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ABSTRACT 

Peer-to-peer (P2P) networks integrate autonomous computing resources without requiring a central 

coordinating authority, which makes them a potentially robust and scalable model for providing 

federated search capability to large-scale networks of text digital libraries.  However, P2P networks 

have so far mostly used simple search techniques based on document names or controlled-

vocabulary terms, and provided very limited support for full-text search of document contents.   

This dissertation provides solutions to full-text federated search with relevance-based document 

ranking within an integrated framework of P2P network overlay, search, and evolution models.  

Previous notions of P2P network architectures are extended to define a network overlay model with 

desired content distribution and navigability.  Existing approaches to federated search are adapted, 

and new methods are developed for resource representation, resource selection, and result merging 

in a network search model according to the unique characteristics of P2P networks.  Furthermore, 

autonomous and decentralized algorithms to evolve the network topology into one with desired 

search-enhancing properties are proposed in a network evolution model to facilitate effective and 

efficient full-text federated search in dynamic environments. 

To demonstrate that the proposed solutions are both effective and practical, two P2P testbeds 

consisting of thousands of real-content text digital libraries and hundreds of thousands of 

automatically generated queries are developed.  Evaluation using these testbeds provides strong 

empirical evidence that the approaches proposed in this dissertation provide a better combination of 

accuracy, efficiency and robustness than more common alternatives.   
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NOTATION 

P An information provider 

C An information consumer 

H, h A hub 

N A neighborhood 

Q A query 

q A query term 

c A query cluster 

d A document retrieved for a query 

R A set of documents retrieved for a query 

A The set of relevant documents for a query 

r The set of relevant documents retrieved for a query 

TTL, ttl Time-To-Live field of a query message that determines the maximum number of times the 

message can be relayed in the network 

HD Hub description 

ND Neighborhood description 

F Exponential decay factor for neighborhood description 

G Background language model used for smoothing 

tf(t, P) Aggregate term frequency of a term t in provider P’s description 

tf(t, H) Aggregate term frequency of a term t in hub H’s description 

tf(t, G) Aggregate term frequency of a term t in background language model G 

P(Q) Probability of query Q 

P(P | Q) Probability of predicting provider P given query Q 

P(P) Prior probability of provider P  

P(Q | P) Probability of provider P generating query Q 

P(N | Q) Probability of predicting neighborhood N given query Q 

P(N) Prior probability of neighborhood N  

P(Q | N) Probability of neighborhood N generating query Q 

µ Smoothing parameter for Dirichlet smoothing 

E(j) E evaluation measure that combines precision and recall at rank j 

R(j) Recall (the percentage of relevant documents retrieved) at rank j 

P(j) Precision (the percentage of retrieved documents being relevant) at rank j 

b Parameter in the calculation of E measure to adjust the relative importance of recall and 

precision 

S, s Resource ranking score to estimate the likelihood of relevance of a resource 

θ Threshold of resource ranking score to determine how many top-ranked resources to 

select for further query routing 

U(θ) A linear utility function of θ used in set-based threshold learning for resource selection of 

providers by each hub 

Nrel(θ) Number of providers with relevant content whose resource ranking scores are above θ  
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Nnonrel(θ) Number of providers with no relevant content whose resource ranking scores are above 

threshold θ  

P(s ∧ rel) Probability of an information provider having resource ranking score s and containing 

relevant content 

P(s ∧ nonrel) Probability of an information provider having resource ranking score s and not containing 

relevant content 

P(s | rel) Probability of an information provider containing relevant content to have resource ranking 

score s 

P(s | nonrel) Probability of an information provider not containing relevant content to have resource 

ranking score s 

P(rel) Prior probability of an information provider to have relevant content 

KL Kullback-Leibler divergence between resource descriptions 

Tcluster Threshold for query clustering 

Tclassification Threshold for classifying a new query into existing query clusters 

Smin Minimum size of a query cluster to represent a topic of interest 

Dtop Number of top-ranked documents used to represent a query 

Nmax Maximum number of query clusters for a consumer 

Pemp(t | d) Empirically estimated probability that term t occurs in document d 

Pcore(t | d) Underlying probability that term t is generated by the language model of document d 

P(t | background) Probability that term t is generated by background (general English) model 

λ Smoothing parameter in linear interpolation smoothing 

P(t1, t2 | d) Probability that terms t1 and t2 are generated by the language model of document d 

c(t | d) Number of times that term t occurs in document d  

c(t1, t2 | d) Number of times that terms t1 and t2 occur together in document d 

ρ*  Threshold to distinguish between similar and dissimilar hubs 

Mog  Maximum number of outgoing long-range (“global”) hub connections a hub can have 

Mol Maximum number of outgoing local hub connections a hub can have 

Mi Maximum number of incoming hub connections a hub can have 

GD Graph distance (number of hops) between hubs 

CD Content distance (the inverse of content similarity) between hubs 

β Exponent to control the “distance scale” of long-range hub connections 
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n  Percentage of the providers with relevant content accumulated via the n top-ranked hubs for 
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DEFINITIONS 

Digital library  A set of resources and associated technical capabilities for creating, searching and using 

information.   

Text digital library  A digital library consisting of a collection of documents primarily in text form. 

Federated search  Search using a single interface to support finding items that are scattered among a 

distributed set of information sources or services, typically involving sending queries to a number of servers 

and then merging the results to present in an integrated, consistent, coordinated format. 

Known-item search  Search aimed to find a single instance of a known object (e.g., a particular song by a 

particular artist). 

Full-text search, full-text ranked retrieval  Search that evaluates the relevance of documents to a query 

based on the full body of their text contents and presents the list of retrieved documents in relevance-based 

ranking. 

Hub  An abstract functional unit to represent a resource with more processing power and connection 

bandwidth to provide regional directory services in the network.   

Information provider  An abstract functional unit to represent a digital library that shares (text) documents in 

the network. 

Information consumer  An abstract functional unit to represent a user with information requests in the form 

of queries. 

Leaf  An information provider or information consumer typically with limited computing and network 

resources. 

Peer  An abstract notion of a participating entity in the network.  It can be a single functional unit, or a 

combination of multiple functional units (e.g., both a provider and a consumer).   

Logical connection  A direct communication channel between a pair of peers at a protocol layer.  Information 

is exchanged in the form of messages.   

Neighbor  The peer directly connected to a peer by a logical connection. 

Degree  The number of neighbors a peer has. 

Hop  A trip a message takes from one peer to another using the logical connection between them.  The 

number of hops a message needs to travel between two peers is equal to the path length between them in the 

graph, with nodes representing peers and edges representing connections.       

Neighborhood  The set of peers that a message can reach by following the path(s) from one peer to its 

neighboring peer(s) and further traveling a number of hops. 

Overlay  A set of logical connections to organize peers in the network at a protocol layer. 

Network architecture  The design of a network which defines the functionality and responsibility of peers 

and their connections. 

Network topology  A particular instantiation of peer organization under a specific network architecture.   

Graph distance  The distance between peers in the graph used to model the network topology, which can be 

measured by the shortest path length from one peer to another. 

Content distance  The degree of dissimilarity between peers’ contents.  

Content-based locality  A property of the network topology that has short path lengths between peers with 

similar contents. 
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Interest-based locality  A property of the network topology that has a short path length between each peer 

and those whose contents are similar to its interests. 

Small-world  A property of the network topology that has a high likelihood of having a short path between 

any two peers without requiring dense connections.   

Search mechanism  The description of the process of federated search with a set of protocols for resource 

representation, resource location, and result integration. 

Resource representation  The process of discovering and representing the content covered by each resource 

(leaf, hub, or neighborhood). 

Resource description  The description of the content covered by a resource. 

Language model  A model that assigns a probability to a sequence of words by means of a probability 

distribution.  For this dissertation, it refers to the description of a resource’s content with a list of terms or 

phrases and their corresponding frequencies or probabilities.  

Resource location  The process of locating resources most appropriate for an information need based on 

resource representations. 

Result selection  The process of selecting resources most appropriate for an information need. 

Result integration  The process of integrating search results from multiple resources. 

Result merging  The process of merging multiple ranked retrieval results into a single, integrated ranked list. 

Flooding  The search mechanism that requires each peer to relay the query message it receives to all of its 

neighbors.  

Characteristic search  Search related to a user’s persistent, long-term interests. 

Uncharacteristic search  Search aimed to satisfy a user’s transient, ad-hoc information needs.  

Precision  The percentage of the retrieved documents being relevant. 

Recall  The percentage of the relevant documents retrieved. 
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C h a p t e r  1  

INTRODUCTION 

A very large number of text digital libraries1 were developed during the last decade.  Nearly all of 

them use some form of relevance-based ranking, in which term frequency information is used to 

rank documents by how well they satisfy each query.  Many of them allow free search access to 

their contents via the Internet, but do not provide complete copies of their contents upon request.  

Many do not allow their contents to be crawled by Web search engines.  In consequence, the 

contents provided by these digital libraries cannot be accessed by Web search engines such as 

Google and AltaVista that only conduct search on materials that can be copied to centralized 

repositories.  How best to provide federated search2 across such independent digital libraries is an 

unsolved problem often referred to as the “Hidden Web” problem.   

Many text digital libraries also reside in enterprise networks.  Collecting and maintaining an internal 

centralized repository is not always practical for heterogeneous, multi-vendor, or lightly-managed 

enterprise networks.  Federated search in these environments requires an effective, convenient and 

cost-efficient solution that is decentralized in nature.      

Peer-to-peer (P2P) networks integrate autonomous computing resources without requiring a central 

authority, which makes them a good choice for providing federated search capability to a large 

number of digital libraries on the Internet and in enterprise networks.  The decentralized nature of 

P2P networks also enables high robustness and high scalability, which are critical to federated 

search over large numbers of digital libraries.  To capitalize on the power and scaling properties of 

large distributed P2P systems, we were motivated to explore federated search of text digital libraries 

in P2P networks.    

1.1 Motivation 

To date, P2P networks are primarily used for file-sharing of popular music, videos, and software, or 

for distributed storage of digital archives.  The types of digital objects in these systems have 

                                                 
 
1 A digital library is “a set of resources and associated technical capabilities for creating, searching and using information” 

(Borgman 1999).  A text digital library consists of a collection of documents primarily in text form.     

2 Federated search provides a single interface to support “finding items that are scattered among a distributed collection of 

information sources or services, typically involving sending queries to a number of servers and then merging the results to 

present in an integrated, consistent, coordinated format” (Baeza-Yates and Ribeiro-Neto 1999).   
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relatively obvious or well-known naming conventions and descriptions, making it convenient to 

represent them with just a few words from a name, title, or manual annotation.  Search in these 

systems is typically known-item search, in which the goal is to find a single instance of a known 

object (e.g., a particular song by a particular artist).  For known-item search, the user is familiar 

with the object being requested, and any copy is as good as any other.  Known-item search of digital 

objects with well-known naming conventions is a task for which simple solutions suffice.  For 

example, it is common in music file-sharing applications to use matches between query terms and 

file names or identifiers to determine which files can satisfy the information request.   

To use P2P networks as a federated search layer for text digital libraries is a different scenario.  

First, text documents do not have well-known naming conventions and it is typically difficult to 

represent the content of a text document by using just a few words.  Second, search is mostly no 

longer known-item search because the user usually only has an information need in his/her mind 

instead of the identity of any particular document.  The principal goal of search becomes locating 

documents that contain relevant contents to satisfy the information need, not finding a copy of a 

specific document.  Therefore, more sophisticated solutions to search based on content are required. 

The majority of the previous research on search in P2P networks has focused on P2P networks used 

for file-sharing or distributed information storage.  As a result, the search techniques developed for 

P2P networks have so far mostly been limited to simple matching over document names, identifiers, 

or keywords from a small vocabulary (Tsoumakos and Roussopoulos 2003b) (Sakaryan et al. 2004) 

(Li and Wu 2005).  In contrast, it has already become common practice for text digital libraries 

developed during the last decade to perform full-text search, in which the full body of each text 

document is searched.  In addition, term frequency information is often used to rank documents by 

how well they satisfy each query, and the search result is presented with some form of relevance 

ranking (“full-text ranked retrieval”).  We argue that most of the recent research on P2P networks 

offers little useful guidance for providing full-text search of current text digital libraries.  Thus we 

focus on developing solutions to full-text ranked retrieval for federated search of text digital 

libraries in P2P networks.   

1.2 Challenges 

Most search techniques developed for full-text ranked retrieval assume a centralized control.  Either 

all the documents are stored in a centralized repository, or information about all the documents is 

gathered at a centralized directory service.  Traditional federated search (“distributed information 

retrieval”) only requires the aggregate directory information about each collection instead of each 

individual document.  However, a centralized directory is still assumed to store the directory 

information of all the collections.  A central authority for search purpose may be undesired in P2P 

networks due to its susceptibility to become a performance bottleneck or the target of malicious 

attacks, or because it requires IT infrastructure and resources that are unavailable or impractical in 

the environment.  Therefore, federated search in P2P networks requires new solutions to extend 
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existing techniques designed for environments with a global control in order to address the problem 

of how multiple distributed resources work autonomously and collaboratively to accomplish the 

retrieval task.    

In addition to the decentralized nature of P2P networks, another characteristic that distinguishes 

P2P networks from traditional search environments is their dynamic nature.  When peers in a 

network are permitted to arrive and depart at will, the structure of the network is under constant 

change, which affects how contents are distributed in the network and how easy it is to navigate 

from a source peer to a target peer using peer connections.  Because P2P networks are 

decentralized, peers must rely on dynamic self-organization to adjust network structures.  New 

approaches are needed to guide peer organization to achieve desired content distribution and 

network navigability.   

1.3 Contributions 

In this dissertation, we extend previous notions of P2P networks to define a P2P network overlay 

model with enhanced functionalities in network architecture, and desired content distribution and 

navigability in network topology.  Based on the network architecture extended to support full-text 

federated search, we develop a network search model to conduct effective and efficient federated 

search of text digital libraries.  A network evolution model is also proposed to describe how a P2P 

network can dynamically and autonomously evolve into one with the defined network topology to 

further improve search performance.  Our network overlay model, network search model, and 

network evolution model provide an integrated framework for full-text federated search of text 

digital libraries that provides accurate, efficient, robust, and scalable search.   

The network overlay model proposed in Chapter 3 uses hubs (directory services) to define the upper 

level or backbone of the network and leaves (digital libraries and users) to define the lower level of 

the network in a two-level hierarchy.  Different functionalities of peers lead to different types and 

properties of connections between them.  At the upper level in the hierarchy, the network has 

locational proximity of similar content areas and short global separation of dissimilar content areas 

for good navigability.  At the lower level in the hierarchy, connections between digital libraries and 

hubs are organized to form cohesive content-based clusters for desired content distribution.  In 

addition, connections between users and hubs are established based on users’ interests.  The key 

contributions of our network overlay model are i) its explicit recognition of distinctive structural 

requirements for peers with different functionalities, and ii) its effective integration of several 

network properties that can enhance search performance in a single architecture, both of which play 

critical roles in the effort to optimize the overall federated search performance of the network.   

The network search model, which is described in Chapter 4, utilizes the network architecture and 

topology defined in the network overlay model in designing a full-text search mechanism that can 

offer a better combination of accuracy and efficiency than previous approaches to federated search 
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of text digital libraries in P2P networks.  We show in detail that the network search model is not a 

simple adaptation of existing solutions to full-text ranked retrieval.  Its significance lies in our new 

development for each of the main components (resource representation, resource selection, and 

result merging) in consideration of the characteristics and requirements of federated search in P2P 

networks.  Specifically, the concept of a neighborhood is defined, and exponentially decayed 

resource descriptions of neighborhoods are used for resource selection of hubs; unsupervised 

threshold learning methods are developed for resource selection of providers; user modeling with 

adaptive query clustering is proposed to improve resource selection performance for queries 

representing persistent and long-term user interests; and Kirsch’s algorithm for result merging is 

extended to effectively merge multiple ranked lists without requiring global corpus statistics.  

The network overlay model and the network search model are most useful if we can show that there 

are decentralized algorithms capable of evolving the topology of a P2P network into one with the 

search-enhancing properties described in the network overlay model and desired by the network 

search model.  For this reason, we propose the network evolution model in Chapter 6.  Our network 

evolution model works effectively with open-domain content using an unstructured full-text 

representation, which distinguishes it from previous topology evolution approaches that are 

constrained to limited domains and representations with small or controlled vocabularies.  It adjusts 

connections dynamically to reflect frequent changes in the network without relying on a central 

control.  In addition, it puts extra effort into avoiding high system overhead on topology evolution, 

and balancing load to make the network more scalable and robust. 

This dissertation also includes extensive experimental results and analyses (Chapter 5 and Chapter 

7) to provide strong empirical evidence for the effectiveness and practicality of the proposed 

models.  The two P2P testbeds developed for evaluation are two of the largest so far consisting of 

real-content text digital libraries, showing our effort towards applying the newly developed 

approaches to real operational environments and verifying their effectiveness.   

1.4 Outline 

The rest of the dissertation is organized as follows.  Chapter 2 provides background knowledge and 

discusses related work.  Chapter 3 presents the network overlay model, including network 

architecture and network topology.  Chapter 4 describes different components of the network search 

model, i.e., resource representation, resource selection, and result merging.  Chapter 5 provides 

evaluation resources and experimental results to verify the effectiveness of the network search 

model.  The description and evaluation of the network evolution model are included in Chapter 6 

and Chapter 7 respectively.  Chapter 8 concludes the dissertation by summarizing the research 

contributions, describing their significance, and discussing open problems and potential future 

research topics.      
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C h a p t e r  2  

BACKGROUND AND RELATED WORK 

In a peer-to-peer network, a peer (also called a “node”) refers to an abstract notion of a participating 

entity in the network.  There are three different types of functional units in an information-sharing 

P2P network, namely provider which provides information, consumer which requests information, 

and service which provides functionality to facilitate efficient and effective search of relevant 

information.  A peer may function as a single functional unit or as a combination of multiple 

functional units (e.g., both as a provider and as a consumer).  Peers are organized in the network 

using the logical connections between them established at a protocol layer.  Logical connections 

serve as data channels by which information is exchanged in the form of messages between peers.  

These logical connections are not necessarily associated with the underlying physical connections in 

the network.  In this dissertation, by default “connections” refers to logical connections.    

Three components of a P2P network are essential to federated search: network architecture, search 

mechanism, and network topology.  A network architecture defines the functionality and 

responsibility of each type of functional unit as well as the relations between peers with different 

types of functional units.  A search mechanism describes the process of federated search with a set 

of protocols to specify how contents are represented and used for search (“resource 

representation”), how peers with relevant information can be located given an information request 

(“resource location”), and how search results from multiple peers are integrated before being 

presented to the user (“result integration”).  A network topology specifies a particular instantiation 

of peer organization under a specific network architecture, which can be modeled as a graph with 

nodes representing peers and edges representing connections between peers.   

In this chapter we begin by providing background knowledge in Section 2.1 about network 

architectures, search mechanisms and network topologies for federated search in P2P networks.  

Section 2.2 describes various search mechanisms developed for P2P networks based on different 

network architectures, both research-based and in popular use.  Section 2.3 discusses related work 

on constructing network topologies with certain properties to enhance the performance of federated 

search.   

In addition to existing work on federated search in P2P networks, previous research in distributed 

information retrieval has also developed solutions to full-text ranked retrieval of text digital libraries 

using a single, centralized directory service and a static structure (network topology).  Because P2P 

networks can be viewed as a particular type of distributed information retrieval environment, we 

describe related approaches to federated search in distributed information retrieval in Section 2.4.  
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2.1 Basic Components of Federated Search in P2P Networks 

The architecture, search mechanism and topology of a P2P network are closely related.  The 

network architecture determines what search mechanisms and network topologies can be supported, 

and the network topology affects how efficient and effective any particular search mechanism can 

be carried out.  In this section we present an overview of previously developed P2P network 

architectures, search mechanisms and network topologies in order to set the stage for the 

descriptions of different approaches used by existing P2P systems to federated search.    

2.1.1 Network Architecture 

Various P2P network architectures can be classified into four basic types of brokered, completely 

decentralized, hierarchical, and structured P2P architectures based on the functionalities of peers 

and the connections between them.  Brokered, completely decentralized, and hierarchical P2P 

architectures are sometimes referred to as unstructured P2P architectures in order to contrast with 

structured P2P architectures.  Figure 2.1 illustrates these P2P architectures.     

Brokered P2P architecture   

In a brokered P2P architecture, a group of peers (possibly located in the same setting) function as a 

single, centralized logical directory service (“broker”), and other peers function as information 

providers and/or consumers.  Information providers independently store their contents without 

relying on any system-wide resources and contact the centralized directory service to provide 

information about their contents.  Information consumers contact the centralized directory service to 

locate providers with contents relevant to their requests, and directly connect to these providers to 

download contents.   

Perhaps the most famous brokered P2P architecture was the original Napster music file-sharing 

system.3  Although brokered P2P architectures are vulnerable to a single point of failure, because 

they are easy to implement and control, they are still in active use (Yaga) (MusicNet) (Intel 2003). 

Completely decentralized P2P architecture   

All peers in a completely decentralized P2P network provide the same functions.  Each peer 

functions as a consumer, a provider and a directory service.  Peers independently store their 

contents.  Peers can connect with one another with minimal constraints.  A completely decentralized 

P2P architecture is sometimes called a “pure” or “flat” P2P architecture.   

                                                 
 
3 http://shumans.com/p2p-business-models.pdf 
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Completely decentralized P2P architectures are very flexible and robust, but have low scalability in 

terms of search performance.  Gnutella v0.4 is the most representative example of a completely 

decentralized P2P architecture (Gnutella v0.4). 

Hierarchical P2P architecture   

Peers in a hierarchical P2P network are typically organized into a two-level hierarchy of a lower 

level of leaves (providers and consumers) and an upper level of hubs (directory services).4  Each 

                                                 
 
4 In theory, there can be multiple levels of hubs for a large-scale P2P network, with each level of hubs providing directory 

services to the peers at the next lower level.  However, we are not aware of any hierarchical P2P systems that actually use 

more than two levels. 

Completely decentralized P2P

Hierarchical P2P Brokered P2P

Structured P2P 

   Service    Provider     Consumer 

Figure 2.1  Illustration of different P2P architectures. 
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information provider independently stores its contents.  Each hub provides directory services to a 

region of the network, and multiple hubs work collectively to cover the whole network.  Leaves 

only connect to hubs.  Hubs connect with leaves and other hubs.  It is worth noting that a 

hierarchical structure is not necessarily a tree structure.  Hierarchy here only refers to the division of 

peers into different classes or layers.   

Hierarchical P2P architectures avoid a single point of failure and thus are more robust than brokered 

P2P architectures, but the coordination between multiple directory services costs more overhead 

compared with using a single directory service.  Existing protocols or applications using 

hierarchical P2P architectures include BearShare, Edutella, Gnucleus, Gnutella2, GUESS (Daswani 

and Fisk), JXTA, KaZaA, Limewire, Morpheus, Shareaza, and Swapper.NET.5      

Structured P2P architecture   

In a structured P2P architecture, each peer is assigned a peer identifier drawn from certain key 

space.  The connections between peers are determined by the locations of their peer identifiers in 

the key space.6  For most P2P applications using structured P2P architectures, the contents provided 

in the network are partitioned based on either documents or terms.  If document partition is used, 

each document (or document reference/pointer) is associated with a key identifier, taken from the 

same key space (i.e., same number of digits).  Documents or pointers to documents with a certain 

range of keys are distributed to each peer.  Distributing documents to peers based on their keys 

implies that peers do not necessarily store their own contents and must store others’ contents 

irrespective of their interests.  Storing pointers to a set of documents in each peer’s part of the key 

space adds an extra layer of indirection for resource location, but lowers the cost of being a 

directory service and allows documents to be only stored at the original peers that provide them.  If 

term partition is used, each term is associated with a key in the key space, and each peer stores the 

inverted lists of terms whose keys fall into the peer’s part of the key space.  Each term’s inverted list 

records the list of documents (or peers) with contents containing the term.  For certain applications 

that represent queries and contents using low-dimensional feature vectors, the contents can be 

partitioned based on the positions of their vectors in the hyperspace.  Because systems having 

structured P2P architectures are generally realized through Distributed Hash Table abstractions, 

they are often referred to as DHT-based systems.   

                                                 
 
5 BearShare, http://www.bearshare.com; Edutella, http://edutella.jxta.org; Gnucleus, http://www.gnucleus.com; Gnutella2, 

http://www.gnutella2.com; JXTA, http://www.jxta.org; KaZaA, http://www.kazaa.com; Limewire, 

http://www.limewire.com; Morpheus, http://www.morpheus.com; Shareaza, http://www.shareaza.com; Swapper.NET, 

http://www.revolutionarystuff.com/swapper/. 

6 The structured P2P architecture shown in Figure 2.1 is only to illustrate that the locations of peers and the relations between 

peers in a structured P2P network are determined by the positions of their peer identifiers in the partitioned key space.  A 

structured P2P architecture does not necessarily have a cubical structure.  For example, a ring structure with connections 

along chords is a popular alternative (Stoica et al. 2001).   
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Structured P2P architectures are scalable and efficient, but their strict content placement and peer 

connections may limit peer autonomy and the types of content or search services that the network 

can provide.  For example, search in structured P2P networks is mostly restricted to known-item 

search or keyword-based search over a small, controlled vocabulary due to the difficulty to support 

full-text search, which is explained in more detail in Section 2.2.4.  Widely used structured P2P 

systems include CAN (Ratnasamy et al. 2001), Chord (Stoica et al. 2001), Pastry (Rowstron and 

Druschel 2001), and Tapestry (Zhao et al. 2004).  Additional examples of structured P2P networks 

include CFS (Dabek et al. 2001), IRIS, (Maymounkov and Mazières 2002), eDonkey, eMule, 

RevConnect, pSearch (Tang et al. 2003), and Symphony (Manku et al. 2003).   

2.1.2 Search Mechanism 

For centralized search, the locations of the resources that generate search results for a query are 

fixed and known to users since documents are stored in a centralized repository.  For federated 

search in a P2P network, where search results are generated can be different for different queries 

and unknown in advance because content dissemination is distributed.  Therefore, locating the 

resources that are most likely to contain relevant documents becomes the main problem of federated 

search.  Although blindly relaying queries using connections between peers (“flooding”) is an 

admissible approach, a huge volume of network traffic will be generated for every query, making it 

extremely inefficient and not scalable (e.g., Gnutella v0.4).  For effective and efficient resource 

location, information about the contents covered by each resource needs to be discovered.  

