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Abstract—Popular microarchitecture simulators are typically
several orders of magnitude slower than the systems they simu-
late. This leads to two problems: First, due to the slow simulation
rate, simulation studies are usually limited to the first few billion
instructions, which corresponds to less than 10% the execution
time of many standard benchmarks. Since such studies only cover
a small fraction of the applications, they run the risk of reporting
unrepresentative application behavior unless sampling strategies
are employed. Second, the high overhead of traditional simulators
make them unsuitable for hardware/software co-design studies
where rapid turn-around is required.

In spite of previous efforts to parallelize simulators, most
commonly used full-system simulations remain single threaded.
In this paper, we explore a simple and effective way to parallelize
sampling full-system simulators. In order to simulate at high
speed, we need to be able to efficiently fast-forward between
sample points. We demonstrate how hardware virtualization
can be used to implement highly efficient fast-forwarding in
the standard gem5 simulator and how this enables efficient
execution between sample points. This extremely rapid fast-
forwarding enables us to reach new sample points much quicker
than a single sample can be simulated. Together with efficient
copying of simulator state, this enables parallel execution of
sample simulation. These techniques allow us to implement a
highly scalable sampling simulator that exploits sample-level
parallelism.

We demonstrate how virtualization can be used to fast-forward
simulators at 90% of native execution speed on average. Using
virtualized fast-forwarding, we demonstrate a parallel sampling
simulator that can be used to accurately estimate the IPC of
standard workloads with an average error of 2.2% while still
reaching an execution rate of 2.0 GIPS (63 % of native) on average.
We demonstrate that our parallelization strategy scales almost
linearly and simulates one core at up to 93% of its native
execution rate, 19000x faster than detailed simulation, while
using 8 cores.

I. INTRODUCTION

Simulation is commonly used to evaluate new proposals
in computer architecture and to understand complex hard-
ware/software interactions. However, traditional simulation
is very slow. While the performance of computer systems
have steadily increased, simulators have become increasingly
complex, and their performance relative to the simulated
systems has decreased. A typical full-system simulator for a
single out-of-order (OoO) processor executes around 0.1 million
instructions per second (MIPS) on a modern processor that
peaks at several billion instructions per second per core. Even
fast, simplified, simulation modes typically execute at only 1—
10 MIPS. The slow simulation rate is a severe limitation when
evaluating new high-performance computer architectures or
researching hardware/software interactions. There is therefore
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Figure 1: Native, our parallel sampler (pFSA), and projected
execution times using gem5’s functional and detailed out-of-
order CPUs for a selection of SPEC CPU2006 benchmarks.

a need for efficient sampling simulators that are able to fast-
forward simulation at near-native speed.

Many common benchmarks take an exorbitant amount of
time to simulate in detail to completion. This is illustrated by
Figure 1 which compares execution times of native execution,
our parallel sampling method (pFSA), and project simulation
times using the popular gem5[1] full-system simulator. The low
simulation speed has several undesirable consequences: 1) In
order to simulate interesting parts of a benchmark, researchers
often fast-forward to a point of interest (POI). In this case,
fast forwarding to a new a simulation point close to the end
of a benchmark takes between a week and a month, which
makes this approach painful or even impractical. 2) Since
fast-forwarding is relatively slow and a sampling simulator
can never execute faster than the fastest simulation mode, it
is often impractical to get good full-application performance
estimates using sampling techniques. 3) Interactive use is slow
and painful. For example, setting up and debugging a new
experiment would be much easier if the simulator could execute
at more human-usable speeds.

Many researchers have worked on improving simulator per-
formance. One popular strategy has been to sample execution.
The SMARTS|[2] methodology uses periodic sampling, wherein
the simulator runs in a fast mode most of the time and switches
to a detailed simulation mode to measure performance. A
similar idea, SimPoint[3], uses stored checkpoints of multiple
samples that represent the dominant parts of an application.

In this work, we propose a simple but effective parallel
sampling methodology that uses hardware virtualization to
fast-forward between samples at near-native speed and paral-
lelization to overlap detailed simulation and fast-forwarding. We
demonstrate an implementation of our sampling methodology



for the popular gem5 full-system simulation environment.
However, the methodology itself is general and can be applied
to other simulation environments. In our experiments, we show
that our implementation scales almost linearly to close to native
speed of execution resulting in a peak performance in excess
of 4 GIPS.

To accomplish this, we extend gem5 with a new CPU
module that uses the hardware virtualization support available
in current ARM- and x86-based hardware to execute directly
on the physical host CPU. Our virtual CPU module uses
standard Linux interfaces, such as the Linux Kernel-based
Virtual Machine[4] (KVM) that exposes hardware virtualization
to user space. This virtual CPU module is similar to that of
PTLsim[5], but differs on two crucial points, both of which stem
from PTLsim’s use of the Xen para-virtualization environment.
Since PTLsim depends on Xen, it presents a para-virtualized
environment to the simulated system. This means that the
simulated system needs to be aware of the Xen environment
to function correctly and it does not simulate many important
low-level hardware components, such as interrupt timers or
IO devices. In addition, the use of Xen makes it difficult to
use PTLsim in a shared environments (e.g., a shared cluster),
which is not the case for our KVM-based implementation.
Since KVM is provided as a standard component in Linux,
we have successfully used our CPU module on shared clusters
without modifying the host’s operating system.

Having support for virtualization in gem5 enables us to
implement extremely efficient Virtual Fast-Forwarding (VFF),
which executes instructions at close to native speed. By itself,
VFF overcomes some of the limitations of traditional simulation
environments. Using VFF, we can quickly execute to a POI
anywhere in a large application and then switch to a different
CPU module for detailed simulation, or take a checkpoint
for later use. Due to the its speed, it is feasible to work
interactively with the simulator while debugging and setting
up the simulation environment.

VFF enables us to rapidly fast-forward the simulator at
near-native speed. We use this capability to implement a
highly efficient sampling simulator. We demonstrate how this
simulator can be parallelized using standard operating system
techniques, which enables us to overlap sample simulation
with fast-forwarding. We call this parallel simulator pFSA for
Parallel Full Speed Ahead. Similar parallelization techniques[6],
[7]1 have previously been applied to the Pin[8] dynamic
instrumentation engine in order to hide instrumentation costs.
However, unlike Pin-based approaches, we are not limited to
user-space profiling.

