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Full-Scale Turbofan-Engine Turbine-Transfer Function
Determination Using Three Internal Sensors

Lennart S. Hultgren
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135, USA

Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-
engine test data to determine the turbine transfer function for the currently sub-dominant combustion noise.
The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Pro-
gram (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was
carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program’s Reduced-
Perceived-Noise Technical Challenge.

I. Introduction

The reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise
generated in the jet engine core, by components such as the compressor, combustor, and turbine, can be significant
contributors to the overall noise signature at low-power conditions, typical of approach flight. At high engine power
settings during takeoff, jet and fan noise have traditionally dominated over core noise for existing engines. However,
current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods
are likely to reduce non-core-noise contributions even at engine-power points higher than approach. The result of such
changes will be to elevate the overall importance of core noise. New airport regulations are likely to require additional
noise reductions, thus emphasizing the need for further reductions in core noise.

The present paper is concerned with the combustion noise component of the core noise. The unsteady combustion
process is the source of pressure, entropy, and vorticity fluctuations. The noise frequency is set by the unsteady
combustion process and its peak value is generally believed to fall in the range of 400–500 Hz. Combustion noise
is of either the direct or indirect type. A fraction of the pressure disturbances are acoustic pressure fluctuations with
the balance being hydrodynamical unsteadiness. The former is what is referred to as direct combustion noise. Its
spectrum is modified by the combustor geometry as well as pressure feedback on the unsteady combustion process
itself. The direct combustion noise is reduced due to transmission effects during its propagation through the turbine
stages. The combustor entropy (temperature) fluctuations are convected downstream with the local mean velocity
and get converted to acoustic pressure fluctuations in the turbine and other regions of rapid flow change. This is the
indirect process of turbomachinery combustion noise generation. This is potentially a very effective mechanism and
occurs at all turbine stages. The indirect noise occurs in the same basic frequency range as the direct noise, but their
spectral-distribution shapes could be quite different. Figure 1 illustrates the dual paths of combustion noise. Note that
the direct and indirect noise contributions are correlated at the source because both are caused by the unsteady heat
addition. The relative importance of direct and indirect combustion noise contributions is still an unresolved issue.1–6

Direct measurement of turbofan-engine combustion noise is difficult because of the presence of jet noise in the
frequency range of interest. Since flight effects reduce jet noise more than combustion noise, combustion noise can be a
significant contributor to aircraft approach noise but may be masked by jet noise under the corresponding static-engine
test condition. To overcome this obstacle, researchers7–19 developed coherence techniques utilizing engine-internal as
well as far-field measurements to identify the far-field combustion noise component. Modal analyses20–24 were also
carried out to determine the source and propagation characteristics of combustion noise.
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Figure 1. Dual paths for combustion noise

Hultgren and Miles25 discussed noise-source separation techniques for application to engine test-stand data and
assessed a current prediction method26, 27 applied to a static-engine test.28 The current paper is an extension of this
work in that a determination of the turbine transfer function is attempted.

II. Data Analysis

A. Static-Engine Test Data

Data obtained from the NASA/Honeywell Engine Validation of Noise and Emission Reduction Technology program28

(EVNERT) is used herein to assess the turbine transfer of direct combustion-noise and the creation of indirect com-
bustion noise through entropy/blade-row interactions in the turbine. This static engine test activity was carried out in
Honeywell Aerospace’s San Tan outdoor test facility from 2005 to 2007. The program used the Honeywell TECH977
research engine, which is typical of a business-jet application in the 6,000–8,000lbs thrust class.