Unstructured P2P architectures gather this information either at a centralized directory service, or at 

multiple regional directory services for query routing.  Structured P2P architectures use this 

information to redistribute contents (or references to contents) among peers so as to fix particular 

contents (or references to contents) to specific locations.  Once relevant resources are located, an 

additional federated search problem is how to integrate search results returned by multiple resources 

into a single (ranked) list.  In summary, three basic problems need to be addressed for federated 

search in a P2P network:  

1. Resource representation:  Discovering and representing the contents covered by each resource; 

2. Resource location:  Locating resources most appropriate for an information need based on 

resource representations; and  

3. Result integration: Deciding how search results from multiple resources are integrated before 

being presented to the user that issued the information request.    

We briefly describe common approaches for each of these problems. 

Resource representation   
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For federated search in P2P networks, the basic unit of information content is typically a document.  

The commonly used representations of a document’s content are i) terms from its name or title 

(“name-based representation”), ii) keywords that are automatically extracted from the (text) 

document or manually assigned to the document (“free-text representation”), iii) terms from a 

controlled vocabulary, possibly with a hierarchical structure based on an ontology (“controlled-

vocabulary representation”), and iv) all the terms that occur in the (text) document (“full-text 

representation”).  For a full-text representation, the frequency information of how many times each 

term occurs in the document can be included.  

In addition to individual document representations, federated search in P2P networks may also 

require the description of each resource’s document collection as a whole.  Similar representations 

for individual documents can be used to represent a collection of documents (e.g., the contents of an 

information provider) by ignoring document boundaries and treating the collection as one big 

document.  Another approach is to associate terms extracted from document representations with 

the number of documents each term occurs in.   

Name-based representations are simple and work well for audio, video, and software documents 

that have well-known naming conventions (e.g., in music and movie P2P file-sharing applications), 

but they are generally not appropriate for text documents.  Free-text and controlled-vocabulary 

representations have small sizes and they can be used for both text and non-text documents.  

However, they require automatic or manual annotations of documents, which can be difficult or 

inaccurate for documents that are long and have heterogeneous contents.  Therefore, they are mostly 

used for limited-domain contents.  Full-text representations provide a much more comprehensive 

description for text documents than other representations, which makes them most suitable for P2P 

networks of text collections containing open-domain contents, but their sizes are significantly 

larger.  Different representations are appropriate in different situations.  There is no single 

representation that works best in all P2P environments.     

In brokered P2P networks, name-based, free-text, and controlled-vocabulary representations are 

used more often than full-text representations due to their size advantage.  Name-based 

representations are particularly popular because they require minimal computation, storage, and 

communication costs for resource location using the centralized directory service.  All resource 

representations are widely used for resource location in completely decentralized and hierarchical 

P2P networks.  However, because of the larger sizes and higher costs in dissemination and storage, 

full-text representations are more appropriate in hierarchical P2P networks, where resource location 

is mostly the responsibility of hubs that have more storage, processing power and connection 

bandwidth.  Name-based, free-text, and controlled-vocabulary representations can be applied in a 

straightforward manner in structured P2P networks, but full-text representations usually require 

additional processing and manipulation (Tang et al. 2004) (Tang and Dwarkadas 2004). 

Because disseminating resource representations for effective resource location usually involves 

non-trivial communication costs in P2P networks, reducing the sizes of resource representations is 
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an important issue for federated search.  When a resource representation is simply a list of terms 

without frequency information, it can be converted into numerical digits using hash functions for 

easy storage, transfer, and keyword matching (Gnutella v0.6) (Rohrs 2001) (Cuenca-Acuna and 

Nguyen 2002).  Bloom filters are widely used for this purpose.  A Bloom filter is an array of bits 

commonly used to represent a set of terms.  Multiple independent hash functions map each term 

into a set of indices and the bits at the corresponding indices of the array are set to 1.  Whether a 

term appears in the representation can be tested quickly by applying the same set of hash functions 

to the term and checking whether the bits of the Bloom filter at the generated indices are set (Bloom 

1970).  Bloom filters provide a space-efficient data structure for set membership, but may have a 

small probability of false positives, i.e., claiming that a term is a member of the set while it actually 

isn’t.  In addition, they cannot be used by common resource location algorithms that require term 

frequency information to estimate a resource’s relevance to a query.   

Resource location   

Resource location based on name-based, free-text, or controlled-vocabulary representations 

typically uses simple keyword matching algorithms to decide which resources to select for each 

query.  Full-text representations provide the potential for resource location to use more 

sophisticated algorithms based on term frequency information to estimate each resource’s 

likelihood of providing relevant information.  

In unstructured (brokered, completely decentralized, and hierarchical) P2P networks, which peer(s) 

is/are responsible for resource location depends on the chosen network architecture.  In a network 

with a brokered P2P architecture, a single, logical directory service conducts resource location.  The 

directory service maintains a catalog of all the providers’ contents in the network.  In response to a 

request issued by a consumer, it provides a list of possible matches along with the addresses of the 

providers offering the matched content.   

Resource location in both completely decentralized and hierarchical P2P networks are conducted 

collectively by query routing among neighboring peers.  The difference is that in a completely 

decentralized P2P network every peer is responsible for relaying the query message it receives to its 

neighbors (e.g., Gnutella v0.4), but in a hierarchical P2P network query routing is restricted to the 

directions of consumers to hubs, hubs to hubs, and hubs to providers (e.g., Gnutella v0.6).  A peer 

can relay a query message to all of its neighbors (“flooding”), or to a subset of its neighbors selected 

according to certain criteria (content-based or non content-based).  Each message in the network has 

a Time-To-Live (TTL) field that determines the maximum number of times (hops) it can be relayed 

in the network.  The TTL is decreased by 1 each time the message is routed to a peer.  When the 

TTL reaches 0, the message is no longer routed.  Each peer discards duplicate messages it receives.  

Sections 2.2.2 and 2.2.3 present different approaches to resource location in completely 

decentralized P2P networks and hierarchical P2P networks respectively.   



 12

In structured P2P networks, queries are converted to key identifiers, and the task of resource 

location is to locate the peers responsible for them (Ratnasamy et al. 2002).  Each peer stores 

resource representations associated with a certain range of keys, and is responsible for directing 

queries of these keys to the corresponding peers.  When a peer receives a queried key for which it is 

not responsible, it routes the query to the neighboring peer that is “nearest” in terms of some 

distance between peer identifier and key identifier.  Different DHTs explore different key spaces, 

which lead to different measures for distance between identifiers, and therefore affect how to 

choose which neighbor to relay a query during search.  Section 2.2.4 provides more details on the 

mechanisms used by various structured P2P systems for resource location.   

Result integration   

Although presenting search results in some form of relevance-based ranking is common practice for 

search in a centralized repository (e.g., Google), the search results provided by most P2P networks 

do not have relevance-based rankings.  Document retrieval at an information provider in most P2P 

networks uses Boolean keyword matching, which can only return a list of matched documents with 

a simple ranking based on how often the keywords are matched in each document’s representation, 

or other content-independent document features such as publishing dates.  In contrast, full-text 

ranked retrieval provides a relevance-based ranking of documents by using term frequency 

information from full-text representations and sophisticated term weighting schemes to estimate 

how well they each satisfy the query.  However, if multiple ranked search results are returned by 

providers, result integration becomes important and challenging because different providers use 

different corpus statistics (which are most likely skewed) to calculate relevance-based ranking 

scores, making them globally incomparable (Callan 2000).  More complex result merging 

techniques are required to merge them into a single, integrated relevance-based ranking, which are 

not provided by current P2P networks.  

2.1.3 Network Topology 

Under a specific network architecture, a network topology specifies a particular instantiation of peer 

organization in the logical protocol layer of the network.  Because network topologies greatly affect 

where peers with relevant contents are located (“content distribution”) as well as how easy it is to 

find them (“navigability”), even if the same search mechanism is used, network topologies with 

different properties may lead to different federated search performance.   

Since a network topology can be modeled as a graph with nodes representing peers and edges 

representing connections between peers, the relative positions of peers in the graph induces one 

concept of peer distance, which we refer to as graph distance.  Graph distance can be measured by 

the (shortest) path length (number of hops) from one peer to another in the graph.  Besides graph 

distance, attributes of peers such as contents or locations in the underlying physical layer of the 

network can induce other concepts of peer distance, for example, content distance based on the 
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similarity between peers’ contents, or latency distance based on the latency in the underlying 

physical network.  Certain characteristics of these concepts of peer distance can be used to describe 

some properties of network topologies that enable effective and efficient federated search.  Below 

we discuss three search-enhancing properties of network topologies recognized by previous work, 

namely interest-based locality, content-based locality, and small-world.  It is worth noting that 

these properties are not mutually exclusive, i.e., it is possible that a single network exhibits all three 

properties.   

Interest-based locality   

A network topology with interest-based locality has a short path length between each peer and those 

peers whose contents are similar to its interests.  If we refer to the distance between two peers based 

on the similarity between one’s interest and the other’s content as interest distance, then interest-

based locality means that peers with short graph distance are in short interest distance as well.  This 

way each peer’s queries expressing its interests do not need to travel far in order to locate relevant 

contents.   

Interest-based locality has been explored in the context of Web browsing and search for problems 

such as content distribution, proxy positioning, server replication, and Web caching.  By keeping 

contents closer to users (consumers) that are more likely to request them, user perceived latency as 

well as Web server load can be reduced (Krishnamurthy and Wang 2000).  There has also been 

some work on utilizing interest-based locality in P2P networks to improve search efficiency 

(Sripanidkulchai et al. 2003) (Shao and Wang 2005).     

Content-based locality   

A network topology is said to exhibit content-based locality if peers with similar contents are 

located near to one another (i.e., connected by short path lengths).  Content-based locality can be 

described as the high co-occurrence of short content distance and short graph distance between 

peers.  Because documents relevant to a given query tend to be similar to one another, content-

based locality makes locating most relevant contents efficient since they are mostly near to one 

another. 

Content-based locality has been used in completely decentralized and hierarchical P2P networks to 

improve search efficiency by locating relevant content-based clusters and reducing the search load 

on peers with unrelated contents (Crespo and García-Molina 2002a) (Schlosser et al. 2002) (Löser 

et al. 2003).  Content-based locality can also improve the robustness of federated search because 

resource representations generated from network regions with content-based locality are more 

resilient to changes in content due to peer arrivals and departures.     
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Small-world   

The small-world phenomenon refers to the property that any two individuals in the network are 

likely to be connected through a short sequence of intermediaries (Kleinberg 2000).  Previous study 

has shown that the small-world phenomenon is common to many large-scale sparse networks in the 

real world, including the popular file-sharing P2P network Gnutella v0.6 (Stutzbach and Rejaie 

2005).  We refer to these networks as small-world networks.   

The topology of a small-world network (“small-world topology”) has the properties of sparseness, 

short global separation (small diameter), and high local clustering of nodes (Watts and Strogatz 

1998).  These properties are achieved by sparsely connecting nodes that belong to different densely 

connected local clusters.  Compared with a complete graph with the same number of nodes, a small-

world topology has a much smaller number of edges (closer to O(n) than to O(n2) where n is the 

number of nodes in the graph).  The diameter of a small-world topology increases logarithmically 

with the number of nodes, which indicates that there exist short paths between every pair of nodes 

even for a large-scale network.  Compared with a random graph, a small-world topology has a 

much higher average probability of connecting two nodes given that both of them connect to the 

same third node (“clustering coefficient”).   

A small-world network topology is desirable because it not only guarantees the existence of short 

paths (graph distance) between peers without requiring a large number of connections, but also 

provides the potential of using a decentralized algorithm with only local information to find these 

short paths (Kleinberg 2000).  In contrast, in a P2P network with a random topology, although there 

exist short paths between peers, no decentralized algorithm is capable of finding them with a high 

probability.  Therefore, from a theoretical point of view, navigating from source to target can be 

efficient for federated search in a P2P network with a small-world topology, but not in a P2P 

network with a random topology.   

It is worth noting that a network with a small-world topology also exhibits good content-based 

locality if peers that form a local cluster have short content distance to each other.  Therefore, when 

local clustering is based on content distance, content-based locality may be inferred from small-

world properties.   

2.2 Related Work on Search Mechanisms in P2P Networks 

In this section we describe different search mechanisms developed for research or for operational 

P2P systems, grouped by the architectures of the systems.   
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2.2.1 Search Mechanisms in Brokered P2P Networks 

In a brokered P2P network, content dissemination is distributed, but search occurs in a centralized 

manner.  The original Napster was a representative brokered P2P network that used a name-based 

representation and Boolean keyword matching for music files.7  Each peer in the original Napster 

registered itself with a centralized server and provided a list of its shared files to the server.  All 

requests were sent to the centralized server in the form of keywords.  The centralized server 

responded to each request with a list of matched files along with the addresses of the providers 

offering these files.  Consumers directly contacted the providers to download files.   

Centralized search ensures relatively consistent coverage and speed, but it suffers from a single 

point of failure.  It also requires providers to be cooperative in providing accurate and detailed 

information about the contents they share.  Furthermore, although in theory any resource 

representations can be used in brokered P2P networks, in practice typically only name-based 

representations are used due to their simplicity and efficiency, which limits the allowed retrieval 

models and result integrations.   

2.2.2 Search Mechanisms in Completely Decentralized P2P Networks 

Gnutella v0.4 is an early example of a completely decentralized P2P architecture (Gnutella v0.4).  

Peers connect to one another with minimal constraints.  Each peer offers a minimal directory 

service by blindly relaying each request it receives to all of its neighbors (“flooding”, “breadth-first 

search”) until the request has traveled a maximally allowed distance from the initiating peer.  

Responses are sent back along the query path in reverse direction.  A consumer peer downloads 

files by directly contacting providers that responded.   

A completely decentralized P2P network is simple to build and maintain.  It easily reacts to the high 

dynamism of frequent peer arrivals and departures, which makes it quite robust.  However, because 

query flooding with a limited search horizon is used for resource location and there is no special 

consideration of network topology, a large search radius is required to guarantee a high likelihood 

of locating relevant content, which leads to low efficiency and high overhead.  The compromise 

between search accuracy and efficiency limits the self-scaling properties that motivate distributed 

P2P systems.   

Recent research provides a variety of solutions to increase search performance in completely 

decentralized P2P networks by avoiding flooding.  Most approaches can be divided into three 

categories.  The first category of approaches rely on random walks to reduce query traffic (Lv et al. 

2002).  The requesting peer sends out several query messages to a number of randomly chosen 

                                                 
 
7 The original Napster refers to the Napster peer-to-peer music-sharing service that was started in 1999 and shut down in 2001 

(http://shumans.com/p2p-business-models.pdf). 
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neighbors.  Each of these messages follows its own path, having intermediate peers relay it to a 

randomly selected neighbor at each step.  The relay of a message stops when it reaches a peer with 

relevant content or when the termination condition (e.g., based on TTL) has been satisfied.  The 

performance of random walks is highly variable, depending on network topology and the random 

choices made.  Although content replication can be used to increase the chance of locating relevant 

contents, it does not help much for requests of contents that are not so popular in the network.   

The second category of approaches improve the performance of resource location by requiring each 

peer to select a subset of its neighbors based on certain criteria to further route query messages 

(“directed breadth-first search”).  Various criteria use different knowledge or history about peers 

and their behaviors.  For example, a peer’s degree (its number of direct neighbors) is used as a 

criterion in (Adamic et al. 2001) to bias query routing towards high-degree peers, based on the 

intuition that a large number of peers can be reached quickly through high-degree peers and hence 

relevant content is likely to be located efficiently.  Each peer can also select neighbors based on 

other statistics such as the number of results received through each neighbor for past queries, the 

latency of the connection with each neighbor, or the query load at each neighbor (Yang and García-

Molina 2002).  In Adaptive Probabilistic Search, the probability of choosing a neighboring peer 

depends on the successes and failures of previous searches that were routed through that peer 

(Tsoumakos and Roussopoulos 2003a).  Some approaches explore query-dependent criteria for 

resource location.  In (Kalogeraki et al. 2002), each peer uses the past query responses from its 

neighbors to build run-time profiles for them (essentially a free-text representation), which are used 

to select those neighbors that are most likely to reach content relevant to a new query by comparing 

the query with past queries in the profiles (“intelligent search”).  Another query-dependent 

approach is for each peer to store content information about other peers, based on which it selects 

peers most likely to have contents relevant to the query.  Query Routing Protocol uses a Bloom 

filter to summarize document keywords and disseminates it in the network (Rohrs 2001).  The 

routing index of a peer records the numbers of documents for a set of topics that may be found 

along paths that begin at each neighbor (Crespo and García-Molina 2002b).  In PlanetP, each peer 

collects compact summaries about other peers’ inverted indices (Cuenca-Acuna and Nguyen 2002).  

Similarly, local indices require each peer to maintain a local index of the contents of other peers that 

exist within a predetermined range (Yang and García-Molina 2002).   

Approaches that belong to the third category use certain properties in network topologies for more 

efficient and effective resource location.  In Crespo and García-Molina’s work on Semantic Overlay 

Network (SON), each query is routed to the appropriate SON formed by peers with similar 

contents, increasing the chances that matching files will be found quickly and reducing the search 

load on peers with unrelated contents (Crespo and García-Molina 2002a).  Another similar method 

improves search performance in a completely decentralized P2P network by utilizing concept 

clusters formed by peers based on a global ontology (Schlosser et al. 2002).  (Sripanidkulchai et al. 

2003) propose to use interest-based “shortcuts” based on the presence of interest-based locality to 

improve the efficiency of search in a completely decentralized P2P network.  To find relevant 

content, a peer first queries peers that answered its previous queries and turns to a default search 
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mechanism such as flooding only if these peers cannot answer the query.  There is also research that 

explores small-world properties under completely decentralized P2P architectures.  For instance, 

(Merugu et al. 2004) show that search in the network with a small-world topology based on latency 

distance can improve the chances of locating files while decreasing the traffic load for file-sharing.  

(Sakaryan and Unger 2003) also construct a small-world topology in a completely decentralized 

P2P network to improve search performance. 

Besides the popular name-based representations for music file-sharing P2P networks, other resource 

representations are also in active use by various completely decentralized P2P networks.  For 

instance, Query Routing Protocol uses a free-text representation with a Bloom filter (Rohrs 2001).  

Routing indices (Crespo and García-Molina 2002) and the system described in (Kalogeraki et al. 

2002) with “intelligent search” mechanism use free-text representations.  A full-text representation 

plus a Bloom filter is used in PlanetP (Cuenca-Acuna and Nguyen 2002).  Semantic Overlay 

Networks (Crespo and García-Molina 2002a), Hypercube P2P (Schlosser et al. 2002), and the 

system of (Sakaryan and Unger 2003) adopt controlled-vocabulary representations.          

Although previous work demonstrates that search efficiency in completely decentralized P2P 

networks can be greatly improved by using more sophisticated search mechanisms to avoid 

flooding, the improvement is achieved at the cost of complicating the functionality and 

responsibility of each peer without considering the differences between different peers’ available 

resources.  Peers with limited processing power and connection bandwidth easily become 

bottlenecks and may cripple the whole network, especially when large-sized resource 

representations such as full-text representations are used, making completely decentralized P2P 

networks inappropriate for full-text ranked retrieval.   

2.2.3 Search Mechanisms in Hierarchical P2P Networks 

Hierarchical P2P architectures provide another approach to alleviate search overhead caused by 

query flooding.  Peers with more processing power and connection bandwidth provide distributed 

directory services for efficient and effective resource location without relying on a central authority.  

Each directory service (hub) maintains information about other hubs and providers that connect to it 

in order to direct query messages to those peers that are likely to provide or reach relevant contents, 

and shield the rest from irrelevant query traffic.  This is similar to directed breadth-first search in 

completely decentralized P2P networks.  The advantage of using a hierarchical P2P architecture is 

that resource location can be more efficient when it is conducted by peers with more computing and 

network resources so that peers that are limited in these resources won’t become bottlenecks.   

A hierarchical P2P network can also take advantage of the search-enhancing properties (described 

in Section 2.1.3) of its network topology to further improve federated search performance.  For 

example, (Löser et al. 2003) suggest that in a schema-based hierarchical P2P network, search 

efficiency can be enhanced and flooding the network with messages can be reduced if the network 
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topology exhibits content-based locality by forming semantic overlay clusters.  Each semantic 

overlay cluster is defined as a link structure from a set of providers to a particular hub based on 

schema-based clustering policies.  A history-based search and topology adaptation mechanism is 

proposed in (Shao and Wang 2005) to improve the efficiency of search in a hierarchical P2P 

network by utilizing interest-based locality.  To the best of our knowledge, no work has been done 

to explicitly use small-world properties to improve search performance in hierarchical P2P 

networks. 

Hierarchical P2P architectures easily support sophisticated search techniques that are not 

constrained to representations using controlled or small vocabularies.  Furthermore, instead of 

requiring digital libraries to cooperatively provide accurate descriptions of their contents, 

hierarchical P2P networks enable directory services to automatically discover the contents of 

(possibly uncooperative) digital libraries, which is well-matched to networks that are dynamic, 

heterogeneous, or protective of intellectual property.  However, compared with structured P2P 

networks, more peer autonomy and less restrictive content placement in hierarchical P2P networks 

cause higher system overhead on dynamic self-organization, making hierarchical P2P networks 

more flexible but less cost-efficient in terms of computation and communication.   

2.2.4 Search Mechanisms in Structured P2P Networks 

Various structured P2P systems (DHTs) can be distinguished by the mechanisms they use to 

generate key identifiers and peer identifiers, to determine peer connections, and to perform 

distributed hash table lookup for resource location.  The most well-known structured P2P systems 

include CAN, Chord, Pastry, and Tapestry.  CAN (Ratnasamy et al. 2001) embeds its key space in a 

torus with d dimensions.  Each peer is responsible for a hypercubical region of this key space, and 

its O(d) neighbors are peers responsible for the contiguous hypercubes.  O(dn1/d) hops are required 

for query routing.  Chord (Stoica et al. 2001) places peers on a one-dimensional circle.  Each peer is 

responsible for the keys whose numerical values are most closely followed by its peer identifier.  

The O(log n) neighbors of each peer include its immediate successors along the circle, and peers 

spaced exponentially around the key space.  The routing path lengths are O(log n) hops.  Similar to 

Chord, Pastry (Rowstron and Druschel 2001) uses a one-dimensional circular key space, and peers 

are responsible for keys that are closest numerically.  Each peer has O(log n) neighbors (half larger, 

half smaller in peer identifiers), and routes a queried key to its neighbor with the longest matching 

prefix, requiring O(log n) hops.  Tapestry (Zhao et al. 2004) uses SHA-1 to produce a 160-bit key 

space represented by a 40-digit hex key.  Peer identifiers are roughly evenly distributed in the key 

space.  Each peer’s neighbors has multiple levels where each level contains peers whose identifiers 

match up to a certain digit position in the key space.  A queried key is progressively routed by 

incremental suffix routing.  Similar to Chord and Pastry, each peer has O(log n) neighbors and the 

path lengths for routing are O(log n) hops. 
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A structured P2P network with document partition can be used for known-item search.  In this case, 

the queried key is the key identifier of the document to be located, and the targeted peer is the one 

that contains the document or a pointer to the document.  A structured P2P network with term 

partition can support keyword-based search.  For a query with multiple terms, the key associated 

with each query term is used to locate the peer that stores the term’s inverted list which lists 

documents or peers containing the term.  Typically simple intersection is used to combine multiple 

inverted lists, ignoring any correlation between the terms in the query.  Because the best document 

or peers for the entire query may not be among the top candidates for any of the individual query 

terms, this approach often leads to unsatisfactory search accuracy.  In addition, the communication 

cost for an intersection grows proportionally with the number of query terms and the length of the 

inverted lists.  Several approaches have been developed to remedy the problems caused by 

“factorization” by requiring each peer to store more information in addition to the inverted lists of 

the terms it is responsible for.  For example, the hybrid global-local indexing approach proposed by 

(Tang and Dwarkadas 2004) requires each peer to store the term list of each document that occurs 

in the inverted list of a term it is responsible for, so that a multi-term query can be processed locally 

without using intersection to combine the inverted lists in the global index distributed in the 

network.  The method described in (Bender et al. 2006) disseminates periodically mined term 

correlation statistics and requires each peer to store additional information for terms that are 

strongly correlated with the terms it is originally responsible for.  

For some P2P applications such as music file-sharing, queries and contents can be described by a 

small number of attribute-value pairs using low-dimensional feature vectors for representations.  

There has been some work on using a KD-tree to partition such low-dimensional content spaces, 

and to distribute the tree structure in the P2P network with a DHT architecture (Gao 2004).  Range 

and simple similarity queries can be supported by locating the right “cells” in the partitioned 

hyperspace for the requested feature vectors.  A small number of peers serve as rendezvous points 

to avoid message flooding.  Load balancing is used to avoid overloading these rendezvous points.   

Known-item search in document-partitioned structured P2P networks uses name-based resource 

representations.  Keyword-based search in item-partitioned structured P2P networks can be based 

on free-text, controlled-vocabulary, or full-text representations.  However, because it adopts global 

indexing in distributed environments, the high communication cost of index updating, especially for 

full-text representations, may limit its use.  In addition, the skewed corpus statistics each peer has as 

a result of term partition lead to globally incomparable ranking scores, making result integration of 

relevance-based rankings ineffective if not impossible.  Structured P2P networks with tree-based 

partitioning (Gao 2004) work well for search over low-dimensional feature representations.  

However, the costs of searching and dynamically organizing network structures in these networks 

are too high for full-text search because full-text search requires a much larger number of 

dimensions for resource representation.    
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2.3 Related Work on Network Topologies in P2P Networks 

This section discusses related work on constructing P2P network topologies with the search-

enhancing properties described in Section 2.1.3.   

2.3.1 Network Topologies with Interest-Based Locality 

Work by (Ramanathan et al. 2002) moves a peer closer to those that more frequently responded 

successfully to its past information requests in order to improve resource location performance for 

future queries.  In the work described in (Sripanidkulchai et al. 2003), a loose topology structure on 

top of the existing topology of a completely decentralized P2P network is constructed to utilize 

interest-based locality.  Each peer establishes “interest shortcuts” to other peers based on their 

responses to its earlier information requests.  Interest-based locality is also used in (Shao and Wang 

2005) to construct a BuddyNet topology structure on top of the topology of a hierarchical P2P 

network.  The “buddies” of each peer are peers that have the highest probabilities of answering its 

future queries based on past query statistics.  Because none of these approaches explicitly 

distinguish between the different interests of a user (e.g., sports versus music), their effectiveness 

will be negatively affected when the user has multiple distinct interests or when the user has 

different short-term and long-term interests. 