Our contributions are:

e We present a new virtfual CPU module in gem5 which
uses standard Linux interfaces and executes code at near-
native speed. We are actively working on contributing this
to the rest of the gem5 community.

o We demonstrate how hardware virtualization can be used
to implement fast and accurate simulation sampling (2.0%
IPC error on average).

o« We present a simple strategy to parallelize sampling
simulators which results in almost linear speedup to close
to native speed (63% of native execution, 2.0 GIPS on
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Figure 2: Comparison of how different sampling strategies
interleave different simulation modes.

average) for a selection of SPEC CPU2006 benchmarks.

o We present a method that estimates the accuracy loss due
to cache warming inaccuracies, and demonstrate how it
can be integrated into the sampling framework with low
overhead (adding 3.9% overhead on average).

II. OVERVIEW OF FSA SAMPLING

Until now, detailed simulation has been painfully slow.
To make simulators usable for larger applications, many
researchers[2], [9], [10], [11], [3] have proposed methods to
sample the simulation. With sampling, the simulator can run in
a faster, less detailed mode between samples, and only spend
time on slower detailed simulation for the individual samples.
Design parameters such as sampling frequency, cache warming
strategy, and fast forwarding method give the user the ability
to control the trade-off between performance and accuracy to
meet his or her needs.

SMARTSJ[2] is a well-known sampling methodology which
uses three different modes of execution to balance accuracy and
simulation overhead. The first mode, functional warming, is
the fastest mode and executes instructions without simulating
timing, but still simulates caches and branch predictors to
maintain long-lasting microarchitectural state. This mode moves
the simulator from one sample point to another and executes the
bulk of the instructions. The second mode, detailed warming,
simulates the entire system in detail using an OoO CPU model
and warms the CPU’s internal structures (e.g., load and store
buffers). The third mode, detailed sampling, simulates the
system in detail and takes the desired measurements. The
interleaving of these sampling modes is shown in Figure 2a.

SMARTS uses a technique known as always-on cache
and branch predictor warming, which guarantees that these
resources are warm when a sample is taken. This makes it
trivial to ensure that the long-lived microarchitectural state
(e.g., caches and branch predictors) is warm. However, the



overhead of always-on cache warming, which effectively
prevents efficient native execution, is significant. We trade-
off the guarantees provided by always-on cache and branch
predictor warming for dramatic performance improvements (in
the order of 1000x) and demonstrate a technique that can be
used to detect and estimate warming errors.

In traditional SMARTS-like sampling, the vast majority of
the simulation time is spent in the functional warming mode[2],
[9] as it executes the vast majority of the instructions. To reduce
the overhead of this mode, we use VFF to execute instructions
at near-native speed on the host CPU when the simulator
is executing between samples. However, we cannot directly
replace the functional warming mode with native execution
using VFF, as VFF can not warm the simulated caches and
branch predictors. Instead, we add it as a new execution mode,
virtualized fast-forward, which uses VFF to execute between
samples. After executing to the next sample at near-native
speed in the virtualized fast-forward mode, we switch to the
functional warming mode, which now only needs to run long
enough to warm caches and branch predictors. This allows us
to execute the vast majority of our instructions at near native
speed through hardware virtualization (Figure 2b). We call this
sampling approach Full Speed Ahead (FSA) sampling. With
this approach, the majority of the instructions (typically more
than 95%) now execute in the (enormously faster) virtualized
fast-forward mode instead of the simulated functional warming
mode.

Despite executing the majority of the instructions natively,
FSA still spends the majority of its time in the non-virtualized
simulation modes (typically 75%-95%) to warm and measure
sample points. To parallelize this sample simulation we need
to do two things: copy the simulator state for each sample
point (to allow them to execute independently), and advance
the simulator to the next simulation point before the previous
ones have finished simulating (to generate parallel work). We
implement such a parallel simulator by continuously running
the simulator in the virtualized fast-forward mode, and cloning
the simulator state when we want to take a sample. We then
do a detailed simulation of the cloned sample in parallel with
the continued fast-forwarding of the original execution. If we
can copy the system state with a sufficiently low overhead, the
simulator will scale well, and can reach near-native speeds. We
call this simulation mode Parallel Full Speed Ahead (pFSA)
sampling. pFSA has the same execution modes as FSA, but
unlike FSA the functional and detailed modes execute in
parallel with the virtualized fast-forward mode (Figure 2c).

Since FSA and pFSA use limited warming of caches and
branch predictors, there is a risk of insufficient warming which
can lead to incorrect simulation results. To detect and estimate
the impact of limited warming, we devise a simulation strategy
that allows us to run the detailed simulation for both the
optimistic (sufficient warming) and pessimistic (insufficient
warming) cases. We use our efficient state copying mechanism
to quickly re-run detailed warming and simulation without
re-running functional warming. This results in a very small
overhead since the simulator typically spends less than 10%
of its execution time in the detailed modes. The difference
between the pessimistic and optimistic cases gives us insight

into the impact of functional warming.

III. BACKGROUND
A. gem5: Full-System Discrete Event Simulation

Full-system simulators are important tools in computer
architecture research as they allow architects to model the
performance impact of new features on the whole computer
system including the operating system. To accurately simulate
the behavior of a system, they must simulate all important
components in the system, including CPUs, the memory system,
and the I/O and the storage. In most simulators the components
are designed as modules, enabling users to plug in new
components relatively easily.

Simulators based on discrete event simulation handle time
by maintaining a queue of events that happen at specific times.
Each event is associated with an event handler that is executed
when the event is triggered. For example, an event handler
might simulate one clock cycle in a CPU. New events are
normally only scheduled (inserted into the queue) by event
handlers. The main loop in a discrete event simulator takes the
first event from the queue and executes its event handler. It
continues to do so until it encounters an exit event or the queue
is empty. As a consequence of executing discrete events from a
queue, the time in the simulated system progresses in discrete
steps of varying length, depending on the time between events
in the queue.

gem5[1] is a discrete event full-system simulator, which
provides modules for most components in a modern system.
The standard gemS5 distribution includes several CPU modules,
notably a detailed superscalar OoO CPU module and a
simplified faster functional CPU module that can be used
to increase simulation speed at a loss of detail. The simulated
CPU modules support common instruction sets such as ARM,
SPARC, and x86. Due to the design of the simulator, all of the
instruction sets use the same pipeline models. In addition, gem5
includes memory system modules (GEMS[12] or simplified
MOESI), as well a DRAM module, and support for common
peripherals such as disk controllers, network interfaces, and
frame buffers.

