RESEARCH MEMORANDUM

ctassipication chamge
To. MCLASSIFIED
By Authortly oi NACA FQCM $342,7=3050$

FULL-SCALE INVESTIGATION OF THE MAXIMUM LIFT AND FLOW CHARACTERISTICS OF AN AIRPLANE HAVING

APPROXIMATELY TRIANGULAR PLAN FORM
By
Herbert A. Wilson, Jr. and J. Calvin Lovell
Langley Memorial Aeronautical Laboratory
Langley Field, Va.

NATIONAL ADVISORY COMMITTEE ${ }^{\text {ह }}$ FOR AERONAUTICS

WASHINGTON

- February 12, 1947

NATIONAL ADVISORY COMMITIHE FOR AERONAOTICS

RESEARCH MEMORANDMM

FULL-SCALT INVESTIGATION OF TERE MAXTMLM LIF? AND

FLOW CHARACIERISTICS OF AN AIRPLANE HAVIPFG
APPROXIMATELY TRIANGULAR PLAE FORM
By Herbert A. Wilson, Jr. and J. Calvin Lovell

STMMARY

An investigation of the $I M-1$ glider, which has approximately triangular plan form, airfoil sections similar to the NACA 0015-64, an aspect ratio of 1.8 , and a 60° swept-back leading edge, has been conducted in the Langley full-ecale tunnel, together with auxiliary studies of $\frac{1}{15}$-scale model trianguler wings, carried on in the $\frac{1}{15}$-acale model of the full-scale tunnel. The IM-I glider was designed as part of a German research program directed toward the development of a supersonic airplane. The glider hed a maximum Iift coefficient of 0.60 , whereas the $\frac{1}{15}-$ scale model teets gave a maximum lift coefficiont of approximately 1.0 . The addition of oharp leading edges to the DM-1 glider increased its maximum lift coefficient to 1.01 . Removing the vextical fin from the glider, sealing the large control-balance gape, and installing a semispan sharp leading edge increased the maximum Iift coefficient to I. 2 . It is concluded from these tests thet the airfoil sectione having sharp leading edges or small leading-edge radif, which are believed to be desirable for supersonic flight, will also have acceptable and perhaps superior low-speed charecteristics when used in highly swept-back wings.

The flow over triangular wings of low aspect ratio at low scale is characterized by vortices above the upper aurfece of the wing, inboerd of the tips. These vortices aid in obtaining high maximum lift coefficients, and they cen be produced at large scale by using airfoil sections having sharp leading edues.

It appears that with triangular wings of aspect ratio of about 2 maximum Iift coefficients of the order of 1.2 cen be obtained. The corresponding angles of attack, however, are likely to be considerably larger than those for existing conventional elrplanes. Furthermore, since the lift-dreg ratio approaches 1 , the angles of descent without
power are likely to be prohibitive and airplanes using this type of wing probably will not lend eafoly without power.

INTHRODUCTION

Resoarch dirocted toward the attelment of supersonic flight has led to interuat in the high-speod characteriatice of wings of high sweep and of low agpect retio. At prusent, however, there is only limited full-scale data on the maximum lift and atelling cheracteristice of such wings. An investigation of the DM-I glider, which was designed in Germany as a part of a regearch program directod towerd the dovelopment of a aupersonic airplene, was mede in the jangley fuli-scale tunnel to obtain information on the characteriatics of an airplane configuretion having an approximately triangular plan form. The first tests of the $D M-1$ glider in the Lcngley full-scale tunnel diaclosed that the maximum lift coofficient of the glider wes considerably lower than had been indtcated by previous smallscale testa of similar conflgurations at DVL in Gormany and in sevoral tunncla in the United states (see reference 1). The program was therefore interrupted and an investigation to determino the cause of the low maximum lift was undertaken. Tho present paper includes a deteilod account of the steps loading to tho use of a sharp leading edge to improve the maximm. lift coefficient, a diacusaion of the aerodynemic phenomona involved, and curves showing the acrodynemic charecteristics of several modifications of the DM-I glider:

SYMBOLS
a angle of attack, degreas
$\sigma_{\mathrm{L}} \quad$ lift coefficient
$\mathrm{C}_{\mathrm{m}} \quad$ pitching-mament coefficient
C_{D} dreg coofficient
A aspect ratio

EQUIPMENT AND TESTS

DM-I Glider and Modifications

The DM-I glider was dealgned as ane step in a German research program directed toward the development of a superscnic airplane. The eventual airplane was to have been powered with a jet ongine. The DM-I glider had no power and was intended primarily for the investigation of the flying characteristics at high angles of attack.