2.3.2 Network Topologies with Content-Based Locality 

One approach to constructing a network topology with content-based locality is to cluster peers into 

explicitly defined content-based clusters and establish connections based on cluster memberships.  

For example, (Crespo and García-Molina 2002a) propose to use a global classification hierarchy to 

cluster peers into one or more Semantic Overlay Networks (SONs), and require peers to connect to 

other peers that belong to the same SONs in a completely decentralized P2P network.  Another 

similar method partitions the contents in the network into concept clusters based on a global 

ontology and organizes peers using the hypercube network topology (Schlosser et al. 2002).  In a 

hierarchical P2P network, each hub can be associated with a content-based cluster and providers 

that belong to a cluster connect to the corresponding hub.  For instance, in  (Löser et al. 2003), each 

hub in a schema-based hierarchical P2P network is associated with a semantic overlay cluster, and 

matches an explicit clustering policy predefined by a human expert against the content model of a 

provider in order to decide independently whether to accept the provider into its cluster.  Both the 

provider’s content model and clustering policies are schema-based.  The content model of each 

provider is broadcast to all the hubs in the network.     

An alternative way to establish content-based locality is to use implicit content-based clusters, each 

of which is formed by peers with similar contents.  For example, the algorithm proposed in 

(Khambatti et al. 2002) enables each peer in a completely decentralized P2P network to discover a 

sufficient number of other peers with similar contents by collecting the content information of its 
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direct neighbors and their direct neighbors (one level of indirection).  An algorithm that enables 

peers to self-organize into content-based clusters in a hierarchical P2P network is proposed in 

(Asvanund 2004).  Starting from a randomly constructed network topology, each peer (hub or 

provider) actively seeks out new peers and evaluates its content-based similarity to them and 

replaces its existing neighbors with those peers that are more similar in content.         

Using a global classification hierarchy or ontology to explicitly define content-based clusters 

assumes that the content space can be partitioned exhaustively into a number of content areas, and 

the annotations of document collections are available, which are usually not the case with text 

digital libraries containing heterogeneous, open-domain contents.  In addition, this approach 

assumes that the classification hierarchy or ontology will distribute items fairly evenly, which 

means that it must be well-matched to the contents available in the network, a condition difficult to 

satisfy for open-domain contents in dynamic networks.  Constructing a network topology with 

content-based locality by linking members of implicit content-based clusters does not restrict the 

contents in the network to be limited-domain.  However, compared with explicitly defined content-

based clusters, the discovery of implicit content-based clusters generally requires greater 

computation and communication, which may become a burden for peers with limited resources.  In 

addition, the discovery may be slow when it relies on random walks to locate peers with similar 

contents. 

2.3.3 Network Topologies with Small-World Properties 

Given a concept of peer distance, a network topology with small-world properties can be 

constructed by connecting each peer to several peers in short distance (“close” peers) and a few 

peers in relatively long distance (“remote” peers).  Different methods vary in how peers discover 

their close and remote peers, and how they determine which close and remote peers to connect to.  

Using Watts and Strogatz’s “re-wired ring lattice” model, each peer is assumed to know its content 

distance to any other peer so that it chooses its k closest peers for a small constant k to establish 

local connections and randomly chooses from its remote peers with a uniform distribution for long-

range connections (Watts and Strogatz 1998).  Kleinberg argues that a network topology with a 

uniform distribution over remote peers for long-range connections does not provide sufficient latent 

navigational “cues” for a decentralized algorithm to find the short paths between peers using only 

local information (Kleinberg 2000).  In his d-dimensional lattice model, the probability of 

establishing a long-range connection between two peers is inversely related to their content distance 

using an “inverse rth-power distribution”.  The resulting power-law distribution of connection 

lengths8 provides the right mix of long-, medium-, and short-range connections in the topology for 

the decentralized algorithm to quickly navigate from source to target.   

                                                 
 
8 The length of a connection is defined as the content (or latency) distance between the two connected peers. 
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Another approach to constructing a small-world topology is to rewire existing connections in the 

network so that the topology can converge to one with a desired distribution of connection lengths.  

For example, the rewiring process proposed in (Manna and Kabakcioglu 2003) repeatedly selects a 

random pair of connections and rewires them to reduce the total length of the pair but with the 

constraint that the out-degree and in-degree of each peer are precisely maintained. The resulting 

network has a small diameter as well as a large clustering coefficient, and the distribution of 

connection lengths has a stretched exponential tail.  Inspired by surfers’ behavior on the Web to 

update the outgoing links from their home pages, (Clauset and Christopher 2004) describe a 

rewiring process to update during each round the long-range connection of a random source peer if 

its path to a random destination peer is longer than a threshold.  Based on the same finite-

dimensional lattice model as used by Kleinberg, the paper claims that the network can converge to a 

topology with a power-law distribution of connection lengths from a range of initial distributions.  

There are also network evolution algorithms that construct a small-world topology without relying 

on global knowledge or rigorous network models.  A network evolution algorithm that constructs a 

small-world topology adaptively using only local information at each peer is proposed in (Sakaryan 

and Unger 2003).  Each peer obtains local knowledge about the network by analyzing previous 

search message chains and uses this information to update its local and long-range connections.  In 

the topology evolution algorithm described in (Merugu et al. 2004), each peer adaptively moves to 

the appropriate location in the topology by selecting “better” neighbors (several closest peers and a 

few random peers) repeatedly according to its local view of the network.  Peers obtain their local 

knowledge of the network by measuring their latency distances to peers that are located within two 

hops.   

Among the algorithms described above, (Watts and Strogatz 1998) and (Kleinberg 2000) require 

global knowledge of the content distance from each peer to any other peer, which may be difficult 

to acquire in real P2P environments.  Although the rewiring processes proposed in (Manna and 

Kabakcioglu 2003) and (Clauset and Christopher 2004) can converge to a small-world topology, the 

convergence may be quite slow for large-scale P2P networks.  (Sakaryan and Unger 2003) and 

(Merugu et al. 2004) select remote peers uniformly instead of using a power-law distribution, so the 

topology constructed using either algorithm does not guarantee a desired distribution of connection 

lengths in the network for good navigability.  Topology evolution algorithms based on local 

information such as (Sakaryan and Unger 2003) and (Merugu et al. 2004) work well in the face of 

dynamic peer arrivals and departures.  Direct applications of the other algorithms mentioned in this 

section to dynamic environments are unlikely to be successful due to their requirements of global 

information and/or assumptions about rigorous network models.  
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2.4 Related Work on Full-Text Search of Text Digital Libraries 

Prior research on full-text federated search of text digital libraries (also called “distributed 

information retrieval” in the research literature) identifies three problems that must be addressed 

(Callan 2000): 

1. Resource representation: Discovering the contents covered by each digital library (“resource 

description”); 

2. Resource selection:  Deciding which digital libraries are most appropriate for an information 

need based on their resource descriptions; and 

3. Result merging:  Merging ranked retrieval results from a set of selected digital libraries. 

A single, centralized directory service is responsible for acquiring resource descriptions of the 

digital libraries it serves, selecting the appropriate digital libraries for a given query, and merging 

the retrieval results from selected digital libraries into a single, integrated ranked list.  Therefore, 

federated search in traditional distributed information retrieval is essentially search in a brokered 

P2P network that has just one directory service.  Solutions to all three problems have been 

developed in distributed information retrieval.  We briefly review some of them below. 

2.4.1 Resource Representation 

For full-text search, the typical format of a resource description includes a list of terms with 

corresponding collection term frequencies (“collection language model”), and corpus statistics such 

as the total number of terms and documents in the collection.  Resource representation deals with 

the problems of acquiring information about terms, frequencies, and collection sizes from digital 

libraries. 

Different techniques for acquiring resource descriptions require different degrees of cooperation 

from digital libraries.  STARTS is a cooperative protocol that requires every digital library to 

provide an accurate resource description to the directory service upon request (Gravano et al. 1997).  

STARTS is a good solution in environments where cooperation can be guaranteed.  However, in 

environments where digital libraries may not cooperate or may have an incentive to cheat 

(“uncooperative environments”), STARTS cannot be used to acquire accurate resource descriptions. 

Query-based sampling is an alternative approach to acquiring resource descriptions without 

requiring explicit cooperation from digital libraries.  The resource description of a digital library is 

constructed by sampling its documents via the normal process of submitting queries and retrieving 

documents.  Query-based sampling has been shown to acquire fairly accurate resource descriptions 

using a (fixed) small number of queries and documents in distributed information retrieval 
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environments (Callan and Connell 2001).  Recently several variations to the basic query-based 

sampling algorithm have been proposed to improve the quality of sampling by adaptively adjusting 

the numbers of sampling queries and documents from digital libraries based on the estimated 

quality of existing samples (Caverlee et al. 2006).          

Capture-Recapture (Liu at al. 2002) and Sample-Resample (Si and Callan 2003a) are two methods 

of estimating the total number of documents of an uncooperative digital library.  Experimental 

results show that in most scenarios, Sample-Resample is more accurate and has less communication 

costs than the Capture-Recapture method (Si and Callan 2003a).  Two new methods of estimating 

collection sizes in uncooperative distributed environments, namely “Multiple Capture-Recapture” 

and “Capture-History”, have been proposed recently (Shokouhi et al. 2006).  Evaluation results 

across several collections demonstrate that they provide a closer estimate of collection sizes than 

previous methods, and require less information than the Sample-Resample technique.      

2.4.2 Resource Selection 

Resource selection aims to select a small set of resources that contain many documents relevant to 

the information request.  Typically resource selection ranks resources by their likelihood of 

returning relevant documents, and selects the top-ranked resources to process the information 

request.   

Resource selection algorithms such as CORI (Callan et al. 1995) (Callan 2000), CVV (Yuwono and 

Lee 1997), and Kullback-Leibler (K-L) divergence-based (Xu and Croft 1999) algorithms use 

techniques adapted from document retrieval for resource ranking.  They treat resource 

representations as big documents without explicitly considering individual documents within each 

resource.  CORI uses a Bayesian inference network model with an adapted Okapi term frequency 

normalization formula to rank available resources.  CVV assigns higher weights to terms that better 

distinguish different resources and ranks resources by the sum of the weighted document 

frequencies of query terms.  The K-L divergence-based resource selection algorithm ranks 

resources by the K-L divergence between query language model and the unigram language model 

of each resource.   

The hierarchical database sampling and selection algorithm (Ipeirotis and Gravano 2002) and the 

shrinkage-based resource selection algorithm (Ipeirotis and Gravano 2004) use base algorithms 

such as CORI to conduct resource selection but provide a better way to smooth the word 

distribution in resource representations.   

Resource selection algorithms that consider individual documents within each resource include 

vGlOSS (Gravano and García-Molina 1995) (Gravano et al. 1999), DTF (the decision-theoretic 

framework for resource selection) (Nottelmann and Fuhr 2003), ReDDE (Si and Callan 2003a), and 

the unified utility maximization framework for resource selection (Si and Callan 2004b).  These 
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algorithms rank resources by directly estimating the amount of relevant documents from each 

resource for a given query.  Additional statistics or training data are required for such estimation.  

For example, vGlOSS needs from each resource information about the sum of each term’s weights 

in its documents.  One variant of DTF, named DTF-sample, uses sample documents to estimate 

how relevant documents are distributed among the available resources.  Another variant, DTF-

normal, models the distribution of document scores from a resource with normal distribution and 

maps document scores to probability of relevance using a function learned with user relevance 

feedback.  ReDDE and the unified utility maximization framework for resource selection rely on 

sample documents in the centralized sample database obtained using query-based sampling to 

estimate the relevance of each resource.         

Resource selection algorithms such as query clustering/RDD (Voorhees et al. 1995) and lightweight 

probes (Hawking and Thistlewaite 1999) use training queries to obtain information from resources 

for ranking.  Given a query, the query clustering/RDD algorithm ranks resources based on the 

distribution of human-judged relevant documents for similar training queries.  The lightweight 

probes method broadcasts two-word subsets of user queries to resources to obtain query term 

statistics, which are used for ranking these resources.   

Applying the above resource selection algorithms in brokered P2P networks is straightforward.  But 

for other P2P networks that rely on multiple, regional directory services to conduct resource 

selection, each directory service not only is responsible for selecting among information providers 

in its own region, but also needs to participate in the work of locating the right directory services 

across the network.  Most existing resource selection algorithms are developed for using a single, 

centralized directory service to select among multiple databases, which are not directly applicable to 

selection of directory services.  The resource selection algorithm of hGlOSS (Gravano and García-

Molina 1995) uses a higher-level server to select multiple lower-level directory services based on 

their summaries.  However, global knowledge is required to organize directory services into a tree-

style hierarchy, which may not be practical for full-text federated search in large-scale, dynamic 

P2P networks.  Therefore, new development is needed for resource selection according to the 

unique characteristics of P2P networks.   

Which resource selection algorithms to choose as the basis of new development largely depends on 

the trade-off between performance and cost.  Compared with resource selection algorithms that 

either rely on human relevance judgments (Voorhees et al. 1995) (Hawking and Thistlewaite 1999) 

or require much more information from resources in order to obtain better relevance estimates 

(Ipeirotis and Gravano 2002) (Ipeirotis and Gravano 2004) (Nottelmann and Fuhr 2003) (Si and 

Callan 2003a) (Si and Callan 2004b), simple resource selection algorithms such as the CORI 

(Callan et al. 1995) (Callan 2000) and K-L divergence-based (Xu and Croft 1999) algorithms have 

an advantage for federated search in P2P networks because they require simpler resource 

representations and less communication cost.  In addition, previous studies show that these two 

algorithms are quite robust and effective in different experiment environments (French et al. 1999) 

(Xu and Croft 1999) (Craswell et al. 2000).  However, if the higher communication cost incurred by 
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acquiring more information from resources can be tolerated in exchange for higher search accuracy, 

then resource selection algorithms such as ReDDE (Si and Callan 2003a) can be extended to 

federated search in P2P networks.   

2.4.3 Result Merging 

Several result merging algorithms have been proposed in distributed information retrieval (Kirsch 

1997) (Callan 2000) (Le Calv and Savoy 2000) (Si and Callan 2003b).  One approach is based on 

normalizing resource-specific document scores into resource-independent document scores.  The 

CORI merging algorithm uses a linear combination of digital library scores and document scores to 

normalize the scores of the documents from different digital libraries (Callan 2000).  The intuition 

is to favor documents from digital libraries with high scores and also to enable high-scoring 

documents from low-scoring digital libraries to be ranked highly.  The relative weights in the linear 

combination are set empirically based on query-independent heuristics.  The work of (Le Calv and 

Savoy 2000) uses logistic regression to learn resource-specific query-independent merging models 

to normalize document scores, but relevance judgments are required for training.  The Semi-

Supervised Learning result merging algorithm uses the documents obtained by query-based 

sampling as training data to learn score normalizing functions on a query-by-query basis.  It is 

shown to work well with a variety of resource selection and document retrieval algorithms and is 

the current state-of-the-art for result merging in distributed information retrieval (Si and Callan 

2003b).       

Another approach to result merging is recalculating document scores at the directory service.  

Document scores can be recalculated at the directory service by downloading all the documents in 

the retrieval results from selected resources, indexing them, and re-ranking them using a document 

retrieval algorithm.  Kirsch’s algorithm (Kirsch 1997) allows very accurate normalized document 

scores to be determined without the high communication cost of downloading by requiring each 

resource to provide summary statistics for each of the retrieved documents, but global corpus 

statistics are required in score recalculation.  (Viles and French 1995) show in their work that partial 

dissemination of global corpus statistics can still enable effective result merging.  (Craswell et al. 

1999) use a reference statistics database containing all the relevant statistics for some set of 

documents to substitute corpus statistics and demonstrate its effectiveness. 

In P2P environments where digital libraries often vary widely in their sizes and contents, the CORI 

merging algorithm (Callan 2000) is not likely to work well due to its resource-independent and 

query-independent linear weights for score normalization.  The human-judged training data required 

by learning logistic merging models (Le Calv and Savoy 2000) may not be easily available, and the 

high communication cost associated with constructing the centralized sample database to generate 

the required training data makes the Semi-Supervised Learning result merging algorithm (Si and 

Callan 2003b) undesirable in P2P networks that are cautious about bandwidth usage.  Because 

disseminating global corpus statistics also involves high communication cost in distributed 
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environments, the benefit of using Kirsch’s algorithm for result merging (Kirsch 1997) may not 

offset its cost.  Result merging in P2P networks desires an algorithm that can work effectively with 

minimum additional training data and communication cost, for which none of existing result 

merging algorithms directly qualify.    

2.5 Summary 

This chapter first provides background knowledge on the basic components of federated search in 

P2P networks, namely network architecture, search mechanism, and network topology.  A network 

architecture defines peer functions and relations associated with federated search.  It determines the 

search mechanisms and network topologies that can be supported in the network.  Basic network 

architectures include brokered, completely decentralized, hierarchical, and structured P2P 

architectures.  A brokered P2P architecture uses a single, centralized directory service, which is 

simple, efficient, and easy to control, but less robust and not appropriate for distributed 

environments without the support of a central IT infrastructure.  A completely decentralized P2P 

architecture requires each peer to provide directory services, which is robust and easy to deploy in 

distributed environments, but less efficient.  A hierarchical P2P architecture relies on multiple 

collaborative regional directory services, which combines the strengths of brokered and completely 

decentralized P2P architectures, but requires extra system overhead for collaboration among 

directory services.  A structured P2P architecture uses a distributed hash table for directory services, 

which is efficient, but restrictive and less flexible.      

A search mechanism specifies the activities required for search, which mainly includes representing 

contents (resource representation), locating relevant resources (resource location), and integrating 

results (result integration).  Representations with small sizes such as name-based, free-text, and 

controlled-vocabulary representations are widely used in all P2P architectures.  Adopting full-text 

representations is common in completely decentralized and hierarchical P2P architectures, but rare 

in brokered P2P architectures, and it requires additional processing in structured P2P architectures.  

Resource location uses centralized mapping in brokered P2P networks, message passing in 

completely decentralized and hierarchical P2P networks, and distributed hash table lookup in 

structured P2P networks.  Result integration in existing P2P networks has so far relied on simple 

methods based on the frequency of term matching or content-independent features, and hasn’t 

provided any solution to relevance-based result integration.  

A network topology describes how peers are connected in the network.  It affects the effectiveness 

and efficiency of any particular search mechanism.  Previous work has discovered three properties 

of network topologies that can enhance the performance of federated search: interest-based locality, 

content-based locality, and small-world.  Interest-based locality puts a peer near to those peers 

whose contents are similar to its interests so that its typical queries only need to travel a short 

distance to locate relevant contents.  Content-based locality keeps peers with similar contents near 

to one another to make locating most relevant contents efficient.  Small-world properties enable 
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short path lengths between any pair of peers and provide good navigability for efficient query 

routing.    

Following the overview of the basic components of federated search, previously developed 

approaches to search mechanisms and network topologies are reviewed, and their strengths and 

weaknesses for search in various P2P environments are pointed out.  Despite the development of 

several main ingredients, no existing work has provided a complete recipe for full-text ranked 

retrieval in P2P networks.  The study of these approaches inspired our development of network 

architecture (network overlay model), search mechanism (network search model), and network 

topology (network overlay model and network evolution model) for full-text federated search.  

The development of our search mechanism for full-text federated search in P2P networks also 

benefits from previous research on full-text ranked retrieval using a single, centralized directory 

service (“distributed information retrieval”).  Viewing full-text federated search in P2P networks as 

distributed information retrieval in a particular type of environment with possibly multiple directory 

services, we use the techniques developed for traditional distributed information retrieval as a 

starting point, and further introduce new methods to fit the solutions to the characteristics and 

requirements of full-text federated search in P2P networks.    
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C h a p t e r  3  

NETWORK OVERLAY MODEL 

A network overlay model describes the functionalities and organization of peers in the network at a 

protocol layer using a network architecture and a network topology.  We develop our network 

overlay model for full-text federated search based on a hierarchical P2P architecture due to the 

following reasons.  First, a hierarchical P2P architecture uses multiple regional directory services 

(hubs) to work collectively to cover the network without relying on a central authority.  Therefore, it 

is more appropriate than a brokered P2P architecture for distributed environments that lack the 

support of a central IT infrastructure but need practical search solutions to full-text ranked retrieval.  

Second, because full-text search and peer self-organization involve non-trivial computation and 

communication costs, sufficient processing power and connection bandwidth are necessary for 

peers to perform the duties of directory services.  Hierarchical P2P architectures rely on peers with 

more power and bandwidth to conduct directory services.  By concentrating most processor and 

bandwidth usage at a few heavy-duty peers, peers with limited computing and network resources 

can be relieved of the burden of directory services, and the overall network traffic can be reduced.  

Dedicating some peers to directory services also enables sophisticated techniques to be applied for 

effective and efficient search, and provides more opportunities for peers to learn about the network 

and self-organize into desired network topologies.  Therefore, hierarchical P2P architectures 

provide a better choice than completely decentralized P2P architectures.  Third, because structured 

P2P architectures use distributed hash tables to distribute inverted lists among peers, and require 

multiple inverted lists from multiple peers to be intersected for multi-term queries, it is difficult for 

them to support effective and efficient full-text search with relevance-based result integration.  In 

contrast, the flexibility of hierarchical P2P architectures allows existing techniques to be adapted 

and new approaches to be developed for full-text ranked retrieval in a relatively straightforward 

manner.   

In this chapter, we present the network overlay model, based on which our network search model 

and network evolution model are developed.  Within the network overlay model, the network 

architecture is described first, followed by the network topology. 

3.1 Network Architecture  

In this section, we describe in detail the extended hierarchical P2P architecture designed for full-text 

federated search, emphasizing the enhanced functionality of each type of functional unit (consumer, 

provider, directory service), as well as the new characteristics of network connections. 



 30

3.1.1 Functional Units 

As in the basic hierarchical P2P architecture, our hierarchical P2P architecture consists of two types 

of peers, organized into two levels: a lower level of leaves and an upper level of hubs.  A peer 

located at the leaf level can be a provider, a consumer, or a combination of both.  A peer located at 

the hub level is a directory service.  As is common in most operational and research P2P systems, 

peers are assumed to be honest and cooperative.  It is worth noting that the general framework 

described in this dissertation for full-text federated search also applies to environments where 

digital libraries (information providers) are not cooperative or have an incentive to cheat, although 

different approaches are required for acquiring resource descriptions and result merging (Lu and 

Callan 2005) (Lu and Callan 2006a). 

A consumer represents a user with information requests.  It initiates the search process by 

generating a query message (which may include user and system settings such as the number of 

returned documents and the search radius) and relaying the message to the selected hubs, and 

finalizes the search process by collecting the returned results and presenting them to the user.   

A provider is a digital library that shares text documents in the network.  It provides a full-text 

search service by running a document retrieval algorithm over a local document collection and 

returning a list of matched documents in response to a query.  For document retrieval algorithms 

that support relevance-based document rankings, documents are ranked by how well they satisfy the 

query and the response is a list of the top-ranked documents.  Each provider can choose its own 

document retrieval algorithm, which means that it is not necessary for all providers to use the same 

algorithm for document retrieval.  In addition to responding to incoming queries, a provider also 

provides an accurate description of its content to its neighboring hubs upon request.    

A hub is a resource that provides directory services to a region of the network including all the 

leaves that connect to it.  It acquires and maintains content information about its neighboring hubs 

and providers, and uses it to provide resource selection (query routing) and result merging 

(integrating results returned by multiple providers) services to the network.     

3.1.2 Connections 

As described in Chapter 2, connections in an information-sharing P2P network are data channels 

established at the logical protocol layer through which information is exchanged in the form of 

messages.  In previous P2P architectures, each connection is a data channel between a pair of peers.  

For a peer with multiple functional units (e.g., both as a consumer and as a provider), each of its 

connections to other peers is shared by these units.  Because different functional units use the same 

connection for different purposes, it is difficult to optimize the utilities of all functional units of the 

same peer using a single set of connections since different functional units may desire different sets 

of connections.  For example, it is quite likely that a peer’s utility as a provider is optimized when it 

connects to one set of peers, but its utility as a consumer is optimized by connecting to a different 
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set of peers since its information need as a consumer may not be always related to the content it 

shares as a provider.  To solve this problem, in our hierarchical P2P architecture each functional 

unit on a peer can have its own connections to other peers.  In other words, a connection that links a 

pair of peers actually links a pair of functional units on these peers.9  By doing so, connections to a 

peer with multiple functional units for different purposes can be established and adjusted 

independently so that it is easier to achieve an optimal setting for the utilities of all functional units 

simultaneously.       

In our hierarchical P2P network architecture, leaves (providers and consumers) only connect to 

hubs.  Hubs connect with leaves and other hubs.  This way each hub acts as a gateway between its 

connecting leaves and the rest of the network, so leaves with limited connection bandwidth are 

relieved of the responsibility to relay messages that are not related to their contents or interests.  

Figure 3.1 illustrates the defined network architecture.  Note that a leaf (more precisely, each 

functional unit of a leaf such as a provider or a consumer) can connect to multiple hubs, as 

illustrated in Figure 3.1. 

3.2 Network Topology  

For a network that adopts the hierarchical P2P architecture described in Section 3.1, its topology has 

the components of hub-provider topology, hub-hub topology, and hub-consumer topology, each of 

which serves different purposes and desires different search-enhancing properties.  In this section 

we describe our network topology in terms of its properties for different components and why they 

can support effective and efficient full-text federated search.  How the topology of a network can be 

evolved to one with these properties is the topic of our network evolution model (Chapter 6). 

                                                 
 
9 For the convenience of description, the multiple functional units of a single peer may be treated as multiple “virtual” peers so 

that a connection between two functional units is the same as a connection between two (virtual) peers. 

Figure 3.1  Illustration of the network architecture. 

   Provider   Hub     Consumer
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3.2.1 Hub-Provider Topology with Content-Based Locality 

The hub-provider topology exhibits content-based locality by connecting providers with similar 

contents to the same hub to form a content-based cluster.  Each content-based cluster defines a 

content area in the network.  With content-based locality, most contents relevant to a query are 

expected to be covered by a few hubs so that query routing can be both efficient and effective.  In 

contrast, a randomly generated hub-provider topology produces an arbitrary content distribution in 

the network.  In this case, queries must be routed to hubs all over the network in order to locate 

enough relevant contents when the objective of search is not locating a single relevant document, 

but retrieving a sufficient number of documents relevant to the information request.        