Figure 2. Honeywell TECH977 turbofan engine-internal sensors

The engine-internal instrumentation in EVNERT
configuration 35 included high-temperature pressure
sensors with air cooling in a combustor ingnitor port
(CIP1) and at the turbine exit (T551 and T552). Pres-
sure time histories at the internal sensors CIP1, T551,
and T552 herein. The EVNERT data acquisition system
had a sampling rate of 65,536Hz and a duration of about
70 s, leading to time histories with just over 4.5 million
data points. Each time series is analyzed here using an
FFT length of 8192 points (corresponding to an 8 Hz fre-
quency resolution or bin width), Hanning windowing,
and a 50 percent data-segment overlap. The narrow-
band auto spectra, resulting fromM = 1117 averages,
then can be summed up to yield the corresponding 1/3-
octave sound-pressure level (SPL). The 130◦ 1/3-octave

far-field total SPL result was found to be in full agreement with the Honeywell provided 1/3-octave SPL data.25

Royalty and Schuster24 analyzed the acoustic modes in the combustor for a different arrangement of the EVNERT
turbofan engine than considered herein. In that configuration,28 the fan was replaced by a water brake in order to
remove fan sources from the total noise signature. The no-fan configuration could be operated up to a power setting
corresponding to the approach condition of 60 % corrected fan speed. The combustor internal instrumentation con-
sisted of a circumferential array of 16 equally-spaced pressure probes. They24 (see their Fig. 19) found that for low
frequencies most of the acoustic energy was associated with the plane wave (m = 0) mode, that the first circumfer-
ential mode (m = ±1) was dominant in the frequency range of 500–1000Hz, and that higher circumferential modes
(m = ±2,m = ±3,m = ±3, . . .) sequentially became the most significant feature at successively higher frequencies,
wherem is the azimuthal wave number or mode order. One can observe in their figure that at 500 Hz, the plane wave
mode is about 8 dB and 5 dB below the total acoustic level at the 48 % and 60 % power settings, respectively. They also
reported that the higher modes (m 6= 0) were not present in the far-field data. It is concluded here that this indicates
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that the non-plane-wave modes are cut-off in the turbine/duct downstream of the combustor for this particular engine.
This is in agreement with the results of Hultgren and Miles25 in which coherent combustion noise was only found for
frequencies less than about 400+ Hz.

B. Frequency Response Functions
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Figure 3. Schematic Diagram for Coherence-Technique Measure-
ments

Figure 3 illustrates the relationships between the signals
measured by the engine-internal sensors CIP1, T551,
and T552. The signalsu(t), v(t), andw(t) represent the
coherent acoustic combustion-noise signal at the three
sensors as functions of timet. These ‘desired’ sig-
nals cannot be directly obtained by themselves because
of the presence of the random uncorrelated ‘noise’ sig-
nalsm(t), n(t), ando(t) at the different measuring sta-
tions. However, the downstream signalsv(t) andw(t)
are uniquely determined by the previous-station signal
u(t) and the impulse-response functionshuv andhuw,
respectively. The measurable signal,x(t), y(t), or z(t),
at each sensor is the sum of the ‘desired’ and correspond-
ing ‘noise’ signals. The signalsm(t), n(t), ando(t) can
be taken as mutually uncorrelated as well as uncorrelated
with the combustion-noise signalu(t), v(t), or w(t) at
all the stations. The signalm(t) is to a large extent
caused by hydrodynamical pressure fluctuations (pseudo
sound) in the combustor and possibly also higher acous-
tic modes present in the combustor but cut-off in the

downstream tail pipe and can potentially be quite large. The signalsn(t) ando(t) are mainly due to acoustic pressure
fluctuations from other noise sources and can actually be correlated if turbine broadband noise is also present at the
frequencies of interest.

The goal of the present work is to determine the frequency response functions

Huv(f) ≡ Guv(f)/Guu(f) = Gxy(f)/Guu(f) = Hxy(f)[1 +Nu(f)] , (1a)

Huw(f) ≡ Guw(f)/Guu(f) = Gxz(f)/Guu(f) = Hxz(f)[1 +Nu(f)] , (1b)

Hvw(f) ≡ Gvw(f)/Gvv(f) = [1− δ(f)]Gyz(f)/Gvv(f) , (1c)

Hwv(f) ≡ Gwv(f)/Gww(f) = [1− δ∗(f)]G∗

yz(f)/Gww(f) , (1d)

wheref is the frequency and the star denotes complex conjugation.Gαα andGαβ denote the one-sided auto-spectrum
and cross-spectrum of the signalsα andβ, whereα andβ are dummy indexes. The one-sided auto-spectraGuu(f),
Gvv(f), andGww(f) represent the combustion-noise component of the total noise signatureGxx(f), Gyy(f), and
Gzz(f) at each of the measuring stations.Hxy(f) ≡ Gxy(f)/Gxx(f) andHxz(f) ≡ Gxz(f)/Gxx(f) can be
thought of as ‘directly measured’ frequency transfer functions;