In this paper, we extend gemS5 to add support for hardware
virtualization through a new virtual CPU module and leverage
the speed of this new module to add support for parallel
sampling. The virtual CPU module can be used as a drop-in
replacement for other CPU modules in gem5, thereby enabling
rapid execution. Since the module supports the same gem5
interfaces as simulated gem5 CPU modules, it can be used for
checkpointing and CPU module switching during simulation.

B. Hardware Virtualization

Virtualization solutions have traditionally been employed to
run multiple operating system instances on the same hardware.
A layer of software, a virtual machine monitor or VMM, is used
to protect the different operating systems from each other and
provide a virtual view of the system. The VMM protects the vir-
tual machines from each other by intercepting instructions that
are potentially dangerous, such as IO or privileged instructions.
Dangerous instructions are then simulated to give the software



running in the virtual machine the illusion of running in
isolation on a real machine'. Early x86 virtualization solutions
(e.g., VMware) used binary rewriting of privileged code to
intercept dangerous instructions and complex logic to handle
the mapping between addresses in the guest and host system. As
virtualization gained popularity, manufacturers started adding
hardware virtualization extensions to their processors. These
extensions allow the VMM to intercept dangerous instructions
without binary rewriting and provide support for multiple layers
of address translation (directly translating from guest virtual
addresses to host physical addresses). Since these extensions
allow most of the code in a virtual machine to execute natively,
many workloads execute at native speed.

The goals of virtualization software and traditional computer
architecture simulators are very different. One of the major
differences is how device models (e.g, disk controllers) are
implemented. Traditional virtualization solutions typically
prioritize performance, while architecture simulators focus
on accurate timing and detailed hardware statistics. Timing
sensitive components in virtual machines typically follow the
real-time clock in the host, which means that they follow
wall-clock time rather than a simulated time base. Integrating
support for hardware virtualization into a simulator such as
gem5 requires us to ensure that the virtual machine and the
simulator have a consistent view of devices, time, memory,
and CPU state. We describe these implementation details in
Section IV-A.

IV. IMPLEMENTATION

In order to implement a fast sampling simulator, we need
to support extremely fast fast-forwarding as most instructions
will be executed in the fast-forward mode. We implement rapid
fast-forwarding using hardware virtualization which executes
code natively. To further improve the performance of the
simulator, we overlap fast-forwarding and sample simulation
by executing them in parallel. This requires efficient cloning
of the simulator’s internal state, which we implement using
copy-on-write techniques. While our implementation is gem5-
specific, we believe that the techniques used are portable to
other simulation environment.

A. Hardware Virtualization in gem5

Our goal is to accelerate simulation by off-loading some
instructions executed in the simulated system to the hardware
CPU. This is accomplished by our virtual CPU module using
hardware virtualization extensions to execute code natively at
near-native speed. We designed the virtual CPU module to
allow it to work as a drop-in replacement for the other CPU
modules in gem5 (e.g., the OoO CPU module) and to only
require standard features in Linux. This means that it supports
gem5 features like CPU module switching during simulation
and runs on off-the-shelf Linux distributions.

Integrating hardware virtualization in a discrete event simula-
tor requires that we ensure consistent handling of 1) simulated

IThis is not strictly true, the virtualization software usually exposes virtual
devices that provide more efficient interfaces than simulated hardware devices.

devices, 2) time, 3) memory, and 4) processor state. First,
simulators and traditional virtualization environments both
need to provide a device model to make software believe
it is running on a real system. We interface the virtual CPU
with gem5’s device models (e.g., disk controllers, displays,
etc.), which allows the virtual CPU to use the same devices
as the simulated CPUs. Second, discrete event simulators
and traditional virtualization environments handle time in
fundamentally different ways. For example, a virtualization
environment uses real, wall-clock, time to schedule timer
interrupts, whereas a discrete event simulator uses a simulated
time base. Interfacing the two requires careful management of
the time spent executing in the virtual CPU. Third, full-system
simulators and virtualization have different memory system
requirements. Most simulators assume that processor modules
access memory through a simulated memory system, while
the virtual CPU requires direct access to memory. In order to
execute correctly, we need to make sure that simulated CPUs
and virtual CPUs have a consistent view of memory. Fourth,
the state of a simulated CPU is not directly compatible with the
real hardware, which makes it hard to transfer state between a
virtual CPU and a simulated CPU. These issues are discussed
in detail below:

Consistent Devices: The virtualization layer does not
provide any device models. A CPU normally communicates
with devices through memory mapped 10 and devices request
service from the CPU through interrupts. Memory accesses
to IO devices (and IO instructions such as in and out) are
intercepted by the virtualization layer, which stops the virtual
CPU and hands over control to gem5. In gem5, we synthesize
a memory access that is inserted into the simulated memory
system, allowing the access to be seen and handled by gemS5’s
device models. IO instructions are treated like normal memory-
mapped device accesses, but are mapped to a special address
range in gem5’s simulated memory system. When the CPU
model sees an interrupt from a device, it injects it into the
virtual CPU using KVM’s interrupt interface.

Consistent Time: Simulating time is difficult because device
models (e.g., timers) execute in simulated time, while the
virtual CPU executes in real time. A traditional virtualization
environment solves this issue by running device models in real
time as well. For example, if a timer is configured to raise
an interrupt every second, it would setup a timer on the host
system that fires every second and injects an interrupt into the
virtual CPU. In a simulator, the timer model inserts an event in
the event queue one second into the future. The simulator then
executes instructions, cycle by cycle, until it reaches the timer
event. At this point, the timer model raises an interrupt in the
CPU. To make device models work reliably, we need to bridge
this gap between simulated time and the time as perceived by
the virtual CPU.

We address the difference in timing requirements between
the virtual CPU and the gem5 device models by restricting
the amount of time the virtual CPU is allowed to execute
between simulator events. When the virtual CPU is started, it
is allowed to execute until a simulated device requires service
(e.g., raises an interrupt or starts a delayed 1O transfer). This is
accomplished by looking into the event queue before handing



over control to the virtual CPU. If there are events scheduled,
we use the time until the next event to determine how long the
virtual CPU should execute before handling the event. Knowing
this, we schedule a timer that interrupts the virtual CPU at the
correct time to return control to the simulator, which handles
the event.