Having content-based locality in the hub-provider topology can also increase the robustness of full-

text federated search.  By covering a cohesive content area, the representation of the contents each 

hub serves remains relatively stable even if the members of its connecting information providers 

may change over time due to the dynamic nature of P2P networks.  By comparison, in a randomly 

generated hub-provider topology, the representation of the content area covered by a hub may 

change dramatically as a result of the arrivals and departures of information providers.  Because the 

performance of full-text federated search largely depends on the effectiveness of resource location 

while resource location relies on the quality of resource representation, content-based locality 

reduces the susceptibility of full-text federated search to dynamic content change in P2P networks.10   

Existing work on constructing content-based locality in P2P networks either uses a global 

classification hierarchy or ontology to partition the content space into explicitly defined content 

areas (Crespo and García-Molina 2002a) (Schlosser et al. 2002) (Löser et al. 2003), or relies on 

individual peers to discover implicitly formed content areas without distinguishing between peers’ 

differences in their available resources for such discovery (Khambatti et al. 2002) (Asvanund 2004).  

The use of the former approach is mostly limited to structured and limited-domain contents, while 

the latter approach puts a high burden on peers with limited resources.  By using dynamically 

constructed content-based clusters to define content areas implicitly and requiring hubs with more 

resources to manage these clusters, content-based locality in our network overlay model can be 

applied more efficiently and effectively to P2P networks with heterogeneous, open-domain 

contents.   

                                                 
 
10 One may argue that content-based locality reduces the robustness of federated search because if a hub fails unexpectedly, the 

content area covered by this hub becomes unreachable.  However, this problem can be easily solved by each hub 

maintaining a small amount of redundant information about neighboring hubs’ connections, so that the responsibility of a 

failing hub can be quickly taken over by its hub neighbors (Renda and Callan 2004).  In contrast, the susceptibility of 

resource location performance to dynamic content change in a randomly generated hub-provider topology cannot be easily 

alleviated. 
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3.2.2 Hub-Hub Topology with Content-Based Small-World Properties 

The hub-hub topology has content-based small-world properties by requiring each hub to maintain 

connections both to hubs covering similar content areas (local connections) and to hubs serving 

dissimilar content areas (long-range connections).  In addition, the similarities between each hub’s 

content area and those of its long-range hub neighbors should be approximately uniformly 

distributed in “similarity scales” to guarantee good navigability (Kleinberg 2000).   

As mentioned in Section 2.1.2, federated search in a hierarchical P2P network relies on message-

passing to first locate hubs that cover relevant contents before these hubs further direct messages to 

the connecting providers.  By keeping hubs with similar content areas near to one another, relatively 

homogeneous content regions (a collection of similar content areas) can be formed at the hub level 

so that query routing can be more effective once a query arrives at the right content region.  The 

existence of hub-hub connections that link dissimilar content regions of the network assures that a 

query can be routed to the targeted content region efficiently irrespective of where it starts.  

Therefore, efficient and effective full-text federated search in a hierarchical P2P network requires 

the properties of both locational proximity of similar content areas to form content regions and short 

global separation of dissimilar content regions, which are exactly small-world properties with a 

definition of peer distance based on content similarity.   

Most efforts on studying and constructing networks with small-world properties use global 

knowledge or assume rigorous topology models (Watts and Strogatz 1998) (Kleinberg 2000) 

(Manna and Kabakcioglu 2003) (Clauset and Christopher 2004), which are not suitable for 

distributed, dynamic environments.  The few approaches that work in dynamic P2P networks with 

local information randomly choose long-range connections without considering the distribution of 

similarities for navigability (Sakaryan and Unger 2003) (Merugu et al. 2004).  To the best of our 

knowledge, no previous work has focused on content-based small-world properties with good 

navigability in dynamic P2P networks, making our attempt one of the first.   

3.2.3 Hub-Consumer Topology with Interest-Based Locality 

Interest-based locality for the hub-consumer topology is established by connecting each consumer 

to those hubs with content areas similar to its interests.  By directly connecting a consumer to hubs 

that are more likely to cover contents relevant to its requests, the amount of query routing among 

hubs can be greatly reduced without sacrificing search accuracy.   

Several methods that are similar in nature have been proposed to use interest-based locality in 

improving search performance in P2P networks (Ramanathan et al. 2002) (Sripanidkulchai et al. 

2003) (Shao and Wang 2005).  However, they ignore the fact that a consumer can perform two 

different types of search activities: search related to the user’s persistent, long-term interests 

(“characteristic search”) and search aimed to satisfy transient, ad-hoc information needs 

(“uncharacteristic search”).  Interest-based locality can improve search performance for queries of 
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characteristic search (“characteristic queries”) which are conceptually related to each other, since it 

is likely that hubs covering content areas relevant to past characteristic queries also cover relevant 

contents for future queries expressing similar interests, especially when the network topology 

exhibits content-based locality.  But interest-based locality does not provide an effective solution to 

queries of uncharacteristic search (“uncharacteristic queries”) since their relevant contents are 

unlikely to be covered by hubs with content areas related to characteristic queries.  As a result, for 

uncharacteristic queries, the consumer must resort to a more extensive search using a larger search 

radius and rely on certain properties of the hub-provider and hub-hub topologies for effective and 

efficient query routing, trading efficiency for accuracy.  Recognizing when interest-based locality 

enables effective federated search and when it doesn’t distinguishes our work from previous 

research.  It also helps us establish hub-consumer connections with better interest-based locality by 

filtering the noise introduced by uncharacteristic search.   

3.3 Summary 

In this chapter, we describe a network overlay model for full-text federated search of text digital 

libraries.  By enhancing the functionalities of information consumers (users), information providers 

(digital libraries), and hubs (directory services) of the basic hierarchical P2P architecture, our 

network architecture explicitly supports full-text search over document contents to generate 

relevance-based document ranking.  In addition, it is the first to recognize the distinctions between 

network connections that link different types of functional units (i.e., consumers, providers, and 

hubs) or serve different search purposes (i.e., characteristic search and uncharacteristic search), and 

their importance in achieving an optimal setting for the utilities of all functional units 

simultaneously.   

This chapter also describes properties of a network topology in the defined network architecture for 

efficient and effective full-text federated search.  Compared with previous research, our network 

overlay model is unique in effectively incorporating all three search-enhancing properties (interest-

based locality, content-based locality, and small-world properties) in a single framework to support 

full-text federated search, and making them suitable for distributed, dynamic environments 

containing heterogeneous and open-domain contents.   

Although the network overlay model provides a general framework which allows various 

approaches for different components of federated search to be plugged in to suit the conditions and 

requirements of particular P2P networks (e.g., cooperative vs. uncooperative), in the later chapters 

we primarily focus on federated search in cooperative environments and seek solutions that can 

achieve desired effectiveness without high computational complexity and communication cost.  

Specifically, the next chapter describes in detail how the functionalities of various functional units 

are implemented, and how the task of full-text federated search is accomplished collectively.  

Chapter 6 presents our newly developed algorithms to dynamically evolve the topology of a P2P 
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network into one with the defined search-enhancing properties to further facilitate high performance 

federated search.    
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C h a p t e r  4  

NETWORK SEARCH MODEL 

Search is essential to information-sharing peer-to-peer networks.  Federated search in hierarchical 

P2P networks provides robustness and scalability by relying on local coordination, but it is typically 

less efficient than using a central authority to provide global coordination among peers.  As a result, 

compared with search using a centralized index or directory service, decentralized search is more 

concerned with the trade-off between accuracy and efficiency.  In this chapter, we define a network 

search model to describe a full-text federated search mechanism in a hierarchical P2P network (with 

the network architecture described in Chapter 3) targeted at offering a better combination of 

accuracy and efficiency than existing common approaches for federated search of text digital 

libraries in P2P networks.  In the next chapter we discuss experimental evaluation.    

4.1 Overview of Full-Text Federated Search 

The quality of federated search in P2P networks is measured not only by its accuracy, but also by its 

efficiency.  Search mechanisms commonly used in file-sharing P2P applications such as flooding 

and random walks cannot be efficient and effective at the same time.  The flooding technique 

guarantees to reach peers with relevant information but requires an exponential number of query 

messages; randomly forwarding the request to a small subset of neighboring peers can significantly 

reduce the number of query messages, but the reached peers may not be relevant.  Directed breadth-

first search has been shown to be a promising approach in providing a better combination of 

accuracy and efficiency (Yang and García-Molina 2002) (Kalogeraki et al. 2002) (Cuenca-Acuna 

and Nguyen 2002) (Crespo and García-Molina 2002b), but few previous methods of using directed 

breadth-first search in P2P networks have been targeted at full-text ranked retrieval, which 

motivated us to develop a type of directed breadth-first search mechanism for this task.  

Because P2P networks can be viewed as a particular type of distributed information retrieval 

environment, we seek inspirations from previous research on full-text federated search in distributed 

information retrieval.  Since resource selection techniques developed for a single directory service 

essentially conduct a one-level directed breadth-first search for the directory service to select digital 

libraries based on their resource descriptions, we apply them to hub-provider query routing in 

hierarchical P2P networks so that query messages are only relayed to providers that are most likely 

to generate relevant responses.  The efficiency of federated search is further improved by extending 

resource selection techniques to hub-hub query routing so as to propagate queries only to those 

network regions that cover related content areas.  In addition to resource selection, we also extend 
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existing result merging techniques in hierarchical P2P networks to provide search results with 

integrated relevance-based document rankings.   

Although the development of our search mechanism can start by extending some existing 

approaches to resource representation, resource selection, and result merging, new development is 

still required to fit the solutions to the unique characteristics of the hierarchical P2P network defined 

by our network overlay model.  For example, selection of a neighboring hub should be based on not 

only this hub’s likelihood of providing relevant documents with its own providers, but also its 

potential to provide a path to other peers that are likely to satisfy the information request since the 

query message routed to it may further travel multiple hops.  Thus a new representation for the 

contents covered by the available resources in different neighborhoods of the network is developed 

(Section 4.2.3).  In consideration of peer autonomy and lack of central control in peer-to-peer 

networks, resource selection (Section 4.3) and result merging (Section 4.5) are designed to work 

without relying on global corpus statistics or centralized coordination.   

One problem that cannot be solved by extending traditional distributed information retrieval 

techniques is initial resource selection by consumers.  Consumers conduct initial resource selection 

to choose hubs that serve as entry points to the network.  These hubs use their directory services to 

further propagate the query in the network.  Because most current P2P networks provide very 

limited information to consumers about the available contents and their placement in the network, 

the resource selection conducted by each consumer to initiate search is typically no more than a 

random selection from a list of known hubs.  Since there is no guarantee that the (arbitrarily) 

selected hub(s) can directly locate relevant providers, a relatively large search radius is usually 

required to reach the hubs that cover relevant contents.  To eliminate the randomness and improve 

the quality of initial hub selection at each information consumer so that the amount of hub-hub 

query routing can be reduced, we propose to model the user’s persistent, long-term interests at each 

information consumer based on past queries, and use the model to conduct initial hub selection for 

new queries according to the hubs’ resource location effectiveness for old queries with similar 

interests (“interest-based hub selection”).  Interest-based hub selection can be applied to 

characteristic search (Section 3.2.3) of persistent information needs to effectively reduce the amount 

of query routing and improve search efficiency without sacrificing accuracy.  However, 

uncharacteristic search of transient, ad-hoc information needs requires a different search strategy 

because interest-based hub selection is unlikely to be effective for information requests not related 

to search history.  Therefore, our approach has been developed to enable each consumer to 

distinguish between different types of queries in order to apply different search strategies to 

optimize the overall search performance.  Details are given in Section 4.4.   

Our search mechanism does not adopt the decentralized search algorithm proposed by Kleinberg for 

efficient navigation in a P2P network (Kleinberg 2000) because the assumptions and requirements 

of the algorithm cannot be satisfied in full-text federated search.  Specifically, Kleinberg’s search 

algorithm assumes that given a query, the location of the target peer that has relevant content is 

known, and the task of search is to quickly find a path that leads from source to target.  However, 
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for full-text search in a real P2P network, until a real-time search is performed, the location of 

relevant content typically remains unknown to the requester.  As a result, the graph distance from 

the source or any other peer to the target, which is required by the algorithm for navigation, cannot 

be determined in advance.  In contrast, our search mechanism only relies on local content 

information for navigation to accommodate the network’s decentralized, dynamic and uncertain 

nature.   

Before presenting solutions to the problems of resource representation, resource selection, and 

result merging, we briefly describe in the rest of this section how our search mechanism works for 

full-text federated search in P2P networks.  When a consumer has an information request, it sends a 

query message with an initial TTL (Time-To-Live) value to one or more hubs selected using 

interest-based selection (for characteristic search) or random selection (for uncharacteristic search).  

A hub that receives the query message uses its resource selection algorithm to rank and select one or 

more neighboring providers as well as hubs and routes the query to them with a decreased TTL 

until the message’s TTL reaches zero.  A provider that receives the query message uses its full-text 

document retrieval algorithm to generate a relevance-based ranking of its documents and responds 

with a queryhit message that contains a list of the top-ranked documents.  A hub is responsible for 

collecting the queryhit messages generated by multiple neighboring providers, using its result 

merging algorithm to merge multiple ranked lists of documents from these providers into a single, 

integrated ranked list, and returning it to the consumer.  Finally, a consumer needs to merge results 

returned by multiple hubs.  The search results for past queries are used by each consumer to 

construct a user model to improve the performance of interest-based selection for characteristic 

search.  Figure 4.1 illustrates the interactions between the various components of the network search 

model.   

Queryhit 

Figure 4.1  Illustration of the network search model.   
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4.2 Resource Representation  

Resource descriptions required for resource selection by hubs use full-text representation with term 

frequency information because it provides the most comprehensive description for text content 

among common representations (Section 2.1.2) and its large size is not an issue for hubs equipped 

with high connection bandwidth and processing power.  We adopt the format used by previous 

resource selection algorithms (Gravano et al. 1994) (Gravano and García-Molina 1995) (Callan et 

al. 1995) (Xu and Croft 1999) (Callan 2000) in distributed information retrieval for a resource 

description, which includes a list of terms with corresponding term frequencies (collection language 

model), and corpus statistics such as the total number of terms and documents provided or covered 

by the resource.  The resource could be a single provider (digital library), a hub that covers multiple 

neighboring providers, or a “neighborhood” that includes all the peers reachable from a hub.  Table 

4.1 provides an example of a provider’s resource description.   

Resource selection by consumers cannot rely on full-text resource descriptions due to the limited 

network and computing resources consumers usually have.  In addition, because the purpose of 

resource selection by consumers is to improve search efficiency without scarifying accuracy for 

characteristic queries representing persistent interests but not for all queries, consumers do not need 

to maintain comprehensive information about hubs as hubs do.  Therefore, the format and 

acquisition of resource descriptions used for resource selection by consumers are different from 

those used by hubs.  Full-text resource descriptions used for resource selection by hubs are 

introduced below.  Resource descriptions used for resource selection by consumers is discussed in 

Section 4.4 where interest-based hub selection (as opposed to full-text hub selection) is presented. 

Table 4.1  An example of a provider’s full-text resource description. 

     Provider URL = www.gov.state.ak.us/ltgov/elections 

Total number of terms = 1,397,045 Total number of documents = 1,504 

term frequency term frequency 

vote 18,790 ballot 3,659 

district 12,431 official 2,766 

alaska   9,157 statement 1,635 

elect   8,867 seat 1,154 

candidate   4,828 mission    261 

. . . . 

. . . . 

. . . . 
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4.2.1 Resource Descriptions of Providers 

Resource descriptions of providers are used by hubs for query routing (“resource selection”) among 

adjacent providers.  Each provider provides an accurate resource description to its neighboring hubs 

upon request (e.g., using STARTS) (Gravano et al. 1997).   

4.2.2 Resource Descriptions of Hubs 

The resource description of a hub is the aggregation of the resource descriptions of its neighboring 

providers.  It describes the content area covered by the hub.  Since hubs work collaboratively in 

hierarchical P2P networks, neighboring hubs can exchange with each other their aggregate resource 

descriptions.  However, because hubs’ resource descriptions only have information for peers within 

one hop (providers directly connecting to them), if they are used by a hub to decide how to route 

query messages, the routing would not be effective when peers with relevant documents sit beyond 

this “horizon”.  Thus for effective hub selection, a hub must have information about what contents 

can be reached if the query travels several hops beyond each hub neighbor.  This kind of 

information is represented by the resource description of a neighborhood, which is introduced in the 

following section.         

4.2.3 Resource Descriptions of Neighborhoods 

A neighborhood of a hub Hi in the direction of its neighboring hub Hj is the set of hubs that a query 

message can reach by following the path from Hi to Hj and further traveling a number of hops.  

Each hub has its own view of neighborhoods near it, and each of its neighborhoods corresponds to 

one of its hub neighbors.  Figure 4.2 illustrates the concept of neighborhood.  Hub H1 has three 

neighboring hubs H2, H3 and H4.  Thus it has three adjacent neighborhoods, labeled N1,2, N1,3 and 

N1,4.  A neighborhood’s resource description provides information about the contents covered by all 

the hubs in this neighborhood.  A hub uses resource descriptions of neighborhoods to route queries 

to its neighboring hubs. 

Figure 4.2  Three neighborhoods that can be reached from H1. 
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Resource descriptions of neighborhoods are similar in functionality to routing indices (Crespo and 

García-Molina 2002b).  An entry in a routing index records the number of documents that may be 

found along a path for a set of topics represented by a small set of topic keywords.  The key 

difference between resource descriptions of neighborhoods and routing indices is that resource 

descriptions of neighborhoods represent contents with unigram language models (terms with their 

frequencies), while routing indices represent them with a small set of keywords for various topics.  

Thus by using resource descriptions of neighborhoods, there is no need for hubs and providers to 

cluster their documents into a set of topics and it is not necessary to restrict queries to a small 

controlled vocabulary.   

Similar to exponentially aggregated routing indices (Crespo and García-Molina 2002b), a hub 

calculates the resource description of a neighborhood by aggregating the resource descriptions of all 

the hubs in the neighborhood decayed exponentially according to the number of hops so that 

contents located nearer are weighted more highly.  For example, in the resource description of a 

neighborhood Ni,j (the neighborhood of Hi in the direction of Hj), a term t’s exponentially 

aggregated term frequency is calculated as: 
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where tf(t, Hk) is t’s term frequency in the resource description of hub Hk, and F is a factor for 

exponential decay, which can be the number of hub neighbors each hub has in the network. 

The exponentially aggregated total number of documents in a neighborhood is calculated as below. 
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The creation of resource descriptions of neighborhoods requires several iterations at each hub.  A 

hub Hi in each iteration calculates and sends to its hub neighbor Hj the resource description of 

neighborhood Nj,i (denoted by NDj,i) by aggregating its hub description HDi and the most recent 

resource descriptions of neighborhoods it received previously from all of its neighboring hubs 

excluding Hj.  The calculation of NDj,i is provided by Equation 4.3. 
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The stopping condition could be either the number of iterations reaching a predefined limit, or the 

difference in resource descriptions between adjacent iterations being small enough.11  Each hub can 

run the creation process asynchronously.   

The process of maintaining and updating resource descriptions of neighborhoods is identical to the 

process used for creating them.  The resource descriptions of neighborhoods could be updated when 

the difference between the old and the new value is significant, or periodically, or when a peer 

leaves the network.    

For networks that have cycles, the frequencies of some terms and the number of documents may be 

overcounted, which may affect the accuracies of resource descriptions.  Even so, empirical evidence 

shows that resource selection using resource descriptions of neighborhoods in networks with cycles 

is still quite efficient and accurate (Lu and Callan 2005) (Lu and Callan 2006a).       

4.2.4 Reducing Sizes of Resource Descriptions 

Because the size of a full-text resource description is proportional to its vocabulary size (i.e., total 

number of unique terms in the description), the communication and storage costs associated with 

acquiring and maintaining full-text resource descriptions are much larger than other common forms 

of resource representations, which may become a problem in large-scale P2P networks.  One 

straightforward solution is to reduce the size of a resource description by pruning terms that are not 

good representatives of a resource’s content.  Because rare terms and terms that are common in 

general English are unlikely to contribute significantly to the content of a digital library, they 

become natural candidates to be pruned.     

The pruning method of cutting off the rarest terms in resource descriptions has been explored in our 

earlier work for full-text federated search in hierarchical P2P networks of text digital libraries (Lu 

and Callan 2003a).  Experimental results demonstrate that on average it can reduce the size of a 

resource description by half without detriment to search accuracy.  Therefore, pruning terms of low 

frequencies in resource descriptions is a simple but effective technique.   

Pruning terms that are common in general English is equivalent to first extracting the core 

collection language model which gives the probability of each term being generated by the content 

of the collection rather than by general English, and then discarding terms with low probabilities.  

Given the maximum likelihood collection language model and the general English model, the core 

collection language model can be estimated using the method described in (Zhang, Y et al. 2002).  

                                                 
 
11 The stopping condition used in our experiments was the difference in resource descriptions between adjacent iterations 

being smaller than a threshold, so that each hub could dynamically determine the number of iterations based on content and 

network conditions. 
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This method is effective, but quite complex and expensive to use in practice for resource 

descriptions of large vocabularies.  A simpler approach is to discard terms that occur in a static, 

predetermined list of terms that are common in general English (“stopwords”).   

In this dissertation, full-text resource descriptions are pruned by removing stopwords and the terms 

whose frequencies are below a certain threshold.         

4.3 Resource Selection by Hubs 

To achieve both efficiency and accuracy, each hub ranks its neighboring providers by their 

likelihood of satisfying the information request, and neighboring hubs by their likelihood of 

providing a short path to peers with relevant information, and only forwards the request to the top-

ranked neighbors.  The information each hub utilizes for resource selection is the content 

information about its neighboring providers as well as neighborhoods represented by resource 

descriptions.   

Direct comparison between providers and neighborhoods is difficult because it requires very 

accurate size normalization in order to compare resource descriptions of providers and those of 

neighborhoods that are not of the same magnitude in vocabulary size and term frequency.  For this 

reason, a hub handles separately the selection of its neighboring providers and hubs.  In theory, each 

hub can choose its own resource selection algorithm independently.  In practice, it is common in 

most operational and research P2P systems to require all of the hubs to use the same resource 

selection methods.  In our experiments, because the Kullback-Leibler (K-L) divergence-based 

method that incorporates size effects has been shown to be one of the most effective resource 

selection algorithms tested on various testbeds in distributed information retrieval (Si and Callan 

2004a), we use it for selection of both neighboring providers and neighboring hubs at each hub.  

However, one could easily use instead one of the more sophisticated resource selection algorithms 

such as ReDDE (Si and Callan 2003a); the framework is sufficiently general that it is not 

constrained to use any specific algorithm.   

4.3.1 Resource Selection of Providers 

Each hub uses the K-L divergence resource selection algorithm to calculate P(Pi | Q), the 

conditional probability of predicting the collection of provider Pi given the query Q, and uses it to 

rank different providers and select the top-ranked ones (Si and Callan 2004a).  P(Pi | Q) is 

calculated as follows: 
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P(Q) is neglected because its value is independent of providers and doesn’t affect the ranking of 

providers.  The prior probability of a provider P(Pi) is estimated using the number of documents in 

the collection of provider Pi divided by the total number of documents from all the providers 

connecting to the hub.  P(Q | Pi) is calculated using Equation 4.5:  

                                         ∏
∈ +

Ρ×+
=Ρ

Qq i

i

i
Pnumterms

GqPqtf
PQ

µ
µ

)(

)|(),(
)|(                                                                 (4.5) 

where tf(q, Pi) is the term frequency of query term q in provider Pi’s resource description (collection 

language model).  Dirichlet smoothing is used in the calculation of P(Q | Pi), and µ is the smoothing 

parameter (Zhai and Lafferty 2001).  The background language model P(q | G) used for smoothing 

is calculated based on maximum likelihood estimation with Laplacian smoothing from the 

aggregation of all the resource descriptions of the hub’s neighboring providers and neighborhoods:   
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4.3.2 Thresholding for Resource Selection of Providers 

Thresholding for resource selection of providers in a hierarchical P2P network is the process for a 

hub to decide how many top-ranked neighboring providers to select for relaying each query 

message.  In previous work of distributed information retrieval with a single directory service, 

typically the simple approach of selecting the top-ranked neighbors up to a predetermined number is 

used.  We refer to this method as resource selection of providers based on a fixed threshold.  The 

value of this fixed threshold is tuned empirically to optimize system performance.  In a hierarchical 

P2P network, the number of each hub’s neighboring providers is unknown in advance due to its 

dynamic nature, so it would be unclear how to set a fixed threshold that produces the optimal 

performance.  In addition, different hubs may have different “optimal” threshold values, and the 

“optimal” threshold value of each individual hub may change over time.  Therefore, it is not 

appropriate to use a static, predetermined fixed threshold for resource selection of providers in 

hierarchical P2P networks.  It is desirable that hubs have the ability to learn their own thresholds 

automatically and autonomously.  We refer to the method that selects the top-ranked neighboring 

providers whose relevance-based ranking scores are larger than a learned threshold as resource 

selection of providers based on a learned threshold.   

The problem of learning a threshold to convert relevance-based ranking scores into a binary 

decision has mostly been studied in information filtering and text categorization (Zhai et al.1998) 

(Zhai et al. 2000) (Zhang and Callan 2001).  However, the user relevance feedback required as 

training data may not be as easily available for federated search in P2P networks as for the task of 

information filtering.  Therefore, it is preferable that threshold learning in P2P networks be 



 45

conducted in an unsupervised manner.  Our goal is to develop a technique for each hub to learn its 

resource selection threshold without supervision based on the information and functionality it 

already has.  Because each hub has the ability to merge multiple retrieval results into a single, 

integrated ranked list (more details in Section 4.5), as long as result merging has reasonably good 

performance, we could assume that the top-ranked merged documents are “relevant”, or at least 

appropriate for the user to consider.  Thus the distribution of the top-ranked merged documents over 

neighboring providers should provide useful hints about the number of relevant documents each 

provider is likely to return.  If we further assume that a hub is permitted to flood its neighboring 

providers with a small number of queries, it can use the results of these queries as training data.  

This is analogous to query expansion with pseudo relevance feedback, which treats the top-ranked 

documents retrieved initially as relevant documents and uses them to improve the quality of the 

query.  The key differences are i) our approach uses the information about which top-ranked 

merged documents are from which neighbors and ignores the actual contents of these documents, 

and ii) the direct goal here is not to improve immediately the retrieval quality for the current query, 

but to learn a resource selection threshold that is specific to each hub, and sometimes even specific 

to different types of queries, and to improve the overall search performance for future queries (Lu 

and Callan 2006a).   