The DM-1 glider had an apprcximately triangular plan form, airioil sections similar to MACA $0015-64$, an aspect ratio of I. 8 and a 60° swept-back leading edce. It was constructed aimost entirely of wood; the ekin wes $\frac{1}{16}$-inch three-ply birch plywcod and the spars and ribs were of conventional box-beam construction. The principal dimensions of the glider are given in figure 1 (a) and table I... General views of the glider mounted on the full-acaletunnel belance eupports for tegts are shown in figure 2. The gilder as received was equipped with a rudder for directional control and elevons for laterel and longitudinal control. Details of these surfaces are also shown in Pigure $I(a)$ and table I. The balance on the control surfaces was eimilar to other elifptical overhung control balances. The balance gap was relatively large, however, and the shape of the wing just ghead of the balance gap was elltptical. A typical section through the control surface and the trear part of the wing is shown in figure 1 (b).

The basic configuration for the investigation was the original DM-1 glider, which had the control-balance slots open and the large vertical fin on. The firgt modification made to improve the maximum Ifft characteriatice was the addition to the wing of the semispan sharp leading edge shown in figure $1(\mathrm{~b})$. Next, the vertical fin was removed which left the glider as shown in figures $2(b)$ and 2(c). The three configurations tested with the vertical fin removed were:
(I) Glider wing with control-balance slote open
(2) Glider wing with control-balance slote sealed to prevent air flow through them and faired over on the upper surface
(3) Same as configuration (2) with the sharp leading edge adaed

As a further aid in the study of the characteristics of the flow over the DM-I glider, two triangular wing models, one having airfoil sections 15 -percent thjek and the other having very thin and sharp-edge sections, were constructed for tests in the $\frac{1}{15}$-acale model of the Langley full-acale tunnel (reference 2). There models were not exact scale models of the DM-I glider, but had the same aspect ratio, the same ratio of model size to tumel alze, and alightly greater sweepback.

Teste

The aerodynamic characteristics of each glider configuration were determined throughout the angle of +attack range at zero angle of yaw. The tunnel airsperd for the full-scale tests was limited to approximately 45 miles per hour, because of the light atructure inside the glider that wes available for connection with the model supporting gtruts. This airspeed corresponds to a Rejnolds number of 4.5×10^{6} based on the mean geometric chord of 10.97 feet. For oach of the glider and model configurations investigatea, the direction of the flow and the progression of the stall, as indicated by wool yarn tufts attached to the wing, were detcrmined. Observations of the flow were also made by uee of zinc chloride emoke. The direction and naturo of flow over the model wings were observed with a single wool streamer attached to the end of a hand-held probe.

MAXIMMM-EIFT TNVESTIGATION AND FIOW STUDIES

The variations of the pitching-moment coefficient, the drag coefficiont, and the angle of attack with lift coefficient for the basic configuration are shown by the curves labeled "Orisinal DM-1 glidor " in figuro 3. The maximum iff coefficient was approximately 0.6 and the accompanying stall, as indicated by the tuft surveys (fig. 4(a)), progressed inward from the tins in much the same manner as the stall of conventional wings of high taper ratio. The maximum lift coefficient was about 0.3 less then was indicatod by low-acale wind-tunnel teata of various triangular winga and triangular flat plateg haiving about the same aspect ratio. (See references 1,3 , and 4.) Moreover, the wing stalled at an angle of attack of 18°, whereas the low-scaie tests indicated that the stall engle would be about 40°. Scme fundemental difference between the flow over the full-sceile wing and the flow over the model wing
appeared to exist.
The investigation of the flow over the $\frac{1}{15}$-acale models in the model tunnel showed, in agreement with references 1 , 3 , and 4 , that the wings stalled at angles of attack near 40°, and there was no particular evidence of tip stalling at angles of aftack below meximum lift. Furthermore, there was no significant difference in the flow for the sharp-edse thin section and for the 15 -percent thick wing. The flow for these model wings was characterized by two vortices, yhich originated at the apex of the triangle and increased in eize as they passed downstream, with their cores located above the upper aurface of the wing and inboard of the tips.