Nu(f) = Gmm(f)/Guu(f) (2)

is a real and positive quantity representing the noise to signal ratio at the originating measuring station and is not
directly obtainable; and

δ(f) = Gno(f)/Gyz(f) (3)

is a measure of the relative strength of the possible correlation between then(t) ando(t) signals. δ(f) describes
the influence of broadband turbine noise on the results and is assumed to be small in the frequency range of interest
here. The frequency response functions are commonly expressed asHαβ = |Hαβ | exp(iφαβ), where|Hαβ | and
φαβ = argHαβ are referred to as the gain and phase factors, respectively.

Consequently, the ‘true’ turbine gain factor is always underpredicted by the ‘directly measured’ one, i.e.,|Huv(f)| >
|Hxy(f)| and |Huw(f)| > |Hxz(f)|. The ‘true’ turbine phase factors, however, are identical to the ‘directly mea-
sured’ ones since both are obtainable from the same cross-spectrum, i.e,φuv(f) = φxy(f) = argGxy(f) and
φuw(f) = φxz(f) = argGxz(f).
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To obtain a better estimate for the ‘true’ frequency response functions than given by (1a) and (1b), withNu

neglected, the one-sided auto-spectraGuu(f), Gvv(f), andGww(f), i.e., the coherent combustion-noise at each of
the measuring stations, need to be determined and this is discussed in the next two subsections. The first of the two
deals with a two-signal diagnostic technique, commonly referred to as the coherent-output-power method. The next
one addresses a three-signal technique.

C. Coherent-Output-Power Method

The basic formulation for the coherent-output-power method is described in the textbook by Bendat and Piersol.7 If
the sensor inside the combustor and the appropriate turbine-exit sensor (Fig. 3) are used in this technique, it follows
that the coherent combustion-noise spectrum at the turbine-exit locations are given by

Gvv(f) =
|Guv(f)|

2

Guu(f)
=

|Gxy(f)|
2

Guu(f)
= γ2

xy(f)Gyy(f)[1 +Nu(f)] (4a)

Gww(f) =
|Guw(f)|

2

Guu(f)
=

|Gxz(f)|
2

Guu(f)
= γ2

xz(f)Gzz(f)[1 +Nu(f)] (4b)

regardless of the output noiseGnn(f) orGoo(f). γαβ = |Gαβ |/
√

GααGββ is the coherence.
Note that ignoringNu in (4) is equivalent to replacingGuu with the measuredGxx. The latter is a positive-biased

estimate for the unknown input spectraGuu. In view of the certain presence of nonpropagating pressure fluctuations in
the combustor, i.e.,Gmm 6= 0, ignoringNu in (4) is quite likely to underpredict the actual coherent output spectrum.
Eqs. (1a), (1b) and (4), all withNu = 0, will be referred to as the two-signal method results in what follows.

D. Three-Signal-Coherence Method

Chung12 developed a three-signal coherence technique for microphone flow-noise rejection. This three-signal method
also applies to the situation shown in Fig. 3. The coherent auto-spectra at the three sensors, CIP1, T551, and T552,
are, hence, given by25

|1− δ(f)|Guu(f) =
|Gxy(f)||Gxz(f)|

|Gyz(f)|
=

γxy(f)γxz(f)

γyz(f)
Gxx(f) , (5a)

Gvv(f)

|1− δ(f)|
=

|Gxy(f)||Gyz(f)|

|Gxz(f)|
=

γxy(f)γyz(f)

γxz(f)
Gyy(f) , (5b)

Gww(f)

|1− δ(f)|
=

|Gxz(f)||Gyz(f)|

|Gxy(f)|
=

γxz(f)γyz(f)

γxy(f)
Gzz(f) , (5c)

where theδ, defined by Eq. (3), reflects the effect of a possible correlation between then(t) ando(t) signals. The
inclusion of the|1− δ| factor is a new result. The standard three-signal method is obtained forδ = 0.