Each hub can compute its resource selection threshold for neighboring providers based on the 

thresholds it learned for individual training queries.  Alternatively, a hub can also learn its resource 

selection threshold directly from the retrieval results of a set of training queries as a whole without 

first learning a separate threshold for each training query.  We refer to the former approach as 

individual-based threshold learning and the latter as set-based threshold learning.  

Each hub can either use the relevance-based ranking scores of its neighboring providers directly, or 

first normalize them into a fixed range (e.g., the lowest ranking score for a query is normalized to 0 

and the highest ranking score is normalized to 1) and use the normalized scores instead.  The 

advantages and disadvantages of these two approaches are complementary, i.e., the strength of one 

is the weakness of the other.  On the one hand, because the range of original ranking scores is 

query-dependent, using original ranking scores for threshold learning requires training queries to be 

a good representative of future queries.  In contrast, normalization makes ranking scores for 

different queries comparable and to some extent “query-independent” so that the threshold learned 

using normalized ranking scores is applicable to any queries.  On the other hand, different ranges of 

original ranking scores for different queries may indicate a hub’s neighbors’ different overall degree 

of relevance (total amounts of relevant documents available) for these queries, which may indeed 

affect threshold learning for different queries.  By normalizing original ranking scores for different 

queries into the same range, the learned threshold becomes reliant on the assumption that a hub’s 

neighboring providers have the same overall degree of relevance for all queries, which is not 

necessarily true.   

Both original ranking scores and normalized ranking scores can be used in set-based threshold 

learning.  However, individual-based threshold learning can only use normalized ranking scores 
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because thresholds learned for different queries using original ranking scores are not comparable 

and therefore cannot be combined to generate a single threshold value.   

We introduce below individual-based threshold learning using normalized ranking scores, set-based 

threshold learning using original (unnormalized) or normalized ranking scores, and our attempt to 

take advantage of the complementary strengths of the three methods by using a hybrid approach.  

Individual-based threshold learning with normalized ranking scores   

For a training query, after a hub merges the documents returned by its neighboring providers, it can 

calculate how many “relevant” documents are returned by each provider by using the top-ranked 

documents in the merged result as the set of “relevant” documents with respect to the query.  Given 

this information, one simple method to decide the threshold of ranking scores for the query is to go 

down the list of neighbors sorted by their normalized ranking scores until a sufficiently large 

percentage of “relevant” documents have been returned, i.e., a sufficiently high value of recall is 

obtained and use the last ranking score before stopping as the threshold.  However, because this 

method doesn’t measure the amount of “non-relevant” documents returned by the top-ranked 

providers, the learned threshold will not work well when the top-ranked providers that return some 

“relevant” documents return even more “non-relevant” documents, in which case a high value of 

recall comes together with a low value of precision. To balance between recall and precision, it is 

more appropriate to use a measure to combine recall and precision such as the E evaluation measure 

proposed by van Rijsbergen (van Rijsbergen, 1979).  The E measure is defined under this 

circumstance as follows:12 
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12 For b = 1, the value of the E measure is equal to 1 minus the value of the F measure, which is the harmonic mean of recall 

and precision. 
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where R(j) is the recall calculated based on the set of documents returned by providers ranked 1st to 

jth,  P(j) is the precision of the set of documents returned by providers ranked 1st to jth, E(j) is the E 

evaluation measure corresponding to R(j) and P(j), b is a parameter which reflects the relative 

importance of recall and precision, nrel(i) is the number of “relevant” documents returned by the ith 

ranked provider, n(i) is the total number of documents returned by the ith ranked provider, and Nrel is 

the total number of “relevant” documents for the query.      

The E measure has values between 0 and 1; small values are preferred.  Values of b greater than 1 

indicate that precision is valued more than recall while values of b smaller than 1 indicate that recall 

is valued more than precision.  Because full-text federated search typically values high precision 

more than high recall due to efficiency concern, values of b greater than 1 are preferred. 

To decide the threshold of ranking scores for the query, the hub goes down the list of providers 

sorted by their normalized ranking scores, stops at the provider that has the minimum E value and 

uses its ranking score as the threshold.   

Table 4.2 provides an example to illustrate how to calculate the values of R(j), P(j) and E(j) for the 

10 top-ranked providers at a hub with respective to a query.  Providers are ranked by their ranking 

scores calculated using the hub’s resource selection algorithm (Section 4.3.1).  Each provider 

returns 50 documents.  All the documents returned by the hub’s neighboring providers are merged, 

and the 50 top-ranked documents in the merged result are treated as “relevant” documents.  The 

columns of # “Rel” Docs and # “Non-Rel” Docs show respectively for each top-ranked provider 

how many of its returned documents occur in the set of “relevant” documents and how many don’t.  

For instance, the 3 top-ranked providers return 6, 9, and 8 “relevant” documents respectively.  

Therefore, the value of R(3) is (6+9+8)/50 = 0.4600, and the value of P(3) is (6+9+8)/(50*3) = 

Table 4.2  An example of calculating the E measure for individual-based threshold learning. 

Rank 
Provider 

ID 

# “Rel” 

Docs 

# “Non-Rel”

Docs 
R P E (b = 3) 

1 P105 6 44     0.1200     0.1200     0.8800 

2 P050 9 41     0.3000     0.1500     0.7273 

3 P032 8 42     0.4600     0.1533     0.6167 

4 P156 6 44     0.5800     0.1450     0.5538 

5 P088 7 43     0.7200     0.1440     0.4857 

6 P015 4 46     0.8000     0.1333     0.4667 

7 P350 4 46     0.8800     0.1257     0.4500 

8 P212 2 48     0.9200     0.1150     0.4588 

9 P137 2 48     0.9600     0.1067     0.4667 

10 P076 2 48     1.0000     0.1000     0.4737 
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0.1533.  Since the minimum E value occurs at j = 7, the ranking score of the 7th ranked provider is 

used as the threshold with respect to the query. 

To summarize, for individual-based threshold learning with normalized ranking scores, a hub uses 

the following procedure to decide the threshold for selection of its neighboring providers with 

respect to a query: 

1. Given a query, the hub uses its resource selection algorithm to calculate the ranking scores of its 

neighboring providers and sorts them in descending order; 

2. The hub normalizes their scores using the following equation: 
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where Smax is the maximum ranking score and Smin is the minimum ranking score; 

3. The hub forwards the query to its neighboring providers and merges the lists of documents 

returned by these providers (Section 4.5); 

4. The hub uses up to the r top-ranked documents in the merged result as the set of “relevant” 

documents to calculate E(j) for each provider rank j, where r is a parameter of threshold 

learning (50 in our experiments); and 

5. The hub finds the rank j* that gives the minimum E value and regards the normalized ranking 

score of the j*th provider as the threshold for selection of neighboring providers with respect to 

the given query. 

The individually learned thresholds for a set of training queries are averaged to get a single 

threshold at the hub.   

Set-based threshold learning with original or normalized ranking scores   

Set-based threshold learning takes an approach similar to using maximum likelihood estimation to 

learn dissemination threshold for information filtering (Zhang and Callan 2001).  For information 

filtering, an optimal dissemination threshold is one that maximizes a given utility function based on 

the distributions of the scores of relevant and non-relevant documents.  For our task of resource 

selection, an optimal selection threshold is the one that maximizes a given utility function based on 

the distributions of the ranking scores of a hub’s relevant and non-relevant neighboring providers.  

To use this approach, we need to solve three problems: i) define a utility function; ii) determine the 
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criterion for a provider to be considered relevant with respect to a query; and iii) decide how to 

estimate the distributions of the ranking scores of relevant and non-relevant providers.   

A linear utility function U(θ) is defined as below, and the optimal value θ* that maximizes U(θ) at a 

hub can be used as this hub’s threshold for selection of its provider neighbors: 
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where Nrel(θ) and Nnonrel(θ) are the numbers of relevant and non-relevant providers respectively 

whose ranking scores are above threshold θ, P(s ∧ rel) is the probability of a provider having score s 

and being relevant, P(s ∧ nonrel) is the probability of a provider having score s and being non-

relevant, P(s | rel) is the probability of a relevant provider having score s, P(s | nonrel) is the 

probability of a non-relevant provider having score s, P(rel) is the probability of a provider being 

relevant, α is the total number of provider neighbors, and max(s) is the maximum relevance-based 

ranking score of a hub’s neighboring providers for the training queries.  The integrals in Equations 

4.13 and 4.14 are used when the corresponding probability distributions are represented with 

continuous probability density functions (e.g., Gaussian and uniform distributions).  When discrete 

probability distributions are used, the integrals are replaced by sums.   

For a given query, a provider is considered relevant if it returns at least n relevant documents.  

When real relevance judgments are not available due to lack of user relevance feedback, a hub can 

estimate the relevance of a neighboring provider with respect to the query using the top-ranked 

merged documents at this hub for the query as the set of “relevant” documents.  n is a parameter of 

set-based threshold learning.   

The difference between set-based threshold learning using original ranking scores and using 

normalized ranking scores lies in their different ways to estimate the distributions of the ranking 

scores of relevant and non-relevant providers, P(s | rel) and P(s | nonrel), at a hub, which we 

describe in the following paragraphs.  Briefly, using original ranking scores requires maximum 

likelihood fittings of continuous Gaussian models for different groups of training queries, while 

using normalized ranking scores allows estimating an empirical discrete distribution for a single 

group containing all training queries. 
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When original ranking scores are used, because the score range is query-dependent, which may 

indicate a hub’s provider neighbors’ overall degree of relevance (total amount of relevant 

documents available) for the query, the hub needs to divide training queries into groups based on its 

neighbors’ different levels of overall degree of relevance for these queries and estimate P(s | rel) 

and P(s | nonrel) for each group.  Queries can be classified based on their contents or statistical 

properties.  Classifying queries by content is more difficult because it requires more training data 

and hence imposes higher system overhead, therefore we focus on classifying queries by their 

statistical properties.  Because the average probability of a query’s terms in the hub’s resource 

description is a rough measure of the overall degree of relevance for the query, we use it as a feature 

for query classification.  Given a set of training queries, probability values ranging from 0 to the 

maximum term probability in the hub description are divided into non-overlapping groups so that 

all groups have roughly the same number of queries for training.  A query is classified into one of 

these groups based on the average probability of its terms in the hub description.  For each group of 

training queries, the empirical distributions of P(s | rel) and P(s | nonrel) can be fitted using 

Gaussian distributions.   

Because normalized ranking scores are somewhat “query-independent”, there is no need to classify 

training queries into different groups.  A single pair of P(s | rel) and P(s | nonrel) can be estimated 

from the aggregate results of all training queries.  However, unlike the case with original ranking 

scores, score distributions of P(s | rel) and P(s | nonrel) cannot be fitted by Gaussian or exponential 

distributions.  For this reason, instead of fitting continuous distributions to the training data, the hub 

directly uses the empirical discrete score distributions learned from training queries.   

Table 4.3 gives an example of estimating P(s | rel) and P(s | nonrel) at a hub based on the results of 

a set of training queries.  Queries are grouped by the ranges of the average probability of each 

query’s terms in the hub’s resource description.  The relevance of each provider with respect to each 

query is determined based on whether it returned at least n “relevant” documents (using the top-

ranked merged documents at the hub as the set of “relevant” documents).  If original ranking scores 

of providers are used, then P(s | rel) is estimated for each query group based on the original scores 

of those providers considered “relevant” to the queries in the group.  For instance, P(s | rel) for 

query group G1 is represented by a Gaussian distribution, whose mean and variance are computed 

using maximum likelihood estimation based on the scores in those rows with a “Y” in the last 

column for Q1 and Q3 (e.g., −5.8231, −6.1198, and −6.0031).  If normalized ranking scores are 

used, then P(s | rel) is estimated for all the training queries as one group based on the normalized 

scores of those providers considered “relevant” to one or more training queries.  Using the empirical 

discrete score distribution, P(s | rel) is the relative frequency that a normalized ranking score occurs 

among all the scores in the rows with a “Y” in the last column.    

Usually P(rel) is estimated by maximum likelihood estimation using training data.  However, 

because using a small number of top-ranked merged documents as the set of “relevant” documents 

for each query yields very unbalanced amounts of training data for relevant and non-relevant 

neighboring providers at the hub (very few relevant neighbors but a lot of non-relevant neighbors), 



 51

maximum likelihood estimated P(rel) using training data is not likely to be a good estimation of 

P(rel) for future queries.  Therefore, here we assume that each provider has equal probability of 

being relevant and non-relevant, i.e., P(rel) has a uniform distribution.  This is a reasonable 

assumption when each hub covers specific content area so that all of its neighboring providers have 

somewhat similar contents.   

In summary, for set-based threshold learning, the procedure a hub uses to learn the threshold for 

selection of its neighboring providers is the following: 

1. Given a query, the hub uses its resource selection algorithm to calculate the ranking scores of its 

neighboring providers and sorts them in descending order; 

2. If original ranking scores are used, go to the next step; otherwise, the hub normalizes ranking 

scores using Equation 4.10; 

3. The hub forwards the query to its neighboring providers and merges the lists of documents 

returned by these neighbors; 

Table 4.3  An example of estimating P(s | rel) and P(s | nonrel) for  

set-based threshold learning. 

Query 

ID 

Query 

Group 

Original 

Provider 

Score (log) 

Normalized 

Provider 

Score 

# “Rel” 

Docs 

Returned 

Is A “Rel” 

Provider 

(n = 5) 

−5.8231 1.0000 6 Y 

−6.1198 0.9544 9 Y 

. . . . 

. . . . 

Q1 G1 

−12.3356 0.0000 0 N 

−7.2945 1.0000 7 Y 

−7.9821 0.9178 4 N 

. . . . 

. . . . 

Q2 G2 

−15.6632 0.0000 1 N 

−5.4768 1.0000 4 N 

−6.0031 0.9145 8 Y 

. . . . 

. . . . 

Q3 G1 

−11.6348 0.0000 1 N 
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4. The hub uses up to the r top-ranked documents in the merged result as the set of “relevant” 

documents to calculate for each provider neighbor how many of its returned documents are 

“relevant” in order to decide its relevance with respect to the query by comparing the number 

with n, where r is a parameter of threshold learning (50 in our experiments), and n is the 

minimum number of relevant documents a provider should provide in order to be considered 

relevant for a query; 

5. After the hub finishes conducting the above steps for each training query, if original ranking 

scores are used, it defines non-overlapping groups spanning from 0 to the maximum term 

probability in the hub description so that all groups have roughly the same number of queries 

for training (at least 5 per group) and classifies each query into one of these groups based on the 

average probability of its terms in the hub description; otherwise (if normalized ranking scores 

are used), go to the next step; 

6. The hub estimates the distributions of the ranking scores of relevant and non-relevant 

neighboring providers P(s | rel) and P(s | nonrel) for each query group using maximum 

likelihood estimation of Gaussian parameters if original ranking scores are used, or for a single 

query group consisting of all training queries using maximum likelihood estimation of 

empirical discrete distributions if normalized ranking scores are used; and 

7. The hub uses Equations 4.11−4.14 to calculate θ* that gives the maximum U(θ) value and uses 

it as its threshold for selection of its provider neighbors for queries that belong to the same 

query group. 

Combinations of individual-based and set-based threshold learning   

Different methods for threshold learning have different weaknesses.  Set-based threshold learning 

with original ranking scores assumes that the range of ranking scores for a query (as an indication of 

a hub’s neighbors’ overall degree of relevance) correlates quite well with the average probability of 

this query’s terms in the hub’s resource description and uses the statistics to classify queries into 

different groups.  When such correlations do not exist for “outlier” queries, set-based threshold 

learning with original ranking scores performs badly.  On the other hand, the problem of threshold 

learning with normalized ranking scores is that by normalizing ranking scores, big differences 

between the original ranking scores of neighboring providers are exaggerated and thus some 

providers seem much less relevant judged by their normalized ranking scores although their original 

ranking scores are quite high (but not at the same level as the highest one).  In this case, threshold 

learning with normalized ranking scores tends to underestimate the number of relevant providers.  

For individual-based threshold learning, in addition to the aforementioned problem of using 

normalized ranking scores, it is not effective when the quality of resource selection is not reliable.  

If resource selection fails to rank most relevant provider neighbors above non-relevant providers, 

the top-ranked non-relevant providers will quickly increase E value, which can hardly be recovered 
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even when relevant providers are included later on.  Therefore, the optimal, low-valued E will occur 

early in the ranking and the method tends to select fewer providers than what is required to obtain a 

sufficient amount of relevant documents. 

Since different threshold learning methods overestimate or underestimate the number of 

neighboring providers to be selected in different cases, a hybrid approach may improve the quality.  

A straightforward way to combine these methods is to average the values determined by these 

methods for the number of providers to be selected and use this averaged value to decide how many 

top-ranked provider neighbors to select. 

4.3.3 Resource Selection of Hubs 

For resource selection of hubs, because selecting a neighboring hub is essentially selecting a 

neighborhood, the resource descriptions of neighborhoods are used to calculate the collection 

language models needed by the K-L divergence resource selection algorithm.  The prior probability 

of a neighborhood P(Ni) is set to be proportional to the exponentially aggregated total number of 

documents in the neighborhood (Equation 4.2).  Given the query Q, the probability of predicting the 

neighborhood Ni in the direction of a neighboring hub Hi is calculated as follows and used to rank 

neighboring hubs: 
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P(Q) is neglected because its value is independent of neighborhoods and doesn’t affect the ranking 

of hubs.  The prior probability of a provider P(Ni) is estimated using the number of documents in 

the neighborhood Ni (Equation 4.2) divided by the total number of documents in the hub’s 

neighborhoods.  P(Q | Ni) is calculated using Equation 4.16:  
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where tf(q, Ni) is the term frequency of query term q in the resource description of neighborhood Ni 

(collection language model).  Dirichlet smoothing is used in the calculation of P(Q | Ni), and µ is the 

smoothing parameter (Zhai and Lafferty 2001).  The background language model P(q | G) for 

smoothing is calculated using Equation 4.6. 

To avoid looking nearer or farther than what a query message can reach, the radius of each 

neighborhood that a hub looks ahead for hub-hub query routing should depend on the remaining 

value of the query message’s TTL.  In other words, TTL-dependent resource selection enables each 

hub to focus its selection on the neighboring hubs that can reach relevant contents within the 
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predetermined search radius to avoid choosing a path leading to relevant contents located at a 

distance farther than the query message can travel.  TTL-dependent hub selection can be applied 

when the network topology remains relatively static and hubs update their neighborhood 

descriptions in a synchronous manner.  In this case, the descriptions of neighborhoods acquired in 

different iterations correspond to the contents covered in the neighborhoods of different radiuses 

(Section 4.2.3), so each hub can maintain neighborhood descriptions of different iterations in order 

to conduct TTL-dependent hub selection.  However, when the network topology is highly dynamic 

(e.g., before topology evolution stabilizes) and neighborhood descriptions are updated 

asynchronously, each hub may have to rely on the most up-to-date neighborhood descriptions for 

TTL-independent hub selection. 

Although in theory the methods of threshold learning developed for resource selection of providers 

can be adapted to learn the threshold for resource selection of hubs, in practice it is more difficult to 

do so because i) the ranking of neighboring hubs is based on not only each hub neighbor’s 

likelihood to cover relevant contents with its own providers, but also its potential to quickly reach 

other hubs with relevant contents, and ii) it is more challenging to effectively estimate the number 

of relevant documents in a neighborhood when distance to relevant documents must be taken into 

account.  Since resource selection of hubs is based on neighborhood descriptions that are much 

more heterogeneous than provider descriptions on which resource selection of provider is based, it 

is easier to choose a hub selection threshold empirically that can work reasonably well for different 

hubs.  Therefore, with the benefit of threshold learning for resource selection of hubs unlikely to 

offset its effort, a fixed threshold is used for resource selection of hubs.    

4.4 Resource Selection by Consumers 

Each consumer conducts initial hub selection to choose entry points where a query can be submitted 

to the network.  The selected hub(s) use full-text resource selection to propagate the query among 

providers and other hubs.  The consumer has the ability to distinguish different types of queries 

based on user modeling so that different search strategies can be applied to them to achieve the 

overall optimal performance.  For characteristic queries representing the user’s persistent, long-term 

interests, the consumer uses the user model it has learned from past search results to select hubs that 

are likely to locate relevant contents in their neighboring providers.  For a network with content-

based locality, this method can greatly reduce the amount of hub-hub query routing without 

degrading search accuracy.  For uncharacteristic queries that express transient, ad-hoc information 

needs, because the limited (and often biased) information the consumer has learned as a byproduct 

of past search does not provide much of a clue about which hubs cover content areas relevant to 

these queries, it relies on a large search radius and hub-hub query routing to guarantee effectiveness 

since hubs maintain comprehensive information about the contents available in the network. 

The description of resource selection by consumers is divided into two sections.  Section 4.4.1 

describes the source, representation, and algorithm a consumer uses to construct a user model and 
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measure hubs’ performance on resource location for various interests, and Section 4.4.2 presents 

how to use the generated user model for initial hub selection.   

4.4.1 User Modeling     

User modeling for full-text federated search in a peer-to-peer network takes place at each individual 

information consumer due to the lack of a centralized server to monitor search activities in the 

network.  Existing methods of user modeling for resource location in peer-to-peer networks 

(Ramanathan et al. 2002) (Sripanidkulchai et al. 2003) (Shao and Wang 2005) neither explicitly 

separate transient information needs from persistent interests nor distinguish between different 

interests (e.g., sports versus music).  As a result, their performance measures for resource location 

are interest-independent, resulting in less effective resource location when a resource relevant to one 

interest is selected to answer queries for other interests or unrelated ad-hoc information requests.  

To remedy the problems, similar to the approach taken in (Voorhees et al. 1995), query clustering is 

used to group past queries in modeling a user’s different interests, and each query cluster represents 

a topic of interest.  New queries similar to any of the existing query clusters are considered 

characteristic queries representing persistent interests; otherwise, they are regarded as 

uncharacteristic queries for transient information needs.  The interest-dependent performance is 

measured for each hub that provided search results to this consumer in the past, which is 

dynamically updated whenever new results are available.  For a hub that covers contents related to 

multiple topics of interest, its performance for each topic is measured independently of the other 

topics.  Figure 4.3 provides an algorithmic description of how a consumer updates its user model 

using query clustering and measures the hubs’ resource location performance based on the search 

results for a query.  More details are provided below.  

Source and representation for query clustering   

Query clustering requires a representation for each query/cluster, and a similarity measure between 

queries and clusters.  Because the small number of query terms does not provide a reliable basis for 

clustering queries effectively, a commonly used method to measure query similarity in Web 

retrieval is to count the number of commonly retrieved documents for the queries (Glance 2001) 

(Wen et al. 2002).  This method may work well if the task is to group queries that are very similar.  

However, to group queries by interest, it is quite likely that two queries that express similar interests 

in a general topic (e.g., music) may not have any retrieved document in common even though the 

vocabularies of their retrieved documents may have significant overlap.  Therefore, it is more 

appropriate to measure query similarity based on the contents of the documents returned for each 

query.  Which retrieved documents to choose in generating a representation for the corresponding 

query depends on whether and what type of feedback is available.  With explicit relevance feedback 

from the user, documents relevant to the query are selected.  When feedback is implicit in the form 

of mouse clicks, the clicked documents are treated as relevant documents.  The top-ranked merged 

documents are chosen in the last resort when neither explicit nor implicit feedback is available. 
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After stopwords are removed and stemming is conducted, the contents of the chosen documents are 

used to generate a maximum likelihood unigram language model to represent the corresponding 

query.  The representation of a query cluster is the aggregation of its members’ language models.  

The similarity between a query and a cluster is measured by the Kullback-Leibler divergence 

between their representations. 

Algorithm for query clustering   

The choice of the clustering algorithm is guided by several characteristics of query clustering in 

peer-to-peer networks.  First, because the sets of queries used for clustering are highly dynamic, the 

clustering algorithm should be incremental.  Second, since the size of the query log at each 

individual information consumer is much smaller compared with the query logs of Web search 

engines, the clustering algorithm should be able to work well with limited data.  Third, the 

 UPDATE_USER_MODEL(q) 

/* Update query clusters with results for query q */ 

get a set R of the Dtop top-ranked merged documents for q 

initialize N[●] = 0 

qd = DocRepresentation(R) 

for each document dj in R 

hj = GetSourceHub(dj);  

N[hj]++ 

end 

if exists at least one cluster ci such that KL(ci, qd)<Tcluster 

find the largest cluster c among all ci with KL(ci, qd)<Tcluster 

else 

c = NEWCLUSTER( ) 

initialize NumTopDocs[c][●] = 0 

end 

add q to cluster c 

UpdateTimeStamp(c) 

for each hub hj that responds to q 

NumTopDocs[c][hj] += N[hj] 

end 

 

 NEWCLUSTER( ) 

if the total number of clusters = = Nmax 

sort clusters by their time stamps 

delete the smallest cluster among the r least recently used clusters 

end 

return new cluster 

Figure 4.3  An algorithmic description of a consumer updating the user model and measuring 

the hubs’ resource location performance based on the search results for a query q 
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algorithm should not require the number of clusters or the maximum size of each cluster to be set 

manually as it is unreasonable to assume that these parameters can be determined in advance.  

Based on the above considerations, a single-pass non-hierarchical clustering algorithm is chosen to 

incrementally update existing clusters to include new queries when their representations are similar 

to the old ones, or create new clusters when they are sufficiently different in order to capture the 

user’s new interests.  Neither the number of clusters nor the size of each cluster is predetermined.  

Specifically, a clustering threshold Tcluster is used to determine whether to include a new query into 

existing clusters or to create a new cluster.  Among all the clusters whose K-L divergence-based 

distance measures to a query’s representation are smaller than Tcluster, the query chooses to join the 

largest cluster in order to minimize the “noise” introduced by small clusters of uncharacteristic 

queries.    

The total number of query clusters can be limited in order to control the amount of resources 

dedicated by an information consumer to process and store the language models used to represent 

the clusters.  Although in most cases a consumer may not find it necessary to limit the number of 

query clusters (the average size of the representation for a query cluster is 69KB in our 

experiments), associating each cluster with a time stamp and removing infrequently used clusters 

can reduce clusters of uncharacteristic queries and effectively model the user’s interest shift.  

However, the constraint on Nmax cannot be too tight because if Nmax is too small, existing query 

clusters need to be constantly removed in order to make room for new clusters, resulting in a high 

cluster turnover rate which would prohibit useful clusters representing the user’s persistent interests 

from being formed and stabilized.  When the number of query clusters exceeds Nmax, clusters among 

the r least recently used clusters are removed in an ascending order of cluster size until the number 

of query clusters drops to Nmax.  Small old clusters are removed before big old clusters because they 

are more likely to be clusters of uncharacteristic queries formed by chance.   