Due to the different execution rates between the simulated
CPU and the host CPU (e.g., a server simulating an embedded
system), we need to scale the host time to make asynchronous
events, such as interrupts, happen with the right frequency
relative to the executed instructions. For example, when
simulating a CPU that is slower than the host CPU, we scale
time with a factor that is less than one (i.e., we make device
time faster relative to the CPU). This makes the host CPU
seem slower as timer interrupts happen more frequently relative
to the instruction stream. Our current implementation uses a
constant conversion factor, but future implementations could
determine this value automatically using sampled timing-data
from the OoO CPU module.

Consistent Memory: Interfacing between the simulated
memory system and the virtualization layer is necessary to
transfer state between the virtual CPU module and the simulated
CPU modules. First, the virtual machine needs to know where
physical memory is located in the simulated system and where
it is allocated in the simulator. Since gem3 stores the simulated
system’s memory as contiguous blocks of physical memory,
we can look at the simulator’s internal mappings and install
the same mappings in the virtual system. This gives the virtual
machine and the simulated CPUs the same view of memory.
Second, since virtual CPUs do not use the simulated memory
system, we need to make sure that simulated caches are disabled
when switching to the virtual CPU module. This means that
we need to write back and invalidate all simulated caches
when switching to the virtual CPU. Third, accesses to memory-
mapped IO devices need to be simulated. Since IO accesses
are trapped by the virtualization layer, we can translate them
into simulated accesses that are inserted into the simulated
system to access gem5’s simulated devices.

Consistent State: Converting between the processor state
representation used by the simulator and the virtualization
layer, requires detailed understanding of the simulator internals.
There are several reasons why a simulator might be storing
processor state in a different way than the actual hardware. For
example, in gem5, the x86 flag register is split across several
internal registers to allow more efficient dependency tracking in
the OoO pipeline model. Another example are the registers in
the x87 FPU: the real x87 stores 80-bit floating point values in
its registers, while the simulated x87 only stores 64-bit values.
Similar difficulties exist in the other direction. For example,
only one of the two interfaces used to synchronize FPU state
with the kernel updates the SIMD control register correctly.
We have implemented state conversion to give gem5 access to
the processor state using the same APIs as the simulated CPU
modules. This enables online switching between virtual and
simulated CPU modules as well as simulator checkpointing
and restarting.

Since our virtual CPU module integrates seamlessly with
the rest of gem5, we can use it transfer state to and from

other simulated CPU modules. This allows the virtual CPU
module to be used as a plug-in replacement for the existing
CPU modules whenever simulation accuracy can be traded off
for execution speed. For example, it can be used to implement
efficient performance sampling by fast-forwarding to points of
interest far into an application, or interactive debugging during
the setup phase of an experiment.

B. Cloning Simulation State in gem5

Exposing the parallelism available in a sampling simulator
requires us to be able to overlap the detailed simulation of
multiple samples. When taking a new sample, the simulator
needs to be able to start a new worker task (process or thread)
that executes the detailed simulation using a copy of the
simulator state at the time the sample was taken. Copying
the state to the worker can be challenging since the state of the
system (registers and RAM) can be large. There are methods
to limit the amount of state the worker[9] needs to copy, but
these can complicate the handling of miss-speculation. We
chose to leverage the host operating system’s copy-on-write
(CoW) functionality to provide each sample with its own copy
of the full system state.

In order to use the CoW functionality in the operating system,
we create a copy of the simulator using the fork system call
in UNIX whenever we need to simulate a new sample. The
semantics of fork gives the new process (the child) a lazy
copy (via CoW) of most of the parent process’s resources.
However, when forking the FSA simulator, we need to solve
two problems: shared file handles between the parent and child
and the inability of the child to use the same KVM virtual
machine that the parent is using for fast-forwarding. The first
issue simply requires that the child reopens any file it intends
to use. To address the child’s inability to use the parent’s KVM
virtual machine, we need to immediately switch the child to a
non-virtualized CPU module upon forking. Since the virtual
CPU module used for fast-forwarding can be in an inconsistent
state (e.g., when handling IO or delivering interrupts), we need
to prepare for the switch in the parent before calling fork (this
is known as draining in gem5). By preparing to exit from the
virtualized CPU module before forking, we allow the child
process to switch to a simulated CPU without having to execute
in the virtualized (KVM) CPU module.

One potential problem when using fork to copy the sim-
ulation state is that the parent and child will use the same
system disk images. Writes from one of the processes could
easily affect the other. To avoid this we configure gem5 to use
copy-on-write semantics and store the disk writes in RAM.

Our first implementation of the parallel simulator suffered
from disappointing scalability. The primary reason for this
poor scaling was due to a large number of page faults, and a
correspondingly large amount of time spent in the host kernel’s
page fault handler. These page faults occur as a result of
the operating system copying data on writes to uphold the
CoW semantics which ensure that the child’s copy of the
simulated system state is not changed by the fast-forwarding
parent. An interesting observation is that most of the cost of
copying a page is in the overhead of simply taking the page



fault; the actual copying of data is comparatively cheap. If
the executing code exhibits decent spatial locality, we would
therefore expect to dramatically reduce the number of page
faults and their overhead by increasing the page size. In practice,
we experienced much better performance with huge pages
enabled.

C. Warming Error Estimation

We estimate the errors caused by limited warming by re-
running detailed warming and simulation without re-running
functional warming. We implement this by cloning the warm
simulator state (forking) before entering the detailed warming
mode. The new child then simulates the pessimistic case
(insufficient warming), meanwhile the parent waits for the child
to complete. Once the child completes, the parent continues to
execute and simulates the optimistic case (sufficient warming).

We currently only support error estimation for caches (we
plan to extend this functionality to TLBs and branch predictors),
where the optimistic and pessimistic cases differ in the way
we treat warming misses, i.e. misses that occur in sets that
have not been fully warmed. In the optimistic case, we assume
all warming misses are actual misses (i.e., sufficient warming).
This may underestimate the performance of the simulated cache
as some of the misses might have been hits had the cache been
fully warmed. In the pessimistic case, we assume that warming
misses are hits (i.e., worst-case for insufficient warming). This
overestimates the performance of the simulated cache since
some of the hits might have been capacity misses.