The strength of the standard three-signal method is that it involves only measured cross-spectra. The measured
cross-spectra are affected by extraneous noise only if this noise correlates between measurement locations. This
can often be avoided by an appropriate spatial separation of the sensors involved and the three-signal method then
provides unbiased estimates of the coherent auto-spectra. In contrast, measured auto-spectra will always include a
positive definite contribution from the extraneous noise.

Krejsa15 considered the situation consisting of two engine-internal sensors—signalsx(t) andy(t)—and a far-field
microphone—signalz(t)—and obtained (5c), withδ = 0, as his far-field result. The three-signal coherence technique
used by Krejsa15, 16, 18eliminated the bias error in the coherent combustion-noise measurements due to engine-internal
nonpropagating pressure fluctuations. It is also possible to separate core noise from jet noise using three far-field
microphones since each would pick up correlated core noise and uncorrelated external noise from the jet.17, 29 As
long as the spatial (polar angle) separation of the microphones is large enough, the jet noise at each location can be
assumed to be mutually uncorrelated and Eq. (5), withδ = 0, would apply. Mendozaet al.29 analyzed data from
the same Honeywell TECH977 static test,28 as considered herein, using a three-signal far-field method, among other
multiple-microphone signal-processing techniques.19 They found that the method worked well in frequency regions
where a single engine-internal source was dominant. The method did not perform well for frequencies for which
multiple self-correlated internal noise sources were of comparable magnitude, e.g. in the relatively limited frequency
range where combustion noise and turbine-broadband noise overlapped.
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Combining the results (5) with the ones in (1) shows that the frequency response functions are given by

Huv(f) = |1− δ(f)|
|Gyz(f)|

|Gxz(f)|
exp[iφxy(f)] , (6a)

Huw(f) = |1− δ(f)|
|Gyz(f)|

|Gxy(f)|
exp[iφxz(f)] , (6b)

Hvw(f) =
|Gxz(f)|

|Gxy(f)|
exp (i{φyz(f) + arg[1− δ(f)]}) , (6c)

Hwv(f) =
|Gxy(f)|

|Gxz(f)|
exp (−i{φyz(f) + arg[1− δ(f)]}) =

1

Hvw(f)
. (6d)

Eq. (6) withδ = 0 will be referred to as the three-signal results henceforth. In general,δ is a complex quantity,
although assumed small here. Consequently, there can be an error in the gain factor for the turbine transfer of combus-
tion noise by usingδ = 0 above, due to the actual presence of broadband turbine noise at the same frequency, but the
corresponding phase factor will be unaffected. For the turbine-internal transfer functions, the situation is the opposite.

E. Implementation

From a purely theoretical point of view,0 6 γαβ 6 1, with γαβ = 0 meaning that the two signalsα(t) andβ(t)
are completely uncorrelated andγαβ = 1 indicating perfectly correlated signals. In practice, only estimatesγ̂αβ of
the coherence can be obtained using finite data series. The estimated coherence will, in fact, be nonzero even for
completely uncorrelated signals,30, 31 i.e., only the interval

ǫ < γ̂αβ 6 1 (7)

is meaningful, where
ǫ2 = 1− (1 − PI)

1/(Ns−1) (8)

is thePI -percent confidence interval if the trueγ2
αβ is zero andNs is the number of independent data segments

used in obtaininĝγ2
αβ . Welch32 showed, in the context of estimating auto power spectra, thatNs can be replaced by

9M/11, whereM is the number of 50-percent-overlapped segments used in the analysis. Miles31 suggested that a
better estimate for the coherence threshold value, or noise floor,ǫ can be obtained by purposely unaligning the two
time series. That is, a time delay is deliberately introduced to ensure that the two resulting finite time series are
uncorrelated. The estimated unaligned coherence does not depend on any particular assumptions about the underlying
statistical properties of the time series and accounts for any data-segment overlap and algorithms used in the analysis.
The unaligned result captures the coherence of any discrete tones present in the signals and also provides an estimate
of the minimum observable broadband coherence. Miles5, 31 found that Eq. (8) withNs = M provided a good estimate
of the noise floor. Following Miles,5, 31 the estimated coherence threshold for the present study isǫ = 0.0518. If the
estimated coherence exceeds the threshold the two time series are coupled. If it is less than the threshold the signals
are random and appear independent for that particular number of samples/segments.