Interest-dependent measure for hubs’ resource location performance   

In previous research on using search history to improve federated search performance in P2P 

networks (Ramanathan et al. 2002) (Sripanidkulchai et al. 2003) (Shao and Wang 2005), search 

performance is measured by the number of documents returned for each query.  For the known-item 

search that is common in P2P networks sharing music, videos, and software, this appears to be an 

appropriate measure since typically the search either returns relevant documents or returns no 

document at all.  In contrast, full-text federated search is very likely to return non-relevant 

documents, so the number of documents returned is no longer a good measure of search 

performance.  Because the top-ranked documents are more likely to be relevant than most lower-

ranked documents, when no feedback is available, the information about how many documents 

returned by a hub appear among the overall top-ranked merged documents at a consumer is a more 
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reliable indicator of the hub’s performance for a query.13  Therefore, our approach uses this 

information as a surrogate for relevance feedback to measure each hub’s performance on resource 

location for interest-based hub selection.  A hub’s resource location performance for a query cluster 

is its average performance for the queries in the cluster.   

4.4.2 Resource Selection of Hubs 

When a query is issued, its query terms are used as its representation in determining which existing 

query clusters it is most similar to, measured by the Kullback-Leibler divergence between the query 

and existing query clusters that exceed a certain size Smin (to avoid classifying queries to clusters of 

uncharacteristic queries formed by chance and to make the description of the topic represented by 

each cluster more reliable).  A classification threshold Tclassify is used to distinguish characteristic 

queries representing long-term interests from uncharacteristic queries representing transient 

information needs.   

Different search strategies are applied to characteristic versus uncharacteristic queries.  A 

characteristic query is issued to the hubs selected using interest-based hub selection with a small 

search radius, which selects hubs based on their measured resource location performance for the 

query clusters the query is most similar to.  An uncharacteristic query is issued to randomly selected 

hub(s) with a default, larger search radius.   

A weighted k-nearest neighbor approach is used to increase the robustness of interest-based hub 

selection, where the value of k is determined by Tclassify and the weights are related to the similarities 

between the query and the clusters.  Each hub’s weighted performance values for different clusters 

are accumulated and hubs are ranked and selected according to the accumulated performance.  

Figure 4.4 describes in detail the initial hub selection conducted by a consumer for a query.   

The effectiveness of interest-based hub selection depends on whether the hubs capable of locating 

relevant contents efficiently and effectively for past queries perform well for future queries that 

express similar interests.  A hierarchical P2P network in which the information providers with 

similar contents connect to the same hubs (content-based locality) can best support effective 

interest-based hub selection since contents relevant to similar interests tend to be similar to each 

other.  The network can provide this property by using dynamic topology evolution (Chapter 6) to 

regulate its content placement.   

                                                 
 
13 Note that this heuristic is essentially the same in nature as the one used to learn thresholds on the number of providers a hub 

selects for a query (Section 4.3.2). 
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4.5 Result Merging  

In a hierarchical P2P network, each hub is responsible for merging results returned by its 

neighboring providers.  If each provider can provide summary statistics (e.g., document length and 

how often each query term matches) for each of the retrieved documents, then a hub can recalculate 

very accurate normalized document scores and use them to generate an integrated ranked list of 

documents, which is essentially Kirsch’s algorithm for result merging (Kirsch 1997).  However, 

global corpus statistics are also required in recalculating document scores.  To avoid the cost of 

acquiring and maintaining global corpus statistics at each hub which require aggregating 

information from all the hubs in the network, we propose for each hub to use the aggregation of the 

resource descriptions of its neighboring providers and neighborhoods to substitute for the corpus 

statistics.  We refer to the algorithm that uses summary statistics of the returned documents 

(Kirsch’s algorithm) and the aggregation of resource descriptions as corpus statistics to recalculate 

document scores as the extended Kirsch’s algorithm.     

A consumer may also need to merge results returned by multiple hubs.  Because consumers don’t 

maintain comprehensive information about the contents of other peers and corpus statistics as do 

 INITIAL_HUB_SELECTION(q) 

/* Compare query q to existing query clusters */ 

characteristic = false 

initialize M[●] = 0 

qt = TermRepresentation(q) 

for each cluster ci 

if KL(ci, qt)<Tclassify  AND |ci|≥Smin 

characteristic = true 

UpdateTimeStamp(ci) 

for each hub hj recorded by cluster ci  

M[hj] += NumTopDocs[ci][hj]/|ci|×exp(−KL(ci, qt))  

end 

end 

end 

/* Classify query q as characteristic or uncharacteristic for retrieval */ 

if characteristic  

SetTimeToLive(q, ttlcharacteristic) 

Sort hubs by M[●] 

send q to the m top-ranked hubs 

else 

SetTimeToLive(q, ttluncharacteristic) 

send q to randomly selected m hubs  

end 

Figure 4.4  An algorithmic description of initial hub selection by a consumer for a query q 
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hubs, they cannot use advanced result-merging algorithms.  Thus only simple, but probably less 

effective, merging methods can be applied at consumers.  For example, results can be merged 

directly based on the document scores returned by hubs (“raw score merge”) or in a round robin 

fashion.   

4.6 Summary 

In this chapter, we define a network search model to describe a full-text federated search 

mechanism in a hierarchical P2P network with the network architecture described in Chapter 3.  

Although adapting existing approaches for a single, centralized directory service in distributed 

information retrieval to multiple, regional directory services in a hierarchical P2P network already 

gives the network new capability to support efficient query routing (resource selection) and result 

merging, the network search model goes beyond simple adaptation by introducing new methods in 

resource representation, resource selection, as well as result merging in view of new characteristics 

and requirements of full-text federated search in P2P networks.  Specifically, the main new features 

of our network search model are:  

1. We define the concept of a neighborhood and propose to use exponentially decayed resource 

descriptions of neighborhoods for resource selection of hubs in order to avoid “shortsighted” 

query routing that cannot see beyond the horizon of direct neighbors at the hub level;  

2. We propose several unsupervised threshold learning methods for each hub to learn its query-

specific provider selection threshold autonomously and adaptively so that extensive heuristic 

threshold tunings are no longer needed for resource selection of providers in decentralized and 

dynamic environments;  

3. We develop an approach based on dynamic, adaptive query clustering for each information 

consumer to learn a user model representing a person’s various short-term and long-term 

interests based on past search results, that can be used to improve resource selection 

performance for future queries; and  

4. We modify Kirsch’s algorithm for result merging to generate integrated relevance-based 

rankings of documents without the cost of acquiring and maintaining global corpus statistics at 

each hub. 

Among the above new development, automatic threshold learning for resource selection of 

providers and user modeling that distinguishes between persistent and transient interests are 

particularly significant because they tackle difficult problems that existing approaches either have 

avoided or have not solved well.  They are not only useful to federated search in P2P networks, but 

may also benefit other applications that require thresholding or user modeling.   
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Although our network search model is expected to be more effective, efficient and robust when the 

network evolution model (Chapter 6) is used to dynamically evolve the network topology into one 

with the desired search-enhancing properties (Section 3.2), without the support from network 

evolution, the network search model is still capable of providing a better combination of accuracy 

and efficiency for full-text federated search than existing common alternatives, as demonstrated in 

next chapter.  
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C h a p t e r  5  

EVALUATION OF NETWORK SEARCH MODEL 

This chapter evaluates the performance of our proposed approaches to full-text federated search in 

P2P networks.  The dataset and evaluation methodology are first described in Sections 5.1 and 5.2, 

followed by the experimental results in Section 5.3. 

5.1 Datasets 

There has been no standard data for evaluating the performance of full-text federated search in P2P 

networks, so we developed two P2P testbeds based on the TREC WT10g and .GOV2 test 

collections, two standard research collections associated with IR research at the TREC conference14.  

We briefly describe below how we generated the contents, queries, and topologies for simulating 

federated search in a medium-sized hierarchical P2P network of 2,500 text digital libraries and a 

large-sized hierarchical P2P network of 25,000 text digital libraries.   

5.1.1 Contents 

WT10g is a 10 gigabyte, 1.69 million English Web document collection used for TREC Web 

Tracks in 2000 and 2001 (Hawking 2000) (Bailey et al. 2001).  By combining all documents 

crawled from a single website into a single collection, the WT10g data was divided into 11,485 

collections.  2,500 collections were randomly selected from them, consisting of a total number of 

1,421,088 documents.15  The maximum, minimum, and average numbers of documents in a selected 

collection are 26,505, 8, and 568 respectively.  Each of the 2,500 collections defined a provider 

(text digital library) in a medium-sized hierarchical P2P network (Lu and Callan 2003).  This 

testbed has also been used by other researchers to study and evaluate federated search in P2P 

networks (Renda and Callan 2004) (Klampanos et al. 2005) (Castiglion and Melucci 2007). 

.GOV2 consists of 25 million documents crawled from .gov sites in early 2004, including HTML 

and text, along with the extracted contents of PDF, Word, and postscript files (Clarke et al. 2004).  

This collection was used for TREC Terabyte Tracks in 2004 and 2005.  Compared with the 

websites contained in WT10g, .gov websites are generally more homogeneous and have higher 

                                                 
 
14 http://trec.nist.gov/ 

15 http://boston.lti.cs.cmu.edu/callan/Data/P2P/trecwt10g-2500-bysource.v1.txt.gz  
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quality contents.  The same URL-based partitioning approach was used to divide the data into 

collections, and 25,000 collections with a total number of 11,218,349 documents were selected to 

define the information providers in a large P2P network.16  The maximum, minimum, and average 

numbers of documents in a selected collection are 694,505, 5 and 449 respectively.       

Table 5.1 includes examples of the providers in the networks.   

5.1.2 Queries 

The queries provided by the U. S. National Institute for Standards and Technology (NIST) for the 

WT10g and .GOV2 test collections are TREC topics 451-550 and 701-800 respectively.  Both topic 

sets came with standard TREC relevance assessments that indicate which documents are relevant to 

each query.  We refer to the title fields of these queries used in our experiments as TREC queries.  

Table 5.2 shows examples of TREC queries.    

                                                 
 
16 http://boston.lti.cs.cmu.edu/callan/Data/P2P/trecgov2-25000-bysource.v1.txt.gz 

Table 5.1  Examples of collections used to define providers in P2P networks. 

Source Provider URL # Docs 

WT10g aqui.ibm.com 96 

WT10g www.solutions.net 590 

WT10g www.cityscape.co.uk 11,946 

.GOV2 smmc.ca.gov 204 

.GOV2 www.bls.gov/mfp 47 

.GOV2 www.gov.state.ak.us/ltgov/elections 1,504 

Table 5.2  Examples of TREC queries. 

Number Content 

452 do beavers live in salt water 

454 parkinson's disease 

 462 real estate and new jersey 

478 baltimore 

716 spammer arrest sue 

733 airline overbooking 

757 murals 

777 hybrid alternative fuel cars 
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To study the performance of different methods for federated search in various P2P networks, 

sometimes a large number of queries is desired and clearly TREC queries are far from enough.  For 

the medium-sized network, because there are no available queries targeted specifically at the 

collections selected from WT10g, to generate a large amount of queries in a controlled manner, we 

extracted key terms from the documents in WT10g and use them as queries.  Prior research shows 

that 85% of the queries posted at Web search engines have 3 or less query terms (Jansen et al. 

2000), so to be realistic, for most documents, we should only extract a few key terms as queries.  

We tried a variety of approaches to rank and extract key terms from documents.  The best approach 

(judged manually) was to use a combination of unigram and bigram document language models, 

and some heuristic rules to rank document terms or term pairs for use as query terms.  We describe 

this approach in more detail below. 

We regard the probability Pemp(t | d) that a term occurs in a document as a linear interpolation of the 

probability Pcore(t | d) that the term is generated by the unigram document language model, and the 

probability P(t | background) that the term is generated by the background (general English) model: 

                                            ) | P()1() | (P  ) | (P coreemp backgroundtdtdt λλ −  +=                                    (5.1) 

where λ is the smoothing weight in this mixture model, and use Pcore(t | d) to evaluate how 

important a term is to the document.  Given Pemp(t | d) and P(t | background), Pcore(t | d) can be 

calculated using the algorithm described in (Zhang, Y et al. 2002).  Maximum likelihood estimation 

with simple Laplacian smoothing is used to calculate Pemp(t | d).  The value of P(t | background) is 

based on the term frequency of term t in the entire collection of WT10g. 

The bigram document language model approach uses P(t1, t2 | d) to measure the importance of a 

“phrase”17 to the document.  It is calculated as a mixture of maximum likelihood estimates: 
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where c(•) denotes count, P(t1 | d) and P(t2 | d) are maximum likelihood estimates (with Laplacian 

smoothing) of the probabilities that document d generates terms t1 and t2 respectively, and            

c(t1, t2 | d) / c(t1 | d) and  c(t1, t2 | d) / c(t2 | d) are un-smoothed empirical estimates of P(t2  | t1,  d) and 

P(t1  | t2,  d) respectively. 

The unigram and bigram document language models are combined to rank document terms or term 

pairs and the top-ranked ones are selected as query terms based on the following heuristic rules: 

                                                 
 
17 A phrase here refers to a pair of adjacent (non-stopword) terms in the document. 
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1. The k-stem stemmer (Krovetz 1993) is used because the stemmed terms it generates are easier 

for people to understand, and because stemming a term more than once does not change it 

further; 

2. Single-character terms are eliminated because it is rare to have single-character query terms; 

3. Terms that begin with numbers are eliminated; 

4. Terms that belong to a set of Web-specific stopwords such as “please”, “thank”, “previous” and 

“next” are eliminated;  

5. Terms occurring in the title of the document are emphasized by a weight of 1.5; 

6. If the two top-ranked terms based on the unigram document language model appear to be a 

“phrase” in the top-ranked “phrases” based on the bigram document language model, these two 

terms are replaced by this “phrase”; and 

7. The number of terms selected from a document is proportional to the length of this document, 

with an upper bound of 6. 

A total number of 1,655,765 queries were generated from the WT10g collection using the approach 

described above (Lu and Callan 2003).18  We refer to these automatically generated queries as 

WT10g queries.  Table 5.3 shows the distribution of query lengths and randomly selected examples 

of WT10g queries for different query lengths.  Experimental results not reported here indicated that 

although the search performance for the individual queries varied, the average search accuracy over 

random subsets of WT10g queries had similar values as long as each subset included at least 1,000 

queries, so we use 1,000 WT10g queries to evaluate full-text federated search in the medium-sized 

network.  The selected subset of queries has the same distribution of query lengths as shown in 

Table 5.3.   

For the large-sized network, we selected 1,000 queries from a query set provided by AOL, which 

were collected from a one-month period on AOL Search in April 2006.  The set consists of 

2,149,827 web queries where each query was collected when a user clicked on a search result from 

a *.gov domain.  For each query, the domain clicked and the frequency of the action are also 

provided.  Our sampling strategy was to sample among those queries whose corresponding clicked 

domains are contained in the contents of the large-sized network, with different percentages for 

queries of different frequencies (as shown in Table 5.4).  The distribution of query lengths for the 

selected queries are similar to that of WT10g queries.  We refer to these queries as GOV queries. 

                                                 
 
18 http://boston.lti.cs.cmu.edu/callan/Data/P2P/trecwt10g-query-bydoc.v1.txt.gz 
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5.1.3 Topologies 

This chapter focuses on comparing our network search model with existing common alternatives 

which are widely used in peer-to-peer networks without regulated content placement or carefully 

controlled topology evolution.  Therefore, the topologies for both networks were randomly 

generated (i.e., random hub-hub, hub-provider, and hub-consumer topologies).  The results of our 

network search model in different types of network topologies are presented in Chapter 7 as part of 

the evaluation on the effectiveness of the network evolution model.   

The number of hubs was chosen to be 32 for the medium-sized network.  Each hub has 4 hub 

neighbors.  The number of hubs in the large network is 256, eight times as many as the number of 

hubs in the medium-sized network.  Each hub has at least 4, at most 16, and on average 9 hub 

neighbors.  Hence for both networks, each hub is directly connected to quite a small percentage of 

the total number of hubs.  The diameter (the maximum number of hops between any two hubs in the 

Table 5.3  Distribution and randomly selected sample WT10g queries. 

Length Distribution Sample Query 

1 6.91% sdtech 

2 39.79% malignant hyperthermia 

3 29.16% cardiac surgery; anesthesia 

4 22.66% trade remedy; nafta law 

5 1.22% drug  drive  collision  police  investigate 

6 0.26% quarter  company  revenue  increase  sybase  cash 

Table 5.4  Distribution and randomly selected sample GOV queries. 

Frequency on AOL Distribution Sample Query 

0-100 30.00% foreclosure houses 

100-250 10.00% California commission on teacher credentialing 

250-500 10.00% citizenship 

500-750 10.00% john adams 

750-1,000 10.00% national institute of health 

1,000-2,500 10.00% us savings bonds 

2,500-5,000 5.00% bird flu 

5,000-7,500 5.00% nasa 

7,500-10,000 5.00% irs forms 

10,000- 5.00% social security 
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network) of the hub-hub topology is 4 for the medium-sized network and 5 for the large-sized 

network.  Each information provider or consumer connects to only 1 hub.              

5.2 Evaluation Methodology 

To shield the evaluation of full-text federated search from factors that affect search performance 

due to unpredictable and hard-to-control network conditions, we ignore the properties of the 

underlying physical layer and the interactions between logical and physical layers so that the 

evaluation can focus on how the search mechanism executed at the logical layer of the network 

impacts search performance.  Furthermore, a “static” network setting (i.e., fixed topology without 

peer arrivals, departures or failures) is assumed in order to compare different methods of resource 

representation, resource selection, and result merging for federated search without the impact of 

dynamic content or topology change.   

Although our full-text search mechanism does not assume digital libraries to use the same document 

retrieval algorithm, for the convenience of experiments, each information provider in the 

hierarchical P2P network used the K-L divergence document retrieval algorithm to conduct full-text 

ranked retrieval (Ogilvie and Callan 2001).    

The performance of federated search is measured by search accuracy as well as efficiency.  Average 

precision at given document cut-off values is standard rank-based measure commonly used to 

evaluate the performance of full-text ranked retrieval in distributed information retrieval, which 

computes the average precision over a set of queries when the 5, 10, 15, 20, or 30 top-ranked 

documents have been seen for each query (Callan 2000).  Compared with 11-point average 

precision versus recall, average precision at given document cut-off values is more closely 

correlated with user satisfaction (Buckley and Voorhees 2004).  Average precision at given 

document cut-off values produces a curve of multiple points to evaluate the performance of the top-

ranked documents.  However, to evaluate federated search in peer-to-peer networks, a single 

precision value is often preferred in order to conveniently compare different methods in various 

network settings.  Average precision over a range of document cut-off values was chosen to 

minimize the evaluation error rate associated with precision at a single document cut-off value (Hull 

1993) (Buckley and Voorhees 2000).  Specifically, for each query’s result, its precisions at 

document cut-off values 1-30 are averaged to get the average precision over 1-30 document cut-

offs.  The average precisions for the results of various queries can be further averaged to get the 

overall average precision over 1-30 document cut-offs for a set of queries.  A similar measure is 

used in (Stenmark 2005) to evaluate retrieval performance. 

In addition to rank-based precision, set-based recall (Baeza-Yates and Ribeiro-Neto 1999) is also 

used to evaluate the overall percentage of relevant documents full-text federated search is able to 

retrieve when only part of the network is reached.  It is calculated as:   
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||

||

A

r
recall =                                                                            (5.3) 

where A is the set of relevant documents for a query, and r is the intersection of A and the set of 

documents returned by search in the P2P network.  |•| denotes the size of the set.  Results are 

averaged over a set of queries.     

Measuring search accuracy typically requires relevance judgments.  The standard relevance 

assessments supplied by NIST can be used for TREC queries.  For WT10g and GOV queries, 

because it is expensive to obtain relevance judgments for a large amount of queries, we chose to use 

the retrieval results from a single large collection as the baseline (“single collection” baseline) to 

measure how well federated search in P2P networks could locate those documents considered very 

relevant by centralized search.  The single large collection was constructed by aggregating all of the 

providers’ contents in the P2P network.  The top-ranked documents retrieved from this single large 

collection for a query are treated as the set of “relevant” documents for this query.  The numbers of 

“relevant” documents per query are 50 for the medium-sized network and 200 for the large-sized 

network.  These values were chosen based on the average numbers of relevant documents for TREC 

queries 451-550 and 701-800 respectively.  Because evaluation based on the single collection 

baseline essentially measures the percentage of overlap between the documents returned by 

centralized search and those by federated search in the P2P network, we refer to the measures 

calculated using the “single collection” baseline as “overlap precision” or “overlap recall” to 

distinguish them from values obtained using real relevance judgments.  Although this methodology 

is not ideal, it is not unreasonable because distributed retrieval systems are not yet better than the 

“single collection” baseline, so the ability of a P2P network to mimic a good centralized search 

engine is an acceptable indicator of its performance.  In fact, our prior experimental results show 

that similar conclusions regarding the performance of federated search in P2P networks can be 

drawn using automatically generated queries and the “single collection” baseline compared with 

using TREC queries and real relevance judgments (Lu and Callan 2004b).   

Given the real or pseudo relevance judgments described above, Table 5.5 shows the relevant 

content distributions of different sets of queries in the medium-sized and large-sized networks with 

random topologies.  These values suggest about one relevant provider per relevant hub, which is 

what we would expect from a random topology.  WT10g queries have the most concentrated 

Table 5.5  Relevant content distributions of different query sets in the networks. 

Query Set Average # Relevant Providers Average # Relevant Hubs 

TREC 451-550 25 (of 2,500) 14 (of 32) 

TREC 701-800   99 (of 25,000)   76 (of 256) 

WT10g   4 (of 2,500)   3 (of 32) 

GOV   68 (of 25,000)   58 (of 256) 
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relevant contents, while TREC queries 701-800 have the most scattered relevant contents.  The big 

differences in the relevant content distributions of different sets of queries may affect the relative 

effectiveness of various resource selection methods, as we shall see in Section 5.3. 

Search efficiency is measured by the average number or percentage of the hubs or providers 

reached by the query messages for each query.  

5.3 Experimental Results 

As mentioned earlier, this chapter focuses on evaluating our network search model in peer-to-peer 

networks with randomly-generated topologies, to demonstrate that the network search model can 

provide a better combination of accuracy and efficiency than existing common alternatives even 

without the support of the network evolution model.  Because the effectiveness of interest-based 

initial hub selection conducted by information consumers largely relies on regulated content 

placement and carefully controlled topology evolution, we evaluate it together with our network 

evolution model in Chapter 7 and focus here on the other main components of full-text federated 

search in a hierarchical P2P network, e.g., resource representation, resource selection of 

providers/hubs by hubs, and result merging.  In order to separate the effect of a particular 

component on federated search from those of the others, we evaluated our approaches to full-text 

federated search in a hierarchical P2P network progressively.  To be specific, starting from a 

baseline setting of flooding for query routing, we modified the setting progressively to apply our 

methods one at a time and compared the system performance before and after each modification 

until all of our methods have been applied and evaluated.   

We devote five sections to the experimental results with regard to evaluating our approaches to 

resource selection of providers (Section 5.3.1), thresholding for resource selection of providers 

(Section 5.3.2), resource selection of hubs (Section 5.3.3), resource representation (Section 5.3.4), 

and result merging (Section 5.3.5).  Table 5.6 lists the experimental settings used for the results in 

different sections.  A dark gray cell in the table marks the component to be evaluated in the 

corresponding section, and any component already evaluated in one of the preceding sections is 

listed in a light gray cell.  “Full-text” in the table refers to our approach to federated search, which 

uses the K-L divergence resource selection algorithms described in Section 4.3 for resource 

selection by hubs, or the K-L divergence document retrieval algorithm (Ogilvie and Callan 2001) 

for document retrieval.  The other methods listed in the table will be described in the corresponding 

sections.     

For all the experimental results reported here, each query was issued to the network by a consumer 

connecting to a hub located farthest on average from relevant content in the network.  For resource 

representation, because reducing the sizes of resource descriptions by pruning low-frequency terms 

is very simple and efficient to use in practice, and previous experimental results indicate that it 

enables dramatic savings in communication and storage costs without degradation in search 
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accuracy (Lu and Callan 2003a), the pruned resource descriptions were used instead of the full 

descriptions.  In particular, all the terms that occurred less than twice in a provider’s description and 

all the terms that occurred less than five times in a hub’s description were discarded.  Table 5.7 

shows the average sizes of different resource descriptions after pruning for the two testbeds.  The 

average size of a provider description in the large network was smaller than that in the medium-

sized network due to the smaller average number of documents per provider and the more coherent 

Table 5.6  The experimental settings used for the results in different sections                   

to evaluate different components in federated search. 

Setting Sec. 5.3.1 Sec. 5.3.2 Sec. 5.3.3 Sec. 5.3.4 Sec. 5.3.5 

Document 

retrieval 
Full-text Full-text Full-text Full-text Full-text 

Description for 

hub-provider 

routing 

Pruned 

full-text 

Pruned 

full-text 

Pruned 

full-text 

Pruned 

full-text 

Pruned 

full-text 

Ranking of 

providers 

Full-text / 

Random / 

Size-based / 

Flooding 

Full-text Full-text Full-text Full-text 

Selection of 

providers 

Top 

5%−100% 

Learned 

thresholds / 

Top 

5%−100% 

Learned 

thresholds 

Learned 

thresholds 

Learned 

thresholds 

Ranking of 

hubs 
Flooding Flooding 

Full-text / 

Random /  

Degree-based / 

Size-based /  

Flooding 

Full-text Full-text 

Selection of 

hubs 
N/A N/A Top 1 Top 1 Top 1 

Description for 

hub-hub 

routing 

N/A N/A 
Decayed 

neighborhood 

Direct        

neighbor / 

Decayed 

neighborhood /   

Non-decayed 

neighborhood 

Decayed 

neighborhood 

Result 

merging 

Extended 

Kirsch’s 

Extended 

Kirsch’s 

Extended 

Kirsch’s 

Extended 

Kirsch’s 

Centralized 

merge /  

Extended 

Kirsch’s / 

Raw score 

merge 
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contents in the collections of the large network.  However, because the large network had on 

average more neighboring providers and hubs per hub, its average sizes of hub and neighborhood 

descriptions were larger.  For resource selection, the smoothing parameter µ in Dirichlet smoothing 

was set to be 1000, a value which has been shown to work well for ad-hoc retrieval over various 

TREC test collections (Zhai and Lafferty 2001).  It is also shown in (Zhai and Lafferty 2001) that 

retrieval using Dirichlet smoothing is quite robust when the value of µ is chosen from a wide range 

(500-10000).  The number of the top-ranked documents returned by each provider that received a 

query was up to 50.  Each hub used its result merging algorithm to merge the ranked lists returned 

by its neighboring providers and returned the top-ranked documents (50 for the medium-sized 

network and 200 for the large-sized network) to the consumer that issued the query.  The 

aggregation of the descriptions a hub maintained for its neighbors was used as background model 

for resource selection and as substitute corpus statistics for result merging conducted by the hub.  