V. EVALUATION

To evaluate our simulator we investigate three key character-
istics: functional correctness, accuracy of sampled simulation,
and performance. To demonstrate that the virtual CPU module
integrates correctly with gem5, we perform two experiments
that separately verify integration with gem5’s devices and
state transfer. These experiments show that we transfer state
correctly, but also uncovers several functional bugs in gemS5’s
simulated CPUs. To evaluate the accuracy of our proposed
sampling scheme, we compare the results of a traditional, non-
sampling, reference simulation of the first 30 billion instructions
of the benchmarks to sampling using a gem5-based SMARTS
implementation and pFSA. We show that pFSA can estimate
the IPC of the simulated applications with an average error of
2.0%. To investigate sources of the error, we investigate the
impact of cache warming on accuracy. Finally, we evaluate
scalability in a separate experiment where we show that our
parallel sampling method scales almost linearly up to 28 cores.

For our experiments we simulated a 64-bit x86 system
(Debian Wheezy with Linux 3.2.44) with split 2-way 64 kB L1
instruction and data caches and a unified 8-way 2MB or 8MB
L2 cache with a stride prefetcher. The simulated CPU uses
gem5’s OoO CPU model. See Table I for a summary of the
important simulation parameters. We compiled all benchmarks
with GCC 4.6 in 64-bit mode with x87 code generation
disabled?. We evaluated the system using the SPEC CPU2006

2We disabled x87 code generation in the compiler, forcing it to generate
SSE code instead, since the simulated gem5 CPUs only support a limited
number of x87 instructions.

gemS5’s default OoO CPU
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Table I: Summary of simulation parameters.

benchmark suite with the reference data set and the SPEC
runtime harness. All simulation runs were started from the
same checkpoint of a booted system. Simulation execution
rates are shown running on a 2.3 GHz Intel Xeon E5520.

SMARTS, FSA, and pFSA all use a common set of
parameters controlling how much time is spent in their different
execution modes. In all sampling techniques, we executed
30000 instructions in the detailed warming mode and 20 000
instructions in the detailed sampling mode. The length of
detailed warming was chosen according to the method in
the original SMARTS work[2] and ensures that the OoO
pipeline is warm. Functional warming for FSA and pFSA was
determined heuristically to require 5 million and 25 million
instructions for the 2MB L2 cache and 8 MB L2 cache
configurations, respectively. Methods to automatically select
appropriate functional warming have been proposed[13], [14]
by other authors and we outline a method leveraging our
warming error estimates in the future work section. Using
these parameters, we took 1000 samples per benchmark. Due
to the slow reference simulations, we limit accuracy studies to
the first 30 billion instructions from each of the benchmarks,
which corresponds to roughly a week’s worth of simulation
time in the OoO reference. For these cases, the sample period
was adjusted to ensure 1000 samples in the first 30 billion
instructions.

A. Validating Functional Correctness

For a simulation study to be meaningful, we need to be
confident that instructions executed in the simulator produce
the right results, i.e., they are functionally correct. Incorrect
execution can result in anything from subtle behavior changes
to applications crashing in the simulated system. To assess
correctness of our gem5 extensions, we rely on SPEC’s
built-in verification harness, which compares the output of
a benchmark to a reference’. In order to use this harness, we
execute all benchmarks to completion with their reference data
sets. We verify that our gem5 additions to support hardware
virtualization work correctly by running the benchmarks solely
on the virtual CPU module (devices are still simulated by
gemS5). This experiment ensures that basic features, such as the
interaction between the memory and simulated device models
work correctly, and that the experimental setup (compilers,
OS, and SPEC) is correct. We then verify that our reference

3We realize that this is not sufficient to guarantee functional correctness,
but we use SPEC’s verification suite here since it is readily available.



simulations are correct by completing and verifying them using
VFE

In the first experiment, we verify that the virtual CPU
module works correctly, including its interactions with the
virtualized hardware and the simulated system in gemS5. To
do this, we execute and verify all benchmarks using only
the virtual CPU module. In this experiment, all benchmarks
executed to completion and completed their verification runs
successfully. This demonstrates that: a) our virtual CPU module
interacts correctly with the memory system and device models
in gemS5, and, b) our simulated system and the benchmark
setup are working correctly.

In the second experiment, we evaluate the correctness of
our reference simulations. In this experiment, we simulated
all benchmarks for 30 billion instructions using the detailed
CPU module and ran them to completion using VFF. This
experiment showed that 9 out of the 29 benchmarks failed
before finishing the simulation of the first 30 billion instructions

and that another 7 failed to verify after running to completion.

In order to verify that the benchmarks that failed after executing
the first 30 billion instructions were not caused by incorrect
state transfer between the simulated CPU and the virtual CPU
module, we set up another experiment where we switched
each benchmark 300 times between the simulated CPU and
the virtual CPU module. In this experiment, all benchmarks,
with the exception of 447.dealll (which failed because of

unimplemented instructions), ran to completion and verified.
The results of these experiments are summarized in Table II.

Their results indicate that our virtual CPU module works and
transfers state correctly. Unfortunately, they also indicate that
the x86 model in gem5 still has some functional correctness
issues (in our experience, both the Alpha and ARM models
are much more reliable).

Since benchmarks that do not verify take different program
paths in the simulator and on real hardware, we exclude them
from the rest of the evaluation.

B. Accuracy

A simulator needs to be accurate in order to be useful. The
amount of accuracy needed depends on which question the user
is asking. In many cases, especially when sampling, accuracy
can be traded off for performance. In this section, we evaluate

the accuracy of our proposed parallel sampling methodology.

The sampling parameters we use have been selected to strike
a balance between accuracy and performance when estimating
the average CPI of an application.

All sampling methodologies that employ functional warming
suffer from two main sources of errors: sampling errors and
inaccurate warming. Our SMARTS and pFSA experiments
have been setup to sample at the same instructions counts,
which implies that they should suffer from the same sampling
error*. Functional warming incurs small variations in the access
streams seen by branch predictors and caches since it does not
include effects of speculation or reordering. This has can lead

4There might be slight differences when the virtual CPU module is used
due to small timing differences when delivering asynchronous events (e.g.,
interrupts).
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Figure 4: Estimated relative IPC error due to insufficient
cache warming as a function of functional warming length
for 456.hmmer and 471.omnetpp.

to a small error, which has been shown[2] to be in the region of
2%. The error incurred by these factors is the baseline SMARTS
error, which in our experiments is 1.87% for a 2 MB L2 cache
and 1.18% for an 8 MB L2 cache.