In the two-signal (coherent-output-power) method calculations carried out here, the estimated coherenceγ̂αβ(f)
is replaced by the threshold valueǫ if it falls below that value for a particular narrow-band frequency. That is, the
estimated narrow-band combustion-noise component, sayĜww(f), is simply set toǫ2Ĝzz(f) for the frequency in
question. Otherwise it is given by (4) withNu = 0.

Mathematically, it follows from Eq. (7) that

ǫ2 < γ̂xzγ̂yz/γ̂xy < ǫ−1 . (9)

The upper limit of this inequality is an unphysical result in view of Eq. (5) and the fact thatĜww cannot be larger
thanĜzz . Clearly, an additional discriminator is needed to ensure a physically realistic three-signal combustion-noise
estimate. This is provided by the following necessary condition25 for Eq. (5) to be valid:

Θ ≡ arg[Gxzconj(Gyz)/Gxy] = 0 . (10)

The standard deviation (in radians) of the estimate for the cross-spectrum phase angleθαβ = arg(Gαβ) is given by5, 7

σαβ = sin−1
√

(1− γ2
αβ)/2γ

2
αβNs . (11)
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Note that the standard deviation is zero for perfectly correlated signals and increases as the coherence is diminished.
Consequently, in the three-signal method calculations carried out here, the estimated narrow-band combustion-noise
component for a particular narrow-band frequency, sayĜww(f), is set toǫ2Ĝzz(f) if, any of the estimated coherence
values,̂γxz, γ̂yz, or γ̂xy, fall below the threshold valueǫ, or if the estimated phase angleΘ̂ > σ̂xz + σ̂yz + σ̂xy, where

σ̂αβ = sin−1
√

[1/max(γ̂2
αβ , ǫ

2)− 1]/2Ns; otherwise it is given by (5).

III. Results

A. Turbine Auto Spectra
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Figure 4. Narrow-band (8 Hz) turbine-internal SPL; black and green curves—total noise signature,Gyy and Gzz; red and ma-

genta curves—coherent noise using turbine-internal two-signal method,G(yz)
vv and G

(yz)
ww ; blue and cyan curves—coherent noise using

combustor-turbine two-signal method,G(xy)
vv and G

(xz)
ww ; gray curve—coherence limit,NOP = 1

2
ǫ2(Gyy + Gzz); (a): 48 % corrected

fan speed (flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 % corrected fan speed
(takeoff)

Figure 4 shows the narrow-band (8 Hz) SPL results, obtained by using two-signal source-separation techniques,
at the turbine-exit locations corresponding to the T551 and T552 sensors for the flight-idle, approach, cutback, and
takeoff conditions (48, 60, 71, and 87 percent corrected-fan-speed engine power settings) in panels (a) – (d). The
black and green curves show the total noise signaturesGyy (T551) andGzz (T552), respectively; see Fig. 3 for the
signal-sensor labeling scheme. The gray curve shows the average threshold value for the coherent output power, or
noise floor,NOP = ǫ2(Gyy +Gzz)/2. The red and magenta curves show the coherent noise,G

(yz)
vv = γ2

yzGyy and
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G
(yz)
ww = γ2

yzGzz , educed by using the signalsy andz. These two curves illustrate the coherence between the turbine-

exit-sensor signals. The blue and cyan curves show the coherent noise,G
(xy)
vv = γ2

xyGyy andG(xz)
ww = γ2

xzGzz,
extracted by using the signal pairs(x, y) and (x, z). These latter two curves illustrate the coherence between the
signals measured by the combustor sensor (CIP1) and each of the turbine-exit sensors. Allowing for the positive-
bias error inherent in two-signal methods, Fig. 4 indicates that the turbine-internal and combustor-turbine methods
both yield similar results up to a frequency of about 450 Hz. The increase in coherence seen in the turbine-internal
two-signal method curves (red and magenta) occuring at higher frequencies could be an indication of the presence of
turbine-broadband noise. However, the deviation between the source-separation results at those frequencies could also
be a consequence of an increased bias error in the combustor-turbine method. The former is the more likely scenario,
and, in agreement with the results of Hultgren and Miles,25 it is concluded that coherent combustion noise is present
for frequencies up to about 450 Hz at the turbine exit.