Each consumer merged the ranked lists returned by multiple hubs directly using the raw score 

merge method (Section 4.5).      

5.3.1 Resource Selection of Providers 

The experiments reported in this section focused on comparing the performance of federated search 

using full-text resource selection with that using random selection, size-based selection or flooding 

for hub-provider query routing.  Each query was broadcast to all the hubs in the network.  On 

receiving a query, each hub i) used the K-L divergence resource selection algorithm to rank its 

neighboring providers (Section 4.3.1) and forwarded the query to the top-ranked providers up to a 

certain percentage of the total number of its neighboring providers (“full-text resource selection”), 

ii) randomly forwarded the query to a subset of its neighboring providers to yield a similar number 

of query messages as i) (“random selection”), iii) ranked its neighboring providers by each one’s 

collection size (i.e., total number of documents) and forwarded the query to the top-ranked 

providers up to a certain percentage of the total number of its neighboring providers (“size-based 

selection”), or iv) flooded the query to all neighboring providers (“flooding”).   

Table 5.7  Average sizes of pruned resource descriptions. 

Resource Testbed Average Size 

Medium 58KB 
Provider 

Large 30KB 

Medium 530KB 
Hub 

Large 585KB 

Medium 5.8MB 
Neighborhood 

Large 15.5MB 
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In order to focus the comparison on the effectiveness of different methods for hub-provider query 

routing, we assumed that no matter what method was used for hub-provider query routing, each hub 

used the extended Kirsch’s algorithm based on the substitute corpus statistics generated by 

aggregating the resource descriptions of neighboring providers each hub acquired for result 

merging.  In real operational environments, because flooding and random selection don’t have to 

acquire resource descriptions from providers, and size-based selection only requires size 

information instead of full-text resource descriptions, they may not have comprehensive corpus 

statistics for result merging so that only simple, but probably less effective, merging methods (such 

as raw score merge) can be applied, yielding even worse results than those shown here.   

Figures 5.1-5.4 show the experimental results for different sets of queries and network sizes using 

different methods of hub-provider query routing.  The measured rank-based or set-based accuracy 
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               (a) precision with real relevance judgments                         (b) recall with real relevance judgments 
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         (c) precision with the “single collection” baseline                  (d) recall with the “single collection” baseline 

Figure 5.1  The search performance of different methods of hub-provider query routing      

for TREC queries 451-550 in the medium-sized network. 
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values (y-axis) are plotted against the percentage of the neighboring providers each hub selected to 

route query messages (x-axis).  Since the percentage of the neighboring providers selected per hub 

was linearly correlated with the number of query messages routed in the network, it can be regarded 

as an indirect measure of search efficiency.  The higher the percentage, the lower the efficiency.  

Flooding always had a value of 100% for the x coordinate since all of the neighboring providers 

were selected by each hub.  However, for greater contrast between the accuracy of flooding and 

those of other resource selection methods, the performance of flooding was depicted in the figures 

by a straight line instead of a single point.     

Using the evaluation results of individual queries as samples, paired two-sided sign tests were 

applied to test whether the difference between full-text resource selection and random or size-based 

selection in search accuracy was statistically significant at a given level of search efficiency.  The 

vertical dashed lines in the figures mark the ranges within which full-text resource selection had a 

statistically significant improvement at the 0.01 significance level.      

Figures 5.1 (a)-(b) depict the results for TREC queries 451-550 in the medium-sized P2P network 

using real relevance judgments.  Compared with flooding, random selection could greatly improve 

search efficiency at the cost of reducing accuracy.  Its increase in search accuracy was nearly linear 

as the percentage of the neighboring providers selected per hub increased, indicating that random 

selection didn’t have the ability to effectively identify the providers with high likelihood of 

providing relevant content and restrict query routing to them.  In contrast, full-text resource 

selection could significantly improve search efficiency without degrading accuracy much.  Its 

growth in search accuracy was much faster at the beginning when only a small percentage of the 

providers were selected.  Furthermore, its average precision over 1-30 document cut-offs could be 

very close to that of flooding even if its set-based recall was lower (which might be caused by the 
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         (a) precision with the “single collection” baseline                 (b) recall with the “single collection” baseline 

Figure 5.2  The search performance of different methods of hub-provider query routing      

for WT10g queries in the medium-sized network. 
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wide distribution of relevant contents in the network), demonstrating that using term frequency 

information enabled resource selection to effectively estimate each provider’s likelihood of 

satisfying the user’s information need so that search didn’t have to sacrifice efficiency for accuracy.  

The effectiveness of size-based selection relied on the assumption that information providers with 

more documents were more likely to contain relevant documents, which was the case for some 

queries but not for all queries.  Therefore, although size-based selection was more effective than 

random selection for the tested queries, its search accuracy exhibited high variance among 

individual queries, and was far from comparable to the performance of full-text selection (especially 

recall) when reaching a small percentage of the providers.    

Figures 5.1 (a)-(b) also include the evaluation results of using a centralized search engine to retrieve 

from the single collection aggregating all of the providers’ contents (Section 5.2) so that we can 
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            (a) precision with real relevance judgments                          (b) recall with real relevance judgments 
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     (c) precision with the “single collection” baseline                  (d) recall with the “single collection” baseline 

Figure 5.3  The search performance of different methods of hub-provider query routing      

for TREC queries 701-800 in the large-sized network. 
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compare the performance of centralized search and federated search.  Considering that the overall 

performance of full-text federated search was affected by the performance of every single 

component (resource representation, resource selection, document retrieval, result merging), and 

federated search mostly only required a small number of selected providers to each return up to 50 

documents and merged them without any global corpus statistics, the very similar performance of 

centralized search and federated search using full-text resource selection is an encouraging sign of 

the effectiveness of full-text federated search in P2P networks.   

To demonstrate the effectiveness of using the “single collection” baseline to evaluate search 

accuracy, Figures 5.1 (c)-(d) plot the results for TREC queries 451-550 in the medium-sized 

network based on the “single collection” baseline instead of real relevance judgments.  If we 

compare them to Figures 5.1 (a)-(b), we can see that although the values were in different scales, 

the shapes of the curves look so similar that the same conclusions can be drawn from them with 

respect to the relative effectiveness of different methods.  Therefore, the “single collection” baseline 

was effective in evaluating federated search performance.   

Figures 5.2 (a)-(b) display the results for the 1,000 WT10g queries in the medium-sized P2P 

network using the “single collection” baseline.  Compared with the results for TREC queries 451-

550, the performance difference between full-text and random or size-based selection of providers 

was bigger and that between full-text and flooding was smaller.  This can be explained by the fact 

that relevant contents for WT10g queries are more concentrated because they are distributed to a 

smaller number of information providers in the medium-sized network than those for TREC 

queries, making it more difficult for random or size-based selection to hit the providers with 

relevant contents by luck, but easier for full-text resource selection to locate most relevant contents 

even with only a small percentage of the providers selected.  Despite the above difference, similar 

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

percentage of the neighboring providers selected per hub

a
v
e

ra
g

e
 o

v
e

rl
a

p
 p

re
c
is

io
n

 o
v
e

r 
1

-3
0

 d
o

c
u

m
e

n
t 
c
u

t-
o

ff
s

statistically 
significant 
                  flooding  

full-text 
size-based
random    

 
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

percentage of the neighboring providers selected per hub

s
e

t-
b

a
s
e
d

 o
v
e

rl
a

p
 r

e
c
a
ll

statistically significant  
   

flooding  
full-text 
size-based
random    

 
         (a) precision with the “single collection” baseline                 (b) recall with the “single collection” baseline 

Figure 5.4  The search performance of different methods of hub-provider query routing      

for GOV queries in the large-sized network. 
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conclusions with regard to the relative effectiveness of different resource selection methods can be 

drawn using TREC queries and WT10g queries.     

Figures 5.3 (a)-(d) show the experimental results for TREC queries 701-800 in the large-sized P2P 

network using real relevance judgments or the “single collection” baseline.  The figures look very 

similar to those for TREC queries 451-550 but federated search in the large-sized P2P network had 

higher values for both precision and recall.  The better results of the large-sized network were due to 

the facts that the contents from .gov sites usually have higher quality and less noise than the 

contents provided in the WT10g collection, and the number of relevant documents is in general 

much larger for TREC queries 701-800 than for TREC queries 451-550.   

The results for the 1,000 GOV queries in the large-sized P2P network using the “single collection” 

baseline are depicted by Figures 5.4 (a)-(b).  Compared with the results of WT10g queries in the 

medium-sized network, the difference between full-text and random or size-based selection was 

smaller for GOV queries in the large-sized network, again due to the differences in the distributions 

of “relevant” contents for different sets of queries.  The distributions of “relevant” contents for 

GOV queries are much less concentrated in the large-sized P2P network, giving random or size-

based selection more chances to hit relevant providers.  Even so, random or size-based selection still 

significantly underperformed full-text resource selection in recall. 

In summary, full-text resource selection gave a much better combination of search accuracy and 

efficiency than random selection, size-based selection or flooding for hub-provider query routing.  

With similar search efficiency, the improvement of full-text selection in precision over random or 

size-based selection was statistically significant when a small-to-medium percentage of the 

providers (< 30%-50%) were selected.  Its advantage in recall was statistically significant in a much 

wider range of settings.  In addition, although using the “single collection” baseline as the set of 

relevant documents relied on the assumption that search using a centralized index was effective in 

satisfying the user’s information needs (which was not necessarily the case as demonstrated by the 

not-so-high accuracy of centralized search for TREC queries 451-550), the same conclusion 

regarding the relative effectiveness of various methods could be drawn using either WT10g or GOV 

queries with the “single collection” baseline, or TREC queries with real relevance assessments or 

the “single collection” baseline.  This indicates that the automatically generated queries and the 

“single collection” baseline are useful resources in studying federated search in P2P networks.           

5.3.2 Thresholding for Resource Selection of Providers 

The effectiveness of different threshold learning methods (Section 4.3.2) for resource selection of 

providers was evaluated by comparing the performance of federated search using resource selection 

of providers based on the learned thresholds with that based on fixed thresholds.  Resource selection 

of providers based on a learned threshold used i) set-based threshold learning with original ranking 

scores (method I), ii) set-based threshold learning with normalized ranking scores (method II),      
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iii) individual-based threshold learning with normalized ranking scores (method III), iv) the 

combination of methods I and II, or v) the combination of methods I, II, and III.  Resource selection 

of providers based on a fixed threshold selected the top-ranked providers up to a certain percentage 

of the total number of neighboring providers.   

The number of the top-ranked merged documents regarded as “relevant” documents for each 

training query (r value) was 50.  The parameter b in individual-based threshold learning was 

empirically chosen to be 3 to value precision more than recall.  The parameter n in set-based 

threshold learning which determined the minimum number of “relevant” documents that a provider 

must have for it to be considered relevant with respect to a query was set to 5.  These parameter 

values worked effectively for hubs that had different numbers of neighbors and covered different 

content areas.  The settings for the other components of full-text federated search were the same as 

those used in previous section.   

TREC queries were used for both threshold learning and evaluating the effectiveness of the learned 

thresholds.  Each experiment using the learned thresholds for TREC queries had several runs in a 

way similar to leave-one-out cross validation, i.e., 99 queries were used as training queries to learn 

each hub’s threshold for testing on the 1 query that was left out, and the results from different runs 

were averaged to get the final result.  When WT10g queries were used for testing in the medium-

sized network, TREC queries 451-550 were used as training queries.  When GOV queries were 

used for testing in the large network, TREC queries 701-800 were used as training queries.  Because 

all threshold learning methods were unsupervised, only queries and retrieved documents were used 

for training.  The relevance judgments provided by NIST for TREC queries were not used to learn 

the thresholds for resource selection of providers.   

Figures 5.5 (a)-(d) plot the search performance for TREC queries 451-550 and WT10g queries 

when different thresholding methods were used for full-text resource selection of providers in the 

medium-sized network.  Figures 5.6 (a)-(d) show the results for TREC queries 701-800 and GOV 

queries in the large-sized network.  The results from different query sets and networks consistently 

show that method I, method II, and method III yielded similar precision and slightly better recall 

compared with the corresponding fixed thresholds with the same search efficiency.  Method I (set-

based threshold learning with original ranking scores) selected the most providers on average 

among the tested threshold learning methods, but its search performance was negatively affected by 

the “outlier” queries whose average term probabilities in the hub’s description didn’t correlate with 

the providers’ ranking scores for them.  The methods based on normalized ranking scores (method 

II and method III) selected fewer providers on average than the other threshold learning methods 

because threshold learning with normalized ranking scores tended to exaggerate the differences 

between ranking scores and therefore underestimate the number of relevant providers.  Method III 

(individual-based threshold learning with normalized ranking scores) was even more conservative 

since its parameter was set to value precision much more than recall.  The combination of methods I 

and II, and the combination of methods I, II, and III enabled slightly better combination of search 

efficiency and accuracy compared with individual threshold learning methods.  Particularly, the 
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combinations of methods I, II, and III yielded the best search performance among all the tested 

thresholding methods (learned or fixed) when accuracy and efficiency were considered together 

(with precision valued more than recall).   

Table 5.8 includes the results of relative percentage change in accuracy and efficiency for different 

threshold learning methods, using the results of search with a fixed threshold of selecting the top 

10% of ranked providers at each hub as the baseline.  Overall, the results demonstrate that our 

threshold learning methods (particularly method II, and the combination of methods I, II, and III) 

were able to automatically determine thresholds to find the optimal combination of accuracy and 

efficiency for full-text resource selection of providers, which eliminates the need to manually 

choose selection thresholds.  
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Figure 5.5  The search performance of different threshold learning methods                 

for resource selection of providers in the medium-sized network. 
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5.3.3 Resource Selection of Hubs 

Fixing the method of hub-provider query routing to be full-text resource selection with the threshold 

learned using the combination of individual-based and set-based threshold learning methods, we 

shift our attention to hub-hub query routing.  A hub that received a query i) used the K-L divergence 

resource selection algorithm to rank its neighboring hubs based on their resource descriptions of 

neighborhoods (Section 4.3.2) and forwarded the query to the one top-ranked neighboring hub19 

                                                 
 
19 Selecting two top-ranked neighboring hubs per hub would enable 15 hubs (almost 50% of all the hubs in the medium-sized 

network) to be reached with a search radius as small as 3.  To avoid reaching a large percentage of the hubs quickly which 

might obscure the importance of effective resource selection, each hub only selected one top-ranked hub neighbor. 
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Figure 5.6  The search performance of different threshold learning methods                 

for resource selection of providers in the large-sized network. 



 80

that hadn’t been reached for the query (“full-text resource selection”), ii) randomly forwarded the 

query to one of its neighboring hubs that hadn’t been reached for the query (“random selection”),  

iii) ranked its neighboring hubs by their hub connection degrees (i.e., the number of hub neighbors) 

and forwarded the query to the one top-ranked neighboring hub that hadn’t been reached for the 

query (“degree-based selection”), iv) ranked its neighboring hubs by the exponentially aggregated 

total number of documents in each one’s neighborhood (Equation 4.2) and forwarded the query to 

the one top-ranked neighboring hub that hadn’t been reached for the query (“size-based selection”), 

or v) flooded the query to all neighboring hubs (“flooding”).   

The resource descriptions of neighborhoods used by full-text resource selection were created using 

the procedure described in Section 4.2.3.  Since the diameter of the hub-hub topology in the 

medium-sized P2P network is 4 and the maximum number of hops between 99% of the hub pairs in 

the large-sized network is 4 as well, the maximum number of iterations was chosen to be 4, which 

implies that each hub maintained neighborhood descriptions of radiuses from 1 to 4.  Which 

neighborhood descriptions to use by a hub to select its hub neighbors depended on the TTL value of 

the query message it received.  When the remaining TTL value of the query a hub received was less 

than 4, the neighborhood descriptions with a radius equal to the TTL value were used to conduct 

TTL-dependent full-text resource selection; otherwise, the neighborhood descriptions of radius 4 

were used.   

Duplicate query messages were avoided by augmenting each query message with a field for routing 

history and requiring each hub to check the field to avoid sending the query to those hubs indicated 

in the field.   

Table 5.8  Relative change in accuracy and efficiency of different threshold learning methods, 

compared against a fixed threshold of selecting the top 10% of ranked providers. 

Queries  I II III I+II I+II+III 

Precision  +0.20%  −2.24%  −3.47%  +0.41%  +0.82% 

Recall  +1.74%  −6.09% −10.43%  +1.91%  +2.09% 
TREC 

451-550 
Efficiency −30.52% +28.69% +43.08%  −7.94% +15.59% 

Precision  +0.07%  −0.03%  +0.02%  +0.38%  +0.79% 

Recall  +0.02%  −0.40%  −0.65%  +0.09%  +0.21% WT10g 

Efficiency −56.24% +19.91% +43.85% −21.38%  +2.48% 

Precision  +0.08%  −0.08%  −0.25%  +0.42%  +0.76% 

Recall  +1.20%  −2.65%  −6.02%  +0.36%  +0.36% 
TREC 

701-800 
Efficiency −46.05% +28.37% +50.93% −15.35%  +9.77% 

Precision  +0.16%  −0.05%  −0.16%  +0.37%  +0.79% 

Recall  +2.22%  −3.27%  −5.23%  +1.96%  +2.61% GOV 

Efficiency −44.47% +29.50% +51.46% −10.68% +11.23% 
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For federated search using flooding, random, degree-based, or size-based selection for hub-hub 

query routing, the substitute corpus statistics at a hub for result merging were created by 

aggregating the descriptions of its neighboring providers.  For federated search using full-text 

resource selection for hub-hub query routing, the substitute corpus statistics at a hub were generated 

by aggregating the descriptions of both neighboring providers and neighborhoods.     

Similar to Section 5.3.1, paired two-sided sign tests were applied to the evaluation results of 

individual queries to test whether the difference between full-text hub selection and random, 

degree-based, or size-based selection in search accuracy was statistically significant at each level of 

search efficiency.  The vertical dashed lines in the figures mark the ranges within which full-text 

hub selection had a statistically significant improvement at the 0.01 significance level.      

Figures 5.7 (a)-(d) depict the experimental results for TREC queries 451-550 and WT10g queries 

using different methods of hub-hub query routing in the medium-sized network.  Each point in the 

figures came from one experiment which ran a set of queries with a particular predetermined initial 

TTL value for query messages.  Because each hub only selected one of its hub neighbors for hub-

hub query routing when flooding was not used, the initial TTL value of each query message 

completely determined the percentage of the hubs that could be reached.  The average (overlap) 

precision over 1-30 document cut-offs or set-based (overlap) recall (y-axis) are plotted against the 

percentage of the hubs reached by hub-hub query routing (x-axis).  For both sets of queries, because 

the assumption of the amount of relevant contents being positively correlated with the total amount 

of contents reachable was not necessarily true, degree-based and size-based selection methods were 

barely more effective than random selection.  In contrast, full-text resource selection of hubs based 

on neighborhood descriptions consistently outperformed random, degree-based, or size-based 

selection in search accuracy when they had similar search efficiency.  However, the performance 

difference was much smaller for TREC queries than for WT10g queries due to the substantially 

larger percentages of the hubs covering relevant contents for TREC queries (45% on average) 

compared with that for WT10g queries (10% on average) in the medium-sized network.  A wide 

distribution of relevant contents would diminish the margin of the advantage full-text resource 

selection had over content-independent (random, degree-based, and size-based) selection methods, 

which motivated us to develop the network evolution model, described in detail in the next chapter, 

to automatically construct network topologies with concentrated distributions of relevant contents.  

Despite that, full-text resource selection for hub-hub query routing still provided a much better 

combination of accuracy and efficiency even with random hub-hub topologies, which is 

demonstrated more clearly by Figures 5.8 (a)-(b).    

Figures 5.8 (a)-(b) show the degradation in search accuracy for full-text, degree/size-based, and 

random resource selection relative to the performance of flooding (y-axis) when different amounts 

of query routing among the hubs were reduced compared with flooding (x-axis).  From the figures 

we can see that even for TREC queries 451-550 with widely distributed relevant contents, the 

relative degradation in precision for full-text resource selection was about 20% when the amount of 

query routing reduced was as large as 70%.  In contrast, degree/size-based or random selection 
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yielded almost 35%-40% relative degradations given the same amount of query routing.  For 

WT10g queries, the amount of query routing could be reduced even further when full-text resource 

selection was used without significantly hurting search accuracy.  

Among the tested methods of hub-hub query routing, full-text resource selection also provided the 

best combination of accuracy and efficiency for TREC queries 701-800 and GOV queries in the 

large-sized network, as illustrated by Figures 5.9 (a)-(d) and 5.10 (a)-(b).  In fact, by using full-text 

resource selection, more than 80% of the query routing could be reduced compared with flooding 

when the relative degradation in precision was as small as 10%.   

By comparing Figures 5.7 and 5.8 with Figures 5.9 and 5.10, we can see that a smaller amount of 

query routing relative to the network size was required in the large-sized network in order to keep 
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                       (c)  WT10g queries, precision                                                   (d) WT10g queries, recall 

Figure 5.7  The search performance of different methods of hub-hub query routing          

in the medium-sized network. 
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the relative degradation in accuracy below a certain level.  In other words, when the network size 

was 8-10 times larger, the amount of query routing didn’t necessarily have to be 8-10 times more so 

as to maintain the same level of accuracy.  The sublinear relation between the amount of effective 

query routing and the network size gives us confidence on the scalability of full-text federated 

search in peer-to-peer networks.   

Figures 5.8 and 5.10 show that the relative degradations in precision at top document ranks were 

small (< 15%) for full-text resource selection when 50% of the hubs (e.g., 16 hubs) were reached in 

the medium-sized network and 20% of the hubs (e.g., 50 hubs) were reached in the large network.  

Given these results, the experimental results presented later in this dissertation (Section 5.3.4, 

Section 5.3.5 and Chapter 7) are limited to the cases that up to 50% and 20% of the hubs were 

reached for the medium-sized network and the large network respectively, in order to focus on the 

performance of full-text federated search visiting only a small percentage of the network. 

To summarize, similar to the evaluation on hub-provider query routing, full-text resource selection 

gave a better combination of search accuracy and efficiency than other more common resource 

selection methods for hub-hub query routing.  With similar search efficiency, the improvement of 

full-text selection in precision over random, degree-based, or size-based selection was statistically 

significant when a small percentage of the hubs were reached.  Its advantage in recall was 

statistically significant in a much wider range of settings.  The experimental results also provide 

additional support on the effectiveness of using the automatically generated WT10g queries and the 

“single collection” baseline to evaluate the performance of federated search in P2P networks.       
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                        (a)  TREC queries  451-550                                                           (b) WT10g queries 

Figure 5.8  The relative degradation in precision of different methods of hub-hub query 

routing compared with flooding in the medium-sized network. 
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5.3.4 Resource Representation 

This selection compares the effectiveness of different types of resource descriptions used by full-

text resource selection for hub-hub query routing.  On receiving a query, each hub used the K-L 

divergence resource selection algorithm to rank its neighboring providers and forwarded the query 

to the top-ranked providers based on the learned threshold.  For hub-hub query routing, each hub 

used the K-L divergence resource selection algorithm to rank its neighboring hubs based on i) the 

exponentially decayed resource descriptions of neighborhoods (“decayed neighborhoods”, Section 

4.3.2), ii) the resource descriptions of its direct hub neighbors (“direct neighbors”), or iii) the non-

decayed resource descriptions of neighborhoods (“non-decayed neighborhoods”), and forwarded 

the query to the one top-ranked neighboring hub that hadn’t been reached for the query.   
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                        (c)  GOV queries, precision                                                      (d) GOV queries, recall 

Figure 5.9  The search performance of different methods of hub-hub query routing           

in the large-sized network. 
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The exponentially decayed neighborhood descriptions were created using the procedure described 

in Section 4.2.3, which generated neighborhood descriptions of gradually increasing radiuses in 

several iterations.  Using the same setting as those in Section 5.3.3 for full-text hub selection, the 

maximum number of iterations was chosen to be 4.  The same procedure was used to create the 

non-decayed resource descriptions for neighborhoods of different radiuses by setting the factor for 

exponential decay F in Equations 4.1-4.3 to 1.  Compared with the exponentially decayed 

neighborhood descriptions a hub acquired, which essentially gave higher weights to contents 

located nearer to the hub, the non-decayed neighborhood descriptions treated contents at different 

distances to the hub equally.  Each hub acquired the resource descriptions of its direct hub 

neighbors by requesting each neighboring hub to provide its own hub description (Section 4.2.2).   

Full-text resource selection based on the decayed or non-decayed neighborhood descriptions was 

TTL-dependent with the constraint that when the remaining value of the query message’s TTL 

exceeded 4, the neighborhood descriptions of radius 4 were used.  This is consistent with the setting 

used in the previous section.   