Tuft surveys and smoke-flow studies made of the full-scele DM-I glider showed that no vortex flow auch as that for the $\frac{1}{15}$-scale model existed above the upper auriace of the wing. The only vortices present were the usual ones originating at the wing tips. Diagrams for the flow patterns over the full-scale DM-1 glider and the $\frac{1}{15}$ scale models are shown in figure 5. The reason for the fundamental difference between the flow patterns is believed to be as follows: According to the theory of reference 5, the flow about a triangular Wing can be represented as the sum of a cross component, which at each transverse section is approximately the theoritical two-dimonsional flow about the section (see fig. 5(b)), and the longitudinal corponent. In general, such a two-dimensional transverse flow camot exist, because of the boundary-layer separation around the highly curved odges; however, when the longitudinal velocity component is combined with the trensverse component, the boundary layer follows an easy curve around the Ieading edge as indicated in figure 5(a) and is not necessarily forced to separate. For either the actual glider or the emall models, it is expected that, even at low angles of attack, the boundary layer in this flow around the leading edge could not withstand the adverse preasure gradient just behind the leading edge. For the full-scale glider, any separation of the leminar layer would, however, merely induce transition to a turbulent layer, which eventually would separate near the trailing edge. On the $\frac{1}{15}$-scale model, however, auch treneition does not occur, because of the low Reynolds numbers. (Sce refercnce 6.) Hence, the flow scparates completely near the leading edge, and the cross component takes on the appearance of figure 5(a). When the lonigitudinal component of the volocity is superimposed, the trailing vorticss are formed above the upper surface of the model wing, as indicated in figure 5(c). Similar vortices have been observed at the side of a rectangular flat plate by Winter (reference 7). The actual stall
possibly occurs at the angle of attack for which a atream line of the flow off the leadng edge fails to curve over enough to meet the upper surface of the wing again before it tralle downatream.

It appeared that if the vortex action could be produced on the full-scale glider, large gains in the maximum lift coefficient would result. Inasmuch as the phenomenon was attributed to a separation at the leading edge of the wing, it was decided to force this separation by providing the full-scale wing with a sharp leading edge. Preliminery investigations indicated that a 3-inch atrip or sheet metal projecting outward from the wing leeding edge and extending half wey along it (fich. 1(b)) would produce the desired results. Smokeflow observations and turt aurveys indicated that the large vortices originating at the apex of the triengle which were observed at low scale were then present over the full-scale glider. The acrodynamic characteristics for this configuration ere shown in figure 3. The maximum lift was increased to a value of 1.01 at an angle of atteck of 31°. The drag coefficient wab not increased any appreciable amount at low lift coefficienta. The atable slope of the pitching-moment curve was reduced by the sharp leading edge, and the tuft survoys (fig. 4 (b)) indicated a tendency toward tip stalling.

The results obtained with this configuration, together with the exploratory work done at low scale had accomplished the original objective of determining the reason for and correcting the low maximum lift. Howevor. Inasmuch as both the musually large control balance gaps and the large original vertical fin mey Elso have been affecting the maximum-lift charecteristics of the airplane advorsely, a further investigation was made to determine their effecta and also to determine the influence of sharp leading edges on the meximum lift of the wing elone. The resulte of this invertigation are shown in figure 6. The meximum lift coefficient, beged on the wing area of the basic configuration increased to 0.92 when the verticel fin was removed. The lift curve atill begine to break at a lift coefficient of about 0.6 and an angle of atteck of about 18^{0}, as was the case with the fin on. Closing the elevon control-belanco elots increased the maximum lift coofficient to 1.05 . With the addition of the sharp leading edges, the highost marimum lift coofficient (1.24) wes obteined. Tuft photographe for the threo fin-orf configurations are shown in figures 4(c) to 4(θ). As was the caso with the vertical fin on, the increases in arab coefficiont at the low anglee of attack due to the sharp leading edges do not eppenr sienificent. The sharp leading edges attached to the wing for these teste were not faired into the winf, and it is probsble that a wing having sharp-leading-edse airfoil sections would have less drag.