B. Turbine-Internal Transfer Functions
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Figure 5. Narrow-band (8 Hz) turbine-internal gain factors; magenta curves—|Hvw |; cyan curves—|Hwv |; (a): 48 % corrected fan speed
(flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 % corrected fan speed (takeoff)

Figures 5 and 6 show the turbine-internal response functions determined using Eqs. (6c) and (6d), both withδ = 0.
Figure 5 shows the gain factor and Fig. 6 shows the phase factor, both for the four engine power settings above in
panels (a)–(d). The magenta and cyan curves correspond toHvw andHwv results, respectively. These figures indicate
that the unsteady pressure field at the turbine exit is dominated by plane waves up to about 350 Hz. Furthermore, a
circumferential array with many more pressure sensors, than used in this particular configuration, would be needed to
determine the azimuthal structure of the pressure field for higher frequencies.
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Figure 6. Narrow-band (8 Hz) turbine-internal phase factors; magenta curves—arg(Hvw); cyan curves—arg(Hwv); (a): 48 % corrected
fan speed (flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 % corrected fan speed
(takeoff)

C. Turbine Transfer Function

Figure 7 shows the turbine-transfer gain factor, determined from Eq. (6a) withδ = 0. The frequency range in this
figure has been limited to 400 Hz in order not to exceed by too much the frequency range where plane waves are
dominant; panels (a)–(d) correspond to the flight-idle, approach, cutback, and takeoff engine-power settings; and the
red and blue curves correspond to|Huv| and |Huw | results, respectively. The turbine-transfer gain factor squared,
expected normally to be less than unity, is simply the acoustic transmission loss across the turbine. Two empirical
turbine transmission factors are discussed in Ref. 33.

The first one is the GE-based34 turbine-transmission-loss formula used in ANOPP26, 27

|H(f)A/GE|
2 = (∆Tdes/Tref)

−4 , (12)

whereTdes is the design-point temperature drop across the turbine andTref is the reference temperature (ambient
temperature, actual or standard sea-level value). Note that the acoustic transmission loss is essentially independent of
the engine operating condition. The second formula was developed by Pratt & Whitney4, 35 and can, with a further
simplification,33 be written as

|H(f)PW |2 =
(1 + ζ)2

0.8ζ
, (13)

whereζ is the ratio of the characteristic impedances across the turbine, i.e.ζ = ρtecte/ρticti with ρ andc denoting
density and speed of sound, respectively, and the subscripts ’te’ and ’ti’ indicating turbine exit and inlet. Both
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Figure 7. Narrow-band (8 Hz) turbine gain factors; red curves—|Huv |; blue curves—|Huw |; brown dashed line—|HA/GE |; green dashed
line—|HPW |; (a): 48 % corrected fan speed (flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback);
(d): 87 % corrected fan speed (takeoff)

empirical formulas, (12) and (13), are frequency independent and the corresponding gain factors are shown in Fig. 7
as brown and green dashed lines, respectively. In particular for frequencies larger than about 150 Hz, the Pratt &
Whitney gain factor (13) appears to be a better fit with experimental data than the ANOPP implementation (12). From
a practical point of view, this frequency range is more important than the lower-frequency range (< 150Hz) since it
is expected to contain frequencies near or at the combustion noise peak.