The experimental results for different sets of queries using different types of resource descriptions 

are depicted in Figures 5.11 (a)-(d) for the medium-sized P2P network when up to 50% of the hubs 

(i.e., 16 hubs) were reached.  Table 5.9 shows the relative percentage change in search accuracy 

comparing resource selection using the decayed or non-decayed neighborhood descriptions against 

that using the descriptions of direct hub neighbors.  The figures and the table show that full-text 

resource selection using the decayed neighborhood descriptions outperformed that using the 

descriptions of direct hub neighbors, particularly when the percentage of the hubs reached was 

small.  This was expected because as already pointed out in Section 4.2.2, resource selection using 

the descriptions of direct hub neighbors was only based on the information of the contents located 
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                      (a)  TREC queries 701-800                                                               (b) GOV queries 

Figure 5.10  The relative degradation in precision of different methods of hub-hub query 

routing compared with flooding in the large-sized network. 
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within one hop (providers directly connecting to the neighboring hubs), resulting in ineffective 

query routing when relevant contents were located multiple hops away.  In contrast, the 

neighborhood descriptions contained information about what contents could be reached if the query 

traveled several hops beyond each hub neighbor until its TTL value reached zero.  By looking 

beyond the immediate horizon, the query could be routed along the shortest path to the hubs most 

likely to cover relevant contents within the limits of the search radius determined by the query’s 

TTL.  In order for resource selection based on the descriptions of direct hub neighbors to have 

similar search accuracy compared with that based on the decayed neighborhood descriptions, a 

large initial query message TTL value was required to reach enough hubs so that most contents 

were located within one hop, yielding lower search efficiency.   
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                       (c)  WT10g queries, precision                                                     (d) WT10g queries, recall 

Figure 5.11  The search performance of different resource descriptions for hub-hub query 

routing in the medium-sized network. 
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When the initial query message TTL value was large in order to reach a larger percentage of the 

hubs, each hub was prompted to look farther.  Because a non-decayed neighborhood description 

didn’t distinguish between contents located at different distances to the hub that conducted resource 

selection, the part of the description concerning relevant contents might be overwhelmed by the part 

describing non-relevant contents.  As a result, when relevant contents were located near the hub, 

looking farther than necessary might affect the effectiveness of query routing negatively, which 

explained the inferior performance of resource selection based on the non-decayed neighborhood 

descriptions when a large percentage of the hubs was reached due to a large initial TTL value for 

Table 5.9  Relative change in accuracy of using decayed or non-decayed neighborhood 

descriptions, compared against using descriptions of direct hub neighbors,                    

for the medium-sized network. 

Queries 
Descrip-

tions 
Accuracy 

10% of 

the hubs 

reached 

20% of 

the hubs 

reached 

30% of 

the hubs 

reached 

40% of 

the hubs 

reached 

50% of 

the hubs 

reached 

Precision +16.73%   +15.89%   +8.53%   +3.84%   +1.16% 
Decayed 

Recall +83.49%   +28.04% +12.30%   +5.24%   +0.37% 

Precision   +7.33%     +4.33%   −1.38%   −1.36%   −3.30% 

TREC 

451-550 Non-

decayed Recall +84.50%     +3.61% −13.13% −12.61% −10.37% 

Precision +53.49% +132.88% +37.51% +17.01%   +7.00% 
Decayed 

Recall +60.41% +164.97% +48.32% +21.64%   +8.39% 

Precision +53.92% +134.02% +32.12% +12.49%   +0.51% 
WT10g 

Non-

decayed Recall +63.33% +164.55% +34.75%   +9.66%   −4.47% 

Table 5.10  Relative change in accuracy of using decayed or non-decayed neighborhood 

descriptions, compared against using descriptions of direct hub neighbors,                    

for the large-sized network. 

Queries 
Descrip-

tions 
Accuracy 

1% of 

the hubs 

reached 

5% of 

the hubs 

reached 

10% of 

the hubs 

reached 

15% of 

the hubs 

reached 

20% of 

the hubs 

reached 

Precision     +7.65%    +6.64%   +2.85%   +3.48%   +2.71% 
Decayed 

Recall +174.57% +13.95% +14.08% +12.84% +16.17% 

Precision     +1.03%   −2.38%   −6.22%   −4.71%   −2.28% 

TREC 

701-800 Non-

decayed Recall      0.00% −11.30% −13.71% −12.98%   −7.56% 

Precision      0.00%   +2.89%   +0.82%   +1.91%   +1.73% 
Decayed 

Recall      0.00% +23.82% +20.45% +25.74% +23.55% 

Precision      0.00%   −6.88%   −7.32%   −3.95%   −0.55% 
GOV 

Non-

decayed Recall      0.00%   +2.23%   −9.49% −11.27%   −6.87% 
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query messages.  In contrast, by discounting contents located farther away, even if a larger than 

necessary neighborhood was considered, nearby relevant contents could still stand out, giving 

resource selection using the exponentially decayed neighbor descriptions better performance.   

Figures 5.12 (a)-(d) and Table 5.10 show the results of hub selection using different types of 

resource descriptions in the large-sized network when up to 20% of the hubs (i.e., 50 hubs) were 

reached.  Because there are more relevant documents for TREC queries 701-800 and GOV queries 

than for TREC queries 451-550 and WT10g queries, the differences in average (overlap) precision 

over 1-30 document cut-offs were smaller among resource selection using different types of 

resource descriptions.  Even so, it is clear that hub selection based on the decayed neighborhood 

descriptions outperformed that based on the descriptions of direct hub neighbors or the non-decayed 

neighborhood descriptions.  The advantage of using the decayed neighborhood descriptions is 
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                          (c)  GOV queries, precision                                                      (d) GOV queries, recall 

Figure 5.12  The search performance of different resource descriptions for hub-hub query 

routing in the large-sized network. 



 89

demonstrated more clearly by evaluating search accuracy with set-based (overlap) recall.  Resource 

selection using the non-decayed neighborhood descriptions resulted in even worse performance 

than that using the descriptions of direct hub neighbors because the size of each neighborhood was 

larger in the large-sized network due to a larger number of hub neighbors each hub had, which 

again demonstrates that looking farther ahead didn’t necessarily lead to higher quality of query 

routing if we were not careful on choosing the right type of neighborhood descriptions. 

In a few words, compared with using the descriptions of direct hub neighbors or the non-decayed 

neighborhood descriptions, full-text resource selection of hubs based on the exponentially decayed 

neighbor descriptions was more effective at selecting the hubs most likely to cover the relevant 

contents, and it was more robust to the variance in the predetermined search radius (initial TTL 

value of the query messages). 

5.3.5 Result Merging 

To adopt our approach to result merging, each provider that responded to a query augmented the 

result list with the summary statistics (document length and how often each query term matched) of 

the returned documents.  Each hub collected and merged the results returned by its selected 

providers by using the extended Kirsch’s algorithm to recalculate document scores using these 

summary statistics (Section 4.5).  The top-ranked merged documents for a query (50 for the 

medium-sized network and 200 for the large-sized network) were returned by each hub to the 

consumer that issued the query, and the consumer directly merged the results from multiple hubs 

based on the document scores they provided.   

The extended Kirsch’s result merging algorithm was compared against two baseline methods.  The 

upper bound baseline method merged the documents returned from federated search by their 

corresponding scores returned from search in a centralized collection which was the aggregation of 

all the providers’ contents in the network (“centralized merge”).  The lower bound baseline method 

directly merged the documents from different providers using the initial document scores they 

provided (“raw score merge”).   

Query routing was fixed to be full-text resource selection, i.e., the K-L divergence resource 

selection algorithm was used by hubs to select neighboring providers (based on the descriptions of 

providers) and hubs (based on the decayed descriptions of neighborhoods), and each hub routed the 

query it received to the top-ranked neighboring providers based on the learned threshold and the one 

top-ranked neighboring hub.   

Figures 5.13 (a)-(b) show the performance of TREC queries 451-550 and WT10g queries using 

different result merging methods in the medium-sized hierarchical P2P network.  Figures 5.14 (a)-

(b) show the performance of TREC queries 701-800 and GOV queries in the large-sized network.  

Only the results measured in precision are shown here because different result merging methods 
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didn’t affect much the values of set-based recall.  The extended Kirsch’s algorithm had near 

“optimal” performance compared with the upper bound and worked much better than the lower 

bound.  Its performance losses in average precision relative to the upper bound were negligible.  Its 

relative improvements in average precision over the lower bound were 109.9% on average for 

TREC queries and 96.5% on average for WT10g queries in the medium-sized network.  The 

advantage of the extended Kirsch’s algorithm over raw score merge was even more significant in 

the large-sized network.  This was because the more homogeneous contents of each information 

provider in the large-sized network resulted in more biased corpus statistics and less globally 

comparable document scores, making raw score merge even less effective.  In summary, with a 
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                         (a)  TREC queries 451-550                                                            (b) WT10g queries 

Figure 5.13  The search performance (precision) of different result merging methods         

in the medium-sized network. 
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                         (a) TREC queries 701-800                                                              (b) GOV queries 

Figure 5.14  The search performance (precision) of different result merging methods          

in the large-sized network. 
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small amount of cooperation from information providers, satisfactory performance could be 

obtained for result merging in the hierarchical P2P network without global corpus statistics.   

5.4 Summary 

Although real applications of P2P file-sharing systems have reached network sizes of hundreds of 

thousands of peers sharing millions of documents, most evaluation of federated search in P2P 

networks either have far smaller scales (e.g., in the scale of hundreds), or rely on symbolic data 

items without any real content.  Evaluation of federated search performance in P2P networks with 

more realistic settings requires testbeds of larger scales containing real documents.  We make our 

contribution by creating two new P2P testbeds consisting of thousands of text digital libraries from 

the TREC WT10g and .GOV2 datasets, which are among the largest testbeds to be used so far for 

research on P2P systems.  The sizes of our P2P networks are comparable to what might be 

encountered in medium- to large-sized corporate environments (“enterprise search”), and small- to 

medium-sized Web information sharing applications.  In addition to providing content, our P2P 

testbeds also include tens of thousands of automatically generated queries and queries from a search 

engine query log, which have been proved by our experimental results to be useful in evaluating 

federated search performance of P2P networks.  The large number of queries also provides a 

convenient and useful resource in studying how a network can learn from past queries and evolve in 

order to improve search performance over time.       

Based on our P2P testbeds, we evaluate various components of our network search model against 

existing common alternatives: i) full-text resource selection was compared against flooding, random 

selection, and size/degree-based selection for query routing among hubs, and from hubs to 

providers, ii) the performance of resource selection of providers based on automatically learned 

thresholds was measured against the performance of search using a predetermined fixed threshold, 

iii) different types of resource descriptions were studied and compared in terms of their support for 

full-text resource selection of hubs, and iv) the extended Kirsch’s algorithm for result merging was 

evaluated and compared with merging using global corpus statistics and raw score merge.  The 

overall conclusion is that the network search model provides more sophisticated search techniques 

and offers a better combination of accuracy and efficiency for full-text federated search in P2P 

networks.   

Our evaluation results using different sets of queries in different networks also indicate that the 

amount and distribution of relevant documents relative to the network size greatly affects the 

performance of federated search, particularly resource selection.  When the number of relevant 

documents is small and relevant content is concentrated in a small part of the network, as with the 

case of WT10g queries in the medium-sized network, full-text resource selection has a bigger 

advantage than content-independent resource selection methods due to its ability to route queries 

towards network regions most likely to contain relevant content.  When relevant documents are in 

abundance and scattered in the network, as with the cases of TREC queries 701-800 and GOV 
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queries in the large network, although full-text resource selection is still superior in recall, different 

resource selection methods can achieve similar performance in precision at a few top document 

ranks since it is quite likely to hit relevant content just by luck.  As the network grows to have a 

larger size and to contain more heterogeneous contents, the amount of relevant content for any 

specific query is most likely to be small relative to the network size, which makes content-

independent resource selection less likely to perform well and full-text resource selection more 

likely to shine.         
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C h a p t e r  6  

NETWORK EVOLUTION MODEL 

The network evolution model describes the process of dynamic self-organization in a P2P network, 

focusing on the evolution of network topology.  The goal of our network evolution model is to 

establish and adjust the connections between peers dynamically and autonomously so that the 

resulting network topology exhibits the properties defined in the network overlay model to facilitate 

effective and efficient full-text federated search.   

As already discussed in Section 3.2, the topology of a hierarchical P2P network has the components 

of hub-provider topology, hub-hub topology, and hub-consumer topology.  Therefore, the topology 

evolution of a hierarchical P2P network includes the evolution of each of the three components.  

Because different components serve different purposes and desire different search-enhancing 

properties, the topology evolution of each component has its own objective.  Specifically, the goal 

of hub-provider topology evolution is to establish content-based locality so that most contents 

relevant to a query are expected to be concentrated in a small part of the network at just a few hubs 

in order to improve the efficiency and effectiveness of query routing.  Hub-hub topology evolution 

has the objective of having locational proximity of similar content areas and short global separation 

of dissimilar content areas (content-based small-world properties) in order to route a query quickly 

to its relevant content area no matter where it starts.  The evolution of hub-consumer topology aims 

at reducing the effective search radius (TTL) by establishing permanent connections between 

consumers and hubs that cover content areas most similar to the characteristic interests of the 

consumers (interest-based locality).      

In this chapter, we describe in detail our topology evolution algorithms that enable the three 

components of a hierarchical P2P network topology to evolve into ones that achieve the respective 

objectives.   

6.1 Hub-Provider Topology  

As defined in Section 3.2.1, a hub-provider topology with content-based locality is constructed by 

requiring each hub’s neighboring providers to form a cohesive content-based cluster.  One way to 

do that dynamically as providers join the network is to connect each provider to those hubs that 

have highest similarities between the content areas they cover and the content the provider provides.  

Topology evolution algorithms proposed in (Crespo and García-Molina 2002a) (Schlosser et al. 

2002) (Löser et al. 2003) describe a content area using controlled-vocabulary representations based 

on a global classification hierarchy or ontology.  This approach to deciding and representing the 
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content area covered by each hub requires the content space to be partitioned exhaustively into a 

number of content areas, which may be difficult to satisfy for the environments containing text 

digital libraries of heterogeneous and open-domain contents, or which may not distribute contents 

evenly across the network.  Another approach to describing a hub’s content area is to use its full-

text resource description obtained by aggregating the resource descriptions of its neighboring 

providers, which is proposed in our network search model (Section 4.2.2).  The similarity between a 

provider’s content and a hub’s content area can be measured by the similarity between their 

resource descriptions.  This approach has the advantages that it not only supports full-text federated 

search, but also enables convenient representations of heterogeneous and open-domain contents.  

Therefore, we adopt it in our development of hub-provider topology evolution.   

In Sections 6.1.1-6.1.4, we present the design of our hub-provider topology evolution algorithm in 

consideration of the unique characteristics of hierarchical P2P networks and heterogeneous, open-

domain contents, followed by the detailed description of the algorithm in Section 6.1.5.   

6.1.1 Decentralization and Role Differentiation 

When a provider requests to join a hierarchical P2P network, since there is no centralized server to 

decide which cluster(s) it should join, decisions must be made in a decentralized manner about 

which hubs the provider can connect to so as to maintain content-based locality in hub-provider 

topology.  Because in a hierarchical P2P network, hubs typically have more processing power and 

connection bandwidth, they play a more active role in the evolution of hub-provider topology so 

that providers with limited resources can minimize the computation and communication costs 

associated with topology evolution.  

To decide the hub-provider connections for a provider, a joint effort of the provider and the hubs 

that receive this provider’s resource description is required.  Each provider is responsible for 

providing its resource description to the network and making the final decision about which hub(s) 

to connect to.  Each hub that receives the provider’s resource description is responsible for 

calculating the degree of match between the provider’s content and the hub’s content-based cluster, 

providing this information to the provider to facilitate its decision making, and propagating the 

provider’s resource description to other hubs. 

6.1.2 Dynamic Adaptive Clustering 

Since it is difficult to obtain a partition of the content space beforehand for digital libraries of 

unstructured text documents in open domains, the content area covered by each hub cannot be 

predetermined.  Instead, it can only be determined implicitly by the contents of the providers 

already connecting to the hub.  As the hub accepts into its content-based cluster more providers 

whose contents are similar to the content area it already covers, its content area may be updated 

dynamically to integrate the contents of these new members.  Therefore, in contrast to an explicit 
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fixed clustering policy, each hub should use an implicit adaptive clustering criterion, which is more 

autonomous and self-adjusting. 

In an ideal situation, each hub in the network is responsible for covering a specific content area and 

uses a similarity threshold to decide whether to accept a provider into its cluster and integrate the 

provider’s content into its content area.  When a provider’s content is sufficiently dissimilar to all 

existing content areas, an unoccupied hub is contacted to create a new content-based cluster to 

accommodate this provider.  This approach may work well when appropriate threshold values are 

chosen to control the granularity of the content area covered by each hub so that the number of 

content areas matches the number of hubs in the network.  However, in real, operational 

environments, because the number of content areas cannot be predetermined for open-domain 

contents, and the number of hubs is often limited, it is difficult to choose similarity threshold values 

in advance to satisfy the above condition, particularly when there is no central coordination and 

control.  On the one hand, tighter similarity thresholds result in more cohesive and homogenous 

clusters representing narrower content areas so that more hubs than those available may be needed 

to cover the contents in the network.  On the other hand, looser threshold values decrease the 

homogeneity of content-based clusters and thus reduce the degree of content-based locality.  To 

solve this problem, instead of solely relying on a single similarity threshold to determine the 

granularity of a hub’s content area, we use a more flexible clustering strategy which cultivates 

multiple sub-clusters within each hub’s content-based cluster and spins off a sub-cluster to create a 

new content area when and only when the sub-cluster has grown to a certain size.20  With this 

strategy, while the granularity of each sub-cluster may be relatively fixed by using a similarity 

threshold, the granularity of each hub’s content area can be dynamically adjusted by increasing its 

number of sub-clusters or transferring its sub-clusters to other hubs.  Although such dynamic 

adaptive clustering may decrease the homogeneity of some content-based clusters, the potentially 

small reduction in content-based locality is offset by its ability to adjust autonomously based on the 

actual network conditions.   

6.1.3 Load Balancing 

Because the amount of contents available in the network is often biased for different topics, hubs 

that cover popular content areas may be overwhelmed by the hub-provider connections they need to 

maintain and the query load they have to handle.  To avoid overloading some hubs with popular 

contents and information requests while wasting other hubs’ resources on marginal or unpopular 

contents, hubs need to average their responsibilities in order to achieve load balance in the network.  

Hubs’ responsibility of serving popular contents can be balanced by transferring sub-clusters of 

heavily connected hubs to lightly connected ones.  The degree of content-based locality is expected 

                                                 
 
20 If we assign a “virtual” hub to each sub-cluster, then having sub-clusters within a content-based cluster can be viewed as a 

mapping from multiple “virtual” hubs with similar contents to one physical hub.   
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to be affected only slightly if hubs take advantage of the content-based small-world properties of 

hub-hub topology to locate appropriate recipient hubs based on the content areas they cover.  By 

using distributed cultivation of sub-clusters, hubs can also share the responsibility of serving 

unpopular contents instead of dedicating a single hub to handle them.     

6.1.4 Selective Propagation of Providers’ Contents 

Because constructing and adjusting hub-provider topology requires additional computation and 

communication costs, it is cost-efficient to propagate the resource description of each joining 

provider only to those hubs whose content areas are likely to match the provider’s content and 

shield hubs with dissimilar content areas from unnecessary overhead.  Selective propagation of 

providers’ resource descriptions is also desired for scalability, because if each provider’s resource 

description is broadcast to all hubs, each hub receives the resource description of each provider 

even if their contents are completely different, which will become a problem when the number of 

providers joining the network becomes large.         

Selective propagation of a provider’s resource description can be conducted in a way similar to hub-

hub query routing in full-text federated search.  Hubs need to know about the contents covered in 

their neighborhoods so as to decide where to propagate the provider’s resource description.  Since 

hubs need to collect neighborhood content information anyway for hub-hub query routing, selective 

propagation of providers’ resource descriptions adds few additional costs.  

6.1.5 Algorithm 

An information provider’s content is described using its full-text resource description.  A sub-

cluster is represented by the aggregation of the resource descriptions of its provider members.  A 

hub’s content area is represented by its resource description, generated by aggregating the 

representations of its sub-clusters.  We use two similarity thresholds to distinguish among three 

levels of similarity between a provider’s content and the contents covered by a sub-cluster: high, 

marginal, and low.21  A provider’s first priority is to join the most similar sub-cluster among all the 

sub-clusters to which it has a high similarity level.  If it fails to find sub-clusters with high 

similarity, but has at least one sub-cluster with marginal similarity, it will join the content-based 

cluster of the hub that has the most similar sub-cluster with marginal similarity by initiating a new 

sub-cluster at this hub.  The distinction between high and marginal similarity values is for 

controlling the granularity of each sub-cluster while allowing the granularity of a hub’s content-

based cluster to dynamically change by including more sub-clusters.  If the provider has a low 

                                                 
 
21 Although it is common and often desirable to use global similarity thresholds in cooperative P2P environments, in theory 

each hub can have its own similarity thresholds adjusted locally based on its workload, e.g., a busy hub can tighten its 

thresholds to accept fewer newcomers.    
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similarity level to all existing sub-clusters in the network, it requests an empty22 hub to initiate a 

new sub-cluster within a new content-based cluster.  When all the hubs are non-empty, the provider 

initiates a new sub-cluster within the content-based cluster of the hub that has the most similar sub-

cluster.        

The join process of an information provider P proceeds as follows.  If it was active in the network 

before, it first tries to connect to the hubs it previously connected to.  If it fails or if it is completely 

new to the network, it finds an initial set of hubs by querying host-cache servers or by pinging the 

network.  Then it arbitrarily chooses a hub from the list to connect to temporarily, which is 

responsible for acquiring P’s resource description and starting its propagation among the hubs 

within a certain radius specified by the TTL of the message.  Each non-empty hub that receives P’s 

resource description executes two operations.  First, the hub computes the similarity between P’s 

resource description and the description of each of its sub-clusters, and sends back to P a message 

containing the value of the highest similarity along with the similarity level based on its thresholds.  

Second, the hub selects some neighboring hubs to propagate P’s resource description based on the 

similarity between P’s resource description and the resource description of each of its 

neighborhoods.  Each empty hub that receives P’s resource description directly forwards it to its 

hub neighbors.  P collects the messages from the hubs and chooses a hub to connect to based on the 

strategies described in the previous paragraph.  Figure 6.1 illustrates primary activities of the join 

process.  The solid lines indicate the propagation of P’s resource description, and the dashed lines 

represent the messages that the hubs send back to P about the similarity values and levels. 

When an information provider P contains documents on multiple topics, it may be more appropriate 

for P to join multiple content-based clusters instead of a single one.  The strategies described earlier 

can be easily extended to support “soft clustering”.  For example, if P discovers multiple sub-

clusters with high or marginal similarity levels, it can rank these sub-clusters based on its content 

similarity to them, and join multiple top-ranked sub-clusters of high similarity, or initiate new sub-

clusters in the content-based clusters that contain the top-ranked sub-clusters of marginal similarity.  

However, for simplicity, this dissertation considers only the hard-clustering scenario in which P 

joins only the best single hub.      

If the size of a sub-cluster within a hub’s content-based cluster exceeds a certain limit, the hub 

propagates a message among the hubs requesting an empty hub to take over.  The transfer of the 

sub-cluster is conducted by connecting the provider members of the sub-cluster to the chosen empty 

hub to generate a new content-based cluster, and disconnecting them from the original hub.  The 

attempt of initiating a new content area fails if no empty hub is available and the hub may try again 

sometime later.   

                                                 
 
22 A hub is “empty” if it has an empty content-based cluster, i.e., if it doesn’t connect to any information provider.  Otherwise, 

it is non-empty. 
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If a hub becomes heavily connected due to the large number or sizes of its sub-clusters, it may 

propagate the descriptions of its sub-clusters in selected directions at the hub level based on 

neighborhood descriptions to request other hubs covering similar content areas to share the load, 

and transfer one or more of its sub-clusters to the willing hubs.  Alternatively, a hub may pose a 

limit on the size of its content-based cluster and stop accepting new providers once the limit has 

been reached.  The former approach may result in higher degree of content-based locality at the 

expense of higher communication costs than the latter approach.     

To balance query load and to reduce the path length for effective query routing, sometimes it may 

be beneficial for an information provider (especially if it contains popular content) to connect to 

hubs with more computing power and network connections even if the match between their content 
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areas and the provider’s content is suboptimal.  One could extend our algorithm to support this type 

of topology evolution by allowing hub to attach additional information about their resources and 

workloads to the messages returned to the joining provider.  Content-based and popularity-based 

information could be used by the provider separately to determine different sets of connections, or 

in combination for one set of connections.  For the former approach, the provider might choose 

content-based and popularity-based connections separately, and each hub might maintain both a 

content-based cluster and a popularity-based cluster, and apply different search strategies to them.  

For the latter approach, the provider might use a utility function to combine different factors and 

choose connections that optimize the utility, and a utility-based criterion might replace the content-

based criterion used for resource selection at each hub.  This extension is not explored in this 

dissertation; it is mentioned here to indicate that the hub-provider topology evolution algorithm can 

be extended to include a wider range of information than just content-based similarity. 

6.2 Hub-Hub Topology 

As defined in Section 3.2.2, content-based small-world properties are small-world properties with a 

content-based definition of peer distance inversely related to the similarity between hubs’ content 

areas.  A hub-hub topology with content-based small-world properties can be constructed 

dynamically by each hub establishing local connections to hubs with similar content areas and a 

few long-range connections to hubs with dissimilar content areas (Watts and Strogatz 1998).  Our 

evolution model of hub-hub topology with content-based small-world properties has a number of 

specific features that distinguish it from other topology evolution models developed either for the 

World Wide Web (Barabási et al. 1999) (Menczer 2002) (Manna and Kabakcioglu 2003) (Clauset 

and Christopher 2004) or for P2P networks with restrictive lattice or hierarchical network models 

(Kleinberg 2000) (Kleinberg 2001).  Sections 6.2.1-6.2.4 describe these features; Section 6.2.5 

describe in detail the evolution algorithm. 

6.2.1 Dynamic Adaptation   

A P2P network is dynamic in nature; hubs may join and leave the network, the content area of each 

hub may change over time as providers connect to and disconnect from it, and new content areas 

may emerge in the network.  Hence each hub needs to adjust its connections to other hubs whenever 

necessary to accommodate these changes and maintain content-based small-world properties.  A 

hub’s connection adjustment procedure will be invoked when the degree of its content or 

connection change exceeds a certain threshold.  To determine when connection adjustment is 

necessary at a hub due to changes in other hubs, one simple mechanism is to require each hub to 

issue a short message setting a flag when its content area or connections change dramatically, which 

is propagated to the hubs within a certain radius.  Each hub collects such messages from other hubs 

to monitor the dynamism of the network, based on which it decides when to adjust its hub 

connections.   
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6.2.2 Utilization of Limited Local Content Information  

Due to the decentralized nature of a P2P network, no global information about either the graph 

distance (number of hops) or the content distance (the inverse of content similarity) between peers 

is readily available and acquiring such global information is inadmissible because of high cost.  

Therefore, each hub can only utilize the content information of other hubs in its local neighborhood 

to find similar (close) and dissimilar (remote) hubs to connect to.  By iteratively adjusting its 

connections when the difference between its maximum and minimum content distances to 

neighboring hubs is below a threshold, a hub is able to connect to “globally” close and remote hubs 

because connection adjustment keeps bringing new hubs to its local network region.  Experimental 

results indicate that the number of iterations required is only a small constant larger than the 

resulting (small) diