one used in the proof of Theorem 7 (see Fig. 8).

The NP-hardness follows from Lemma 8. ��

We turn now to UCDref class diagrams and show that full satisfiability in
this case is NLogSpace-complete. We provide a reduction of the reachabil-
ity problem on (acyclic) directed graphs, which is known to be NLogSpace-
complete (see e.g., [21]) to the complement of full satisfiability of UCDref CDs.

Let G = (V, E, s, t) be an instance of reachability, where V is a set of
vertices, E ⊆ V × V is a set of directed edges, s is the start vertex, and t the
terminal vertex. We construct an UCDref diagram DG from G as follows:

– DG has two classes C1
v and C2

v , for each vertex v ∈ V \ {s}, and one class
Cs corresponding to the start vertex s.

– For each edge (u, v) ∈ E with u �= s and v �= s, DG contains the following
constraints (again expressed as DL inclusion assertions): C1

u
 C1
v , C2

u
 C2
v .

– For each edge (s, v) ∈ E, DG contains the following constraints: Cs
 C1
v ,

Cs
 C2
v .

– For each edge (u, s) ∈ E, DG contains the following constraints: C1
u
 Cs,

C2
u
 Cs.

– The classes C1
t and C2

t are constrained to be disjoint in D, expressed by:
C1

t
 ¬C2
t .

The following lemma establishes the correctness of the reduction.

Lemma 10. t is reachable from s in G iff DG is not fully satisfiable.

Proof. “⇒” Let π = v1, . . . , vn be a path in G with v1 = s and vn = t. We
claim that the class Cs in the constructed diagram DG is unsatisfiable. Suppose
otherwise that there is a model I of DG with o ∈ CI

s , for some o ∈ ΔI . From π, a
number of generalization constraints hold in DG, i.e., CI

s ⊆ C1
t
I and CI

s ⊆ C2
t
I .

Thus, we obtain that o ∈ (C1
t)I and o ∈ (C2

t)I , which violates the disjointness
between the classes C1

t and C2
t , in contradiction to I being a model of DG.

Hence, Cs is unsatisfiable, and therefore DG is not fully satisfiable.
“⇐” Let us consider the contrapositive. Assume that t is not reachable from

s in G. We construct a full model I of DG. Let ΔI = {ds} ∪
⋃

v∈V \{s}{d1
v, d2

v}.
Define inductively a sequence of interpretations as follows:

I0 = (ΔI , ·I0
), such that: CI0

s = {ds}, Ci
v
I0

= {di
v}, ∀i ∈ {1, 2}, v ∈ V \{s},

In+1 = (ΔI , ·In+1
), such that: CIn+1

s = CIn

s ∪
⋃

(u,s)∈E(C1
u
In

∪

C2
u
In

), Ci
v
In+1

= Ci
v
In

∪
⋃

(u,v)∈E, u
=s Ci
u
In

∪
⋃

(s,v)∈E CIn

s .

Full Satisfiability of UML Class Diagrams 329

The definition induces a monotone operator over a complete lattice, and hence
it has a fixed point. Let I be defined by such a fixed point. It is easy to check
that I is such that for all i ∈ {1, 2}, and u, v ∈ V \ {s} the following holds:

1. For each class Ci
v, we have that di

v ∈ Ci
v
I .

2. ds ∈ CI
s .

3. For all d ∈ ΔI , d ∈ Ci
u
I implies d ∈ Ci

v
I iff v is reachable from u in G.

4. For all di
u ∈ ΔI , di

u ∈ Cj
v
I for i �= j iff s is reachable from u in G, and v is

reachable from s in G.
5. ds ∈ Ci

v
I iff v is reachable from s in G.

From (1) and (2) we have that all classes in DG are populated in I. It remains
to show that I satisfies DG. A generalization between the classes Ci

u and Ci
v

corresponds to the edge (u, v) ∈ E. This means that v is reachable from u in
G, and therefore, by (3) we have that Ci

u
I ⊆ Ci

v
I . A similar argument holds for

generalizations involving the class Cs. Furthermore, the classes C1
t and C2

t are
disjoint under I. To show this, suppose that there is an element d ∈ ΔI such
that d ∈ C1

t
I ∩C2

t
I . Then by (5), d �= ds, as t is not reachable from s. Moreover,

d �= di
v for all i ∈ {1, 2} and v ∈ V \ {s}. Indeed, suppose w.l.o.g. that i = 1.

Then, by (4), d1
v ∈ C2

t
I iff s is reachable from v, and t is reachable from s, which

leads to a contradiction. Hence, C1
t
I ∩ C2

t
I = ∅. ��

Theorem 11. Full-satisfiability of UCDref class diagrams is NLogSpace-
complete.

Proof. The NLogSpace membership follows from the NLogSpace membership
of class satisfiability [6], and a reduction similar to the one used in Theorem 9.
Since NLogSpace = coNLogSpace (by the Immerman-Szelepcsényi theorem;
see, e.g., [21]), and as the above reduction is logspace bounded, it follows that
full consistency of UCDref class diagrams is NLogSpace-hard. ��

6 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether there is at least one model of the diagram where
each class and association is non-empty. Our results (reported in Table 1) show
that the complexity of checking full satisfiability is ExpTime-complete both
in the full scenario (UCDfull) and in the case where attributes are dropped,
NP-complete if we drop isa between relationships (UCDbool), and NLogSpace-
complete if we further drop covering over classes (UCDref), thus matching the
complexity of the classical class diagram satisfiability check. These complexity
bounds extend the ones presented in [6] for class/schema satisfiability to full
satisfiability. We show a similar result also for the problem of checking the full
satisfiability of a TBox expressed in the description logic ALC. As a future work,
we intend to investigate the problem under the finite model assumption.

330 A. Artale, D. Calvanese, and A. Ibáñez-Garćıa

Acknowledgements. This research has been partially supported by the FP7
ICT projects ACSI, contract n. 257593, and OntoRule, contract n. 231875.

References

1. Artale, A., Calvanese, D., Ibanez-Garcia, A.: Full satisfiability of UML class
diagrams (extended abstract). Technical Report 127, Roskilde University Com-
puter Science Research Reports. In: Proc. of the 2009 Int. Workshop on Logic in
Databases (LID 2009) (2009)

2. Clark, T., Evans, A.S.: Foundations of the Unified Modeling Language. In: Duke,
D., Evans, A. (eds.) Proc. of the 2nd Northern Formal Methods Workshop,
Springer, Heidelberg (1997)

3. Evans, A., France, R., Lano, K., Rumpe, B.: Meta-modelling semantics of UML.
In: Kilov, H. (ed.) Behavioural Specifications for Businesses and Systems. Kluwer
Academic Publishers, Dordrecht (1999)

4. Harel, D., Rumpe, B.: Modeling languages: Syntax, semantics and all that stuff.
Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel
(2000)

5. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

6. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

7. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)

8. Kaneiwa, K., Satoh, K.: Consistency checking algorithms for restricted UML class
diagrams. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 219–
239. Springer, Heidelberg (2006)

9. Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted
UML class diagrams. Theoretical Computer Science 411(2), 301–323 (2010)

10. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

11. Bergamaschi, S., Sartori, C.: On taxonomic reasoning in conceptual design. ACM
Trans. on Database Systems 17(3), 385–422 (1992)

12. Borgida, A.: Description logics in data management. IEEE Trans. on Knowledge
and Data Engineering 7(5), 671–682 (1995)

13. Artale, A., Cesarini, F., Soda, G.: Describing database objects in a concept lan-
guage environment. IEEE Trans. on Knowledge and Data Engineering 8(2), 345–
351 (1996)

14. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data
modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and Information
Systems, pp. 229–264. Kluwer Academic Publishers, Dordrecht (1998)

15. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research 11, 199–240 (1999)

16. Borgida, A., Brachman, R.J.: Conceptual modeling with description logics. In: [10],
ch. 10, pp. 349–372

Full Satisfiability of UML Class Diagrams 331

17. Möller, R., Haarslev, V.: Description logic systems. In: [10], ch. 8, pp. 282–305
18. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminological

knowledge representation systems. J. of Artificial Intelligence Research 1, 109–138
(1993)

19. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Information Systems 15(4), 453–461 (1990)

20. Jarrar, M., Heymans, S.: Towards pattern-based reasoning for friendly ontology
debugging. Int. J. on Artificial Intelligence Tools 17(4), 607–634 (2008)

21. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publ. Co., Read-
ing (1994)

	Full Satisfiability of UML Class Diagrams
	Introduction
	Full Satisfiability in the Description Logic ALC
	Formalizing UML Class Diagrams
	Full Satisfiability of UML Class Diagrams
	Full Satisfiability of Restricted UML Class Diagrams
	Conclusions
	References