Another source of error is the limited functional warming
of branch predictors and caches in FSA and pFSA. In general,
our method provides very similar results to our gem5-based
SMARTS implementation. However, there are a few cases (e.g.,
456.hmmer) when simulating a 2 MB cache where we did not
apply enough warming. In these case the IPC predicted by
SMARTS is within, or close to, the warming error estimated
by our method (Figure 3a). A large estimated warming error
generally indicate that a benchmark should have had more
functional warming applied. Note that we can not just assume
the higher IPC since some warming misses are likely to be
real misses.

To better understand how warming affects the predicted
IPC bound, we simulated two benchmarks (456.hmmer &
471.omnetpp) with different warming behaviors with different
amounts of cache warming. Figure 4 shows how their estimated
warming error relative to the IPC of the reference simulations
shrinks as more cache warming is performed. These two
applications have wildly different warming behavior. While
471.omnetpp only requires two million instructions to reach
an estimated warming error less than 1%, 456.hmmer requires
more than 10 million instructions to reach the same goal.

C. Performance & Scalability

A simulator is generally more useful the faster it is as
high speed enables greater application coverage and quicker
simulation turn-around times. Figure 5 compares the execu-
tion rates of native execution, VFF, FSA, and pFSA when
simulating a system with a 2MB and 8MB last-level cache.
The reported performance of pFSA does not include warming
error estimation, which adds 3.9% overhead on average. The
achieved simulation rate of pFSA depends on three factors.
First, fast-forwarding using VFF runs at near-native (90% on
average) speed, which means that the simulation rate of an
application is limited by its native execution rate regardless of
parallelization. Second, each sample incurs a constant cost. The



Benchmark Verifies Verifies Verifies
in using VFF when
Reference Switching
400.perlbench 401.bzip2 416.gamess Yes Yes Yes
433.milc 453.povray 456.hmmer
458.sjeng 462.libquantum  464.h264ref
471.omnetpp 481.wrf 482.sphinx3
483.xalancbmk
410.bwaves 434.zeusmp 435.gromacs No Yes Yes
436.cactusADM 444 .namd 459.GemsFDTD
470.1bm
445.gobmk 450.soplex 454 calculix Fatal Error’  Yes Yes
429.mcf 473.astar Fatal Error?  Yes Yes
437 leslie3d Fatal Error®  Yes Yes
403.gcc Fatal Error*  Yes Yes
447.dealll Fatal Error®  Yes No
465.tonto Fatal Error®  Yes Yes
Summary: 13/29 verified, 29/29 verified  28/29 verified
9/29 fatal
1. Simulator gets stuck.
2. Triggers a memory leak causing the simulator crash.
3. Terminates prematurely for unknown reason.
4. Fails with internal error. Likely due to unimplemented instructions.
5. Benchmark segfaults due to unimplemented instructions.
6. Terminated by internal benchmark sanity check.

Table II: Summary of verification results for all benchmarks in SPEC CPU2006. This table is based on three experiments: a
reference 00O simulation that is completed using the virtual CPU module, purely running on the virtual CPU module, and
repeatedly switching between a simulated OoO CPU and the virtual CPU module.

= Reference = gem5 SMARTS == pFSA

Instructions Per Cycle

= Reference = gem5 SMARTS == pFSA

Instructions Per Cycle

(a) 2MB L2

(b) §MB L2

Figure 3: IPC for the first 30 billion instructions of each benchmark as predicted by a reference simulation compared to a
our gem5-based SMARTS implementation and pFSA. The error bars extending from the pFSA bars represent warming error

estimates.

longer a benchmark is, the lower the average overhead. Third,
large caches need more functional warming, and the longer
the functional warming, the greater the cost of the sample. As
seen when comparing the average simulation rates for a 2 MB
cache and an 8 MB cache, simulating a system with larger
caches incurs a larger overhead.

The difference in functional warming length results in
different simulation rates for 2MB and 8MB caches. While the
8MB cache simulation is slower to simulate than the smaller
cache, there is also more parallelism available. Looking at the
simulation rate when simulating a 2MB cache as a function of
the number of threads used by the simulator (Figure 6) for a

fast (416.gamess) and a slow (471.omnetpp) application, we
see that both applications scale almost linearly until they reach
93% and 45% of native speed respectively. The larger cache on
the other hand starts off at a lower simulation rate and scales
linearly until all cores in the host system are occupied. We
estimate the overhead of copying simulation state (Fork Max)
by removing the simulation work in the child and keeping
the child process alive to force the parent process to do CoW
while fast-forwarding. This is an estimate of the speed limit
imposed by parallelization overheads.

In order to understand how pFSA scales on larger systems,
we ran the scaling experiment on a 4-socket Intel Xeon E5-
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Figure 5: Execution rates when simulating a 2MB (a) and 8MB (b) L2 cache for pFSA and FSA compared to native and
fast-forwarding using the virtual CPU module.
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Figure 6: Scalability of 416.gamess (a) and 471.omnetpp (b) Figure 7: Scalability of 416.gamess (a) and 471.omnetpp (b)
running on an 2-socket Intel Xeon E5520. running on a 4-socket Intel Xeon E5-4650.

VI. RELATED WORK

4650 with a total of 32 cores. We limited this study to the Our parallel sampling methodology builds on ideas from
8MB cache since simulating a 2MB cache reached near-native three different simulation and modeling techniques: virtualiza-
speed with only 8 cores. As seen in Figure 7, both 416.gamess tion, sampling, and parallel profiling. We extend and combine
and 471.omnetpp scale almost linearly until they reach their ideas from these areas to form a fully-functional, efficient, and
maximum simulation rate, peaking at 84% and 48.8% of native scalable full-system simulator using the well-known gem5[1]
speed, respectively. simulation framework.