The maximum lift coefficient obtained for tho optimum
configuration is in good agreement with the model reaulte, and with the low-scale results of referenceel, 3, and 4. It is of interest, also, to note that according to the thecry of reference 5 $\frac{d C_{T_{\alpha}}}{d \alpha}=\frac{\pi_{A}}{2}$ or 2.83 for the present case; whereas the experimental value is only about 2.26. As pointed out in reference 5, the simplified theory overestimates $\frac{d C_{T}}{A \sigma}$. for aspect ratios above I.O; the value given for elliptical winge by the more exact theory of Krienes $1 e 2.39$ for an aspect ratio of 1.8 (fig. 5 of reference 5). The elope of the lift curve (fig. 6) increases from 1.8 at low angles of attack to approximately 2.26 and then decreases to 1.2 for angles of attack above 28°. The value of 2.26 was used in the preceding comparison, since it covers the straight-line part of the lift curve.

In order to determine the usefulness of the maximum Ifft obtained, the values of the lift-drag retio must be considered aince this relationehip determines the power-off rate of descent. At a lift coefficient of 1.0 , the lift-drag ratio is 2.5, which corresponds to an angle of descent of about 22 and a rate of descent of 0.37 timos the filght speed. At a lift coefficient of 1.2 , the lift-drag ratio ia 1.5 and the corrasponding angle and rate of degcent are 34° and 0.56 times the fight apeed, reapectively. It is concluded that if any roasonable rate of degcent is to be maintained for airplenes with winge aimiler to that of the DM-l glider, it will be necessery eithor to use power for landing or to restrict the design to relatively low wing loadings.

CONCIUDING REMARKS

The original DM-1 giider, which had approximately triangular plan form, airi'oll acctions somewhat aimilar to the NACA 0015-64, an aspoct ratio of 1.8 and a 60° swopt-back leading edge, hed a maximum lift coefficient of 0.60 . wherees $\frac{1}{15}$ - scale tosts of a similar configuration gave a maximum lift coefficient of approximately 1. The eddition of sharp leading edges to the criginal $D M-I$ glider increased the maximum lift coefficient to l.ol. Removing the vertical fin from the glider, sealing the large control-belance gaps, and installing a semlepan sharp leading edge, increasud the msximum Ifft coafficient to 1.24 . It is concluded from these tests that the airfoil aections having shirp-leading edgos or small leading-edge radil which are belleved to be dusirable for supersonic flight, will also have accoptable and perhaps superior low speed characteristics
when used in highly swopt-back wings.
The flow over triangular winga of low aspect ratio at low acale is similar to that which H. Winter (see NACA TM No. 798) observed. over rectangular flat plates of low aepect ratio and is characterized by vortices above the upper surface of the wing inboard of the tips. The action of these vortices is favorable in maintaining orderly flow over the upper surface of the wing to very high angles of attack and thereby aide in obtaining relatively high maximam lift coefficiente. At large Reynolds numbers this vortex flow cen be produced by using airfoil sections having sharp leading edges, or very small leadingeage radil.

With triangular wings of aspact ratio of about 2, maximum lift coefficiente of the order of 1.2 can be obtained. The corresponding ancles of attack, however, will be considerably greater than those for conventional airplanes. Furthermore, aince the lift-drais ratio is approaching 1 , the angles of descent without power are likely to be prohibitive and airplanes using this type of wing probably will not land aafely without power.

Langley Memorial Aeronautical Laboretory
National Advisory Committee for Aeronautics Langley Field, Va.

REFHFENCES

1. Shortal, Joseph A., and Magain, Bernard: Effect of Sweepback and Aapect Ratio on Loneftudinal Stabilite Characteristics of Winge at Low Speeds. NACA TN No. 1093, 1946.
2. Theodorgen, Thecdnxe, and Silverstein, Abe: Experimental Verification of the Theory of Wind-Tunnel Boundary Interference. NACh Rep. No. 478, 1934.
3. Anon: Air Force and Moment for Gliding Wing. Rep. No. 677 Aerod. Lab., Dept. Aero., Wahhington Navy Yard, Aug. 21, 1943.
4. Lange and Wacke: Prüfuericht über 3-und -6 Kcmpenentenmessungen an der Zuspitzungeralohe von Flügoin. kleiner Streckung. Teilbericht: Drjeckfliugel. UM Nr. 1023/5, Deutsche Luftfahr uforschung (Berlin-Adiershof), 1943.
5. Jones, R. T.: Properties of Low-Aspect-Ratio Pointed Wings at Speede bolow and Ebove the Speed of Sound. NACA TN NO. 1032, 1946.
6. Jacobs, Eestman I. and Sherman, fibert: Airfoil Section Characteriatics as Affected by Variations of the Reynolde Number. NACA Rep. No. 586, 1937.
7. Winter, H.: Flow Phenomena on Plates and Airfoils of Short Span. NACA TM No. 798, 1536.

HACA RM NO. IGERO

TABIE I

DIMEHSIONS OF THE DM-I GLIDER

Wing:
Span, feet 19.6
Wing area, square fect 215.0
Aspect ratio 1.8
firfoil section Approximately MACA 0015-64
Thicomess, pereent chord 15
Point of greatest thicionese, percent chord 40
foot chord, feet. 20.75
Mean geometric chora, foet 10.97
Wing iwist, degrees 0
Dihedrel, togreos. 0
Sweepback (工.E.), degrvee 60
Sweepforward (T.T.), degrees 15
Vertical location of center of gravity, porcent root chord from chord line 0
Horizontal location of center of gravity, percent root chord 50
Horizontal control surfacea:
Total elevon area, square feut 23.3
Elevon chord, feet 1.95
Elevon hinge location, percent chori. 27
Elevator angla ranga, degrees 28 to -24
fileron angle range, dəgroes -21
Total trim flap aree, squsre feet 6.97
Trim flap chord, feet 1.38
Vortical teil:
Height, fuet 8.58
Aroa, (to chord lino of wing) square feet 89.6
Aspet ratio 8
Airfoil section Approximately HACA col5-64
Thickness, percent chord. 175
Point of groatest thickness 40
Root chord, feet 19.7
Angle of sweepback (I.E.), degroes 65
Angle of sweepforwara (T.E.), degraes 0
Rudder aroc, square fiet 8.01
Rudder chord. feet. 1.32
Hinge lacation, percent 27
Rudder angle, degreos $+3$

(A) Principal dimensions of original glider.

Figure 1.- Dimensions of the DM-1 glider. (All dimensions are in inches.)

(b) Dimensions of the sharp leading edges and of the elevon control slots.

Figure 1.- Concluded.

(a) Original configuration; three-quarter side view.

Figure 2.- The DM-1 glider mounted on the Langley full-scale-tunnel balance supports.

(b) Vertical fin removed; side view.

Figure 2.- Continued.

(c) Vertical fin removed and semispan sharp leading edge attached; top view.

Figure 2.- Concluded.

Figure 3 -Aerodynamic. characteristic of the DM-1 glider with and without sharp leading edges.

$$
\alpha=20.1
$$

(a) Original DM-1 glider.

Figure 4.- Tuft surveys of the flow over the DM-1 glider.

(b) The DM-1 glider with semispan sharp leading edge installed.

Figure 4.- Continued.

$$
\alpha=34.8
$$

(c) Wing of the DM-1 glider with elevon control slots open.

Figure 4.- Continued.

$$
\alpha=14.5
$$

(d) Wing of DM-1 glider with elevon control balance slots sealed.

Figure 4.- Continued.

$a=14.5$

$$
a=34.3
$$

(e) Wing of DM-1 glider with elevon control balance slots sealed and semispan sharp leading edge installed.

Figure 4.- Concluded.

(a) Elements of flow over a triangular wing having a rounded leading edge at high Reynolds numbers.

(c) Elements of flow over a triangular wing at low Reynolds numbers or over a triangular wing
having a sharp leading over a triangular wing
having a sharp leading edge.

(b) Elements of the vertical component of flow over section AA.

(d) Elements of the vertical component of flow over section BB.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 5.- Diagrams of the flow over triangular wings.

inure: : Akmadvarme ofkanacternstics of the DM-1 rintry with the vertioal fin remoned.