Figure 8 shows the far-field results in the130o direction of the three source-separation procedures carried out by
Hultgren and Miles,25 on the same EVNERT dataset as here, as well as the effects on their ANOPP predictions by
replacing the ANOPP turbine-attenuation factor by the simplified Pratt & Whitney formula. The 1/3-octave sound-
pressure-level (SPL) results are shown at the four engine power settings of 48, 60, 71, and 87 percent corrected fan
speed (flight-idle, approach, cutback, and takeoff conditions) for the 1/3-octave center frequency range of 20 to 1000
Hz. The solid lines represent the original ANOPP 1/3-octave SPL predictions for the total (dark-gray) and combustion
(red-brown) noise. The symbols correspond to results computed from the experimental time histories as described
in Ref. 25. The black squares, labeledGzz , represent the total noise signature, which is reasonably well predicted
by the original ANOPP results. The gray squares, labeled NOP, correspond to the threshold value for the coherent
output power and any combustion-noise result below these values would not be meaningful using the number of data
segments and source-separation techniques used in their work. The blue, red, and green squares correspond to the
combustion noise detected using the three methods labeled ‘2s-cip1’, ‘2s-t551’, and ‘3s’, respectively (see Ref. 25
for details). The dashed curves represent the present post-corrected ANOPP 1/3-octave SPL predictions for the total
(dark-gray) and combustion (red-brown) noise using the Pratt & Whitney acoustic turbine-transmission formula (13)
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Figure 8. Total and combustion noise 1/3-octave SPL versus 1/3-octave center frequency in the 130o direction; symbols and solid lines—
data and ANOPP predictions from Ref. 25; dashed lines—ANOPP predictions modified to use the P&W turbine-attenuation; (a): 48 %
corrected fan speed (flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 % corrected
fan speed (takeoff)

rather than the one build into ANOPP (12). It is clear from panels (a)–(c) in Fig. 8 that the total noise signature is
better predicted by the modified ANOPP results than the original ones. One can also argue that the combustion-noise
prediction is also improved by examining the source-separated results in this figure, although the situation is not as
clear for frequencies larger or equal to 400 Hz.

Figure 9 shows the turbine-transfer phase factor, determined from Eq. (6b) withδ = 0. In this figure, the frequency
range has been limited to 400 Hz in order to only slightly exceed the frequency range where plane waves are dominant;
panels (a)–(d) correspond to the flight-idle, approach, cutback, and takeoff engine-power settings; and the red and blue
curves correspond toarg(Huv) andarg(Huw) results, respectively. It can be seen that the phase changes by about
4.5 radians from 0 to 200 Hz. This indicates that in this frequency range there is a signal time delay of about 3.6 ms,
which strongly implies5, 6 that the combustion noise is dominated by indirect noise.

Figure 10 shows the ratio of the actual transfer function and the directly measurable transfer function. It clearly
indicates the error caused by the noise-to-signal ratio at the combustor location ifHxy andHxz are used as approxi-
mations for the actual combustion-noise transfer functionsHuv andHuw.
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Figure 9. Narrow-band (8 Hz) turbine phase factors; red curves—arg(Huv); blue curves—arg(Huw); (a): 48 % corrected fan speed (flight
idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 % corrected fan speed (takeoff)

IV. Summary and Conclusions

NASA/Honeywell EVNERT28 full-scale static engine test data has been analyzed by using source-separation tech-
niques in order to determine the turbine transfer of combustor noise. The true combustion-noise turbine-transfer
function was educed from the data by using a three-signal approach. The resulting gain factors were compared with
the corresponding constant values obtained from ANOPP/GE and Pratt & Whitney empirical acoustic-turbine-loss
formulas. It was found that the Pratt & Whitney formula agrees better with the experimental results for frequencies of
practical importance.

The far-field 1/3-octave SPL results in the130o direction of Hultgren and Miles25 were reexamined using a post-
correction of their ANOPP predictions for both the total noise signature and the combustion-noise component. It
was found that replacing the standard ANOPP turbine-attenuation function for combustion noise with the Pratt &
Whitney one clearly improved the total-noise predictions and also improved the combustion-noise predictions. The
latter comparison was not as conclusive as the former due to the inherent difficulty in extracting the combustion-noise
component from the total noise signature. However, the former would not be true if the combustion-noise component
predictions had not been improved by the attenuation-formula change.

Based on these results, it is recommended thatthe GECOR combustion-noise module in ANOPP be updated to
allow for a user-selectable switch between the current transmission-loss model (12) and the simplified Pratt & Whitney
formula (13).
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