A. Virtualization

There have been several earlier attempts at using virtualiza-
tion for full-system simulation. Rosenblum et al. pioneered the
use of virtualization-like techniques with SimOS[15] that ran
a slightly modified (relinked to a non-default memory area)
version of Irix as a UNIX process and simulated privileged
instructions in software. PTLsim[5] by Yourst, used para-
virtualization® to run the target system natively. Due to the use
of para-virtualization, PTLsim requires the simulated operating
system to be aware of the simulator. The simulated system must
therefore use a special para-virtualization interface to access
page tables and certain low-level hardware. This also means that
PTLsim does not simulate low-level components like timers and
storage components (disks, disk controllers, etc.). A practical
draw-back of PTLsim is that it practically requires a dedicated
machine since the host operating system must run inside the
para-virtualization environment. Both SimOS and PTLsim use
a fast virtualized mode for fast-forwarding and support detailed
processor performance models. The main difference between
them and gem5 with our virtual CPU module is the support
for running unmodified guest operating systems. Additionally,
since we only depend on KVM, our system can be deployed
in shared clusters with unmodified host operating systems.

An interesting new approach to virtualization was taken by
Ryckbosch et al. in their VSim[16] proposal. This simulator
mainly focuses on IO modeling in cloud-like environment.
Their approach employs time dilation to simulate slower
or faster CPUs by making interrupts happen more or less
frequently relative to the instruction stream. Since the system
lacks a detailed CPU model, there are no facilities for detailed
simulation or auto-calibration of the time dilation factor. In
many ways, the goals of VSim and pFSA are very different:
VSim focuses on fast modeling of large IO-bound workloads,
while pFSA focuses on sampling of detailed micro-architecture
simulation.

B. Sampling

Techniques for sampling simulation have been proposed
many times before[2], [9], [10], [11], [3], [17], [18]. The two
main techniques are SimPoint[3] and SMARTS[2]. While both
are based on sampling, SimPoint uses a very different approach
compared SMARTS and pFSA that builds on checkpoints
of representative regions of an application. Such regions are
automatically detected by finding phases of stable behavior.
In order to speed up SMARTS, Wenisch et al. proposed
TurboSMARTS[9], which uses compressed checkpoints that
include cache state and branch predictor state. A drawback
of all checkpoint-based techniques is long turn-around time if
the simulated software changes due to the need to collect new
checkpoints. This makes them particularly unsuitable for many
applications, such as hardware-software co-design or operating
system development. Since pFSA uses virtualization instead
of checkpoints to fast-forward between samples, there is no

SThere have been signs of an unreleased prototype of PTLSim that supports
hardware virtualization. However, to the best of our knowledge, no public
release has been made nor report published.

need to perform costly simulations to regenerate checkpoints
when making changes in the simulated system.

SMARTS has the nice property of providing statistical
guarantees on sampling accuracy. These guarantees assure
users who strictly follow the SMARTS methodology that their
sampled IPC will not deviate more than, for example, 2%
with 99.7% confidence. Since we do not perform always-on
cache and branch predictor warming, we can not provide the
same statistical guarantees, but we achieve similar accuracy in
practice. To identify problems with insufficient warming, we
have proposed a low-overhead approach that can estimate the
warming error.

The sampling approach most similar to FSA is the one
used in COTSon [18] by HP Labs. COTSon combines
AMD SimNow[19] (a JIT:ing functional x86 simulator) with
a set of performance models for disks, networks, and CPUs.
The simulator achieves good performance by using a dynamic
sampling strategy [17] that uses online phase detection to
exploit phases of execution in the target. Since the functional
simulator they use can not warm microarchitectural state, they
employ a two-phase warming strategy similar to FSA. However,
unlike FSA, they do not use hardware virtualization to fast-
forward execution, instead they rely on much slower (10x
overhead [18] compared to 10% using virtualization) functional
simulation.

C. Parallel Simulation

There have been many approaches to parallelizing simulators.
We use a coarse-grained high-level approach in which we
exploit parallelism between samples. A similar approach was
taken in SuperPin[6] and Shadow Profiling[7], which both
use Pin[8] to profile user-space applications and run multiple
parts of the application in parallel. Shadow Profiling aims
to generate detailed application profiles for profile guided
compiler optimizations, while SuperPin is a general-purpose
API for parallel profiling in the Pin instrumentation engine. Our
approach to parallelization draws inspiration from these two
works and uses parallelism to overlap detailed simulation of
multiple samples with native execution. The biggest difference
is that we apply the technique to full-system simulation instead
of user-space profiling.

Another approach to parallelization is to parallelize the
core of the simulator. A significant amount of research has
been done on parallel discrete event simulation (PDES), each
proposal with its own trade-offs[20]. Optimistic approaches
try to run as much as possible in parallel and roll-back
whenever there is a conflict. Implementing such approaches
can be challenging since they require old state to be saved.
Conservative approaches typically ensure that there can never
be conflicts by synchronizing at regular intervals whose
length is determined by the shortest critical path between two
components simulated in parallel. The latter approach was used
in the Wisconsin Wind Tunnel[21]. More recent systems, for
example Graphite[22], relax synchronization even further. They
exploit the observation that functional correctness is not affected
as long as synchronization instructions (e.g., locks) in the
simulated system enforce synchronization between simulated



threads. The amount of drift between threads executed in
parallel can then be configured to achieve a good trade-off
between accuracy and performance.

The recent ZSim[23] simulator takes another fine-grained
approach to parallelize the core of the simulator. ZSim simulates
applications in two phases, a bound and a weave phase, the
phases are interleaved and only work on a small number of
instructions at a time. The bound phase executes first and
provides a lower bound on the latency for the simulated block
of instructions. Simulated threads can be executed in parallel
since no interactions are simulated in this phase. The simulator
then executes the weave phase that uses the traces from the
bound phase to simulate memory system interactions. This can
also be done in parallel since the memory system is divided into
domains with a small amount of communication that requires
synchronization. Since ZSim is Pin-based, ZSim only supports
user-space x86 code and does not simulate any devices (e.g.,
storage and network). The main focus of ZSim is simulating
large parallel systems.

Methods such as PDES or ZSim are all orthogonal to our
pFSA method since they work at a completely different level in
the simulator. For examples, a simulator using PDES techniques
to simulate in parallel could be combined with pFSA to expose
even more parallelism than can be exposed by PDES alone.

VII. FUTURE WORK

There are several features and ideas we would like to explore
in the future. Most notably, we would like add support for
running multiple virtual CPUs at the same time in a shared-
memory configuration when fast-forwarding. KVM already
supports executing multiple CPUs sharing memory by running
different CPUs in different threads. Implementing this in gem5
requires support for threading in the core simulator, which
is ongoing work from other research groups. We are also
looking into ways of extending warming error estimation
to TLBs and branch predictors. An interesting application
of warming estimation is to quickly profile applications to
automatically detect per-application warming settings that meet
a given warming error constraint. Additionally, an online
implementation of dynamic cache warming could use feedback
from previous samples to adjust the functional warming length
on the fly and use our efficient state copying mechanism to
roll back samples with too short functional warming.

VIII. SUMMARY

In this paper, we have presented a virtualized CPU module
for gem5 that on average runs at 90% of the host’s execution
rate. This CPU module can be used to efficiently fast-forward
simulations to efficiently create checkpoints of points of
interest or to implement efficient performance sampling. We
have demonstrated how it can be used to implement an
efficient parallel sampler, pFSA, which accurately (IPC error
of 22% and 1.9% when simulating 2MB and 8MB L2
caches respectively) estimates application behavior with high
performance (63% or 25% of native depending on cache
size). Compared to detailed simulation, our parallel sampling
simulator results in 7 000x—19 000x speedup.

ACKNOWLEDGMENTS

Initial work on hardware virtualization support in gem5 was
sponsored by ARM, where the authors would especially like to
thank Matthew Horsnell, Ali G. Saidi, Andreas Hansson, Marc
Zyngier, and Will Deacon for valuable discussions and insights.
Reference simulations were performed on resources provided by
the Swedish National Infrastructure for Computing (SNIC) at
Uppsala Multidisciplinary Center for Advanced Computational
Science (UPPMAX). This work was financed by the CoDeR-
MP project and the UPMARC research center.

REFERENCES

[1] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, D. A. Wood, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, and T. Krishna, “The gem5 Simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, Aug. 2011.

[2] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sam-
pling,” in Proc. International Symposium on Computer Architecture
(ISCA), 2003, pp. 84-95.

[3] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” in Proc. Internationla
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2002, pp. 45-57.

[4] A. Kivity, U. Lublin, and A. Liguori, “kvm: the Linux Virtual Machine
Monitor,” in Proc. Linux Symposium, 2007, pp. 225-230.

[51 M. T. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microar-
chitectural Simulator,” in Proc. International Symposium on Performance
Analysis of Systems & Software (ISPASS), Apr. 2007, pp. 23-34.

[6] S. Wallace and K. Hazelwood, “SuperPin: Parallelizing Dynamic
Instrumentation for Real-Time Performance,” in Proc. International
Symposium on Code Generation and Optimization (CGO), Mar. 2007,
pp- 209-220.

[7] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri, “Shadow
Profiling: Hiding Instrumentation Costs with Parallelism,” in Proc.
International Symposium on Code Generation and Optimization (CGO).
IEEE, Mar. 2007, pp. 198-208.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation,” in Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2005.

[9]1 T. F. Wenisch, R. E. Wunderlich, B. Falsafi, and J. C. Hoe, “Tur-

boSMARTS: Accurate Microarchiteecture Simulation Sampling in Min-

utes,” ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1,

pp. 408-409, Jun. 2005.

S. Chen, “Direct SMARTS: Accelerating Microarchitectural Simulation

through Direct Execution,” Master’s thesis, Carnegie Mellon University,

2004.

T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi,

and J. C. Hoe, “SimFlex: Statistical Sampling of Computer System

Simulation,” IEEE Micro, vol. 26, no. 4, pp. 18-31, Jul. 2006.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, ‘“Multifacet’s

General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”

ACM SIGARCH Computer Architecture News, vol. 33, pp. 92-99, 2005.

Y. Luo, L. K. John, and L. Eeckhout, “Self-Monitored Adaptive Cache

Warm-Up for Microprocessor Simulation,” in Proc. Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD),

2004, pp. 10-17.

M. Van Biesbrouck, B. Calder, and L. Eeckhout, “Efficient Sampling

Startup for SimPoint,” IEEE Micro, vol. 26, no. 4, pp. 32-42, Jul. 2006.

M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete

Computer System Simulation: The SimOS Approach,” Parallel &

Distributed Technology: Systems & Applications, vol. 3, no. 4, pp. 3443,

Jan. 1995.

F. Ryckbosch, S. Polfliet, and L. Eeckhout, “VSim: Simulating Multi-

Server Setups at Near Native Hardware Speed,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 8, pp. 52:1-52:20,

2012.

[10]

[11]

(12]

[13]

[14]

[15]

[16]



[17]

[18]

[19]

[20]

[21]

[22]

(23]

A. Falcon, P. Faraboschi, and D. Ortega, “Combining Simulation
and Virtualization through Dynamic Sampling,” in Proc. International
Symposium on Performance Analysis of Systems & Software (ISPASS),
Apr. 2007, pp. 72-83.

E. Argollo, A. Falcon, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: Infrastructure for Full System Simulation,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 1, pp. 52-61, Jan. 2009.

R. Bedicheck, “SimNow™:: Fast Platform Simulation Purely in Software,”
in Hot Chips: A Symposium on High Performance Chips, Aug. 2005.
R. M. Fujimoto, “Parallel Discrete Event Simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30-53, Oct. 1990.

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis,
and D. A. Wood, “The Wisconsin Wind Tunnel: Virtual Prototyping
of Parallel Computers,” ACM SIGMETRICS Performance Evaluation
Review, vol. 21, no. 1, pp. 48-60, Jun. 1993.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, “Graphite: A Distributed Parallel Simulator
for Multicores,” in Proc. International Symposium on High-Performance
Computer Architecture (HPCA), Jan. 2010, pp. 1-12.

D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in Proc. International
Symposium on Computer Architecture (ISCA), Jul. 2013, pp. 475-486.



	Introduction
	Overview of FSA Sampling
	Background
	gem5: Full-System Discrete Event Simulation
	Hardware Virtualization

	Implementation
	Hardware Virtualization in gem5
	Cloning Simulation State in gem5
	Warming Error Estimation

	Evaluation
	Validating Functional Correctness
	Accuracy
	Performance & Scalability

	Related Work
	Virtualization
	Sampling
	Parallel Simulation

	Future Work
	Summary
	References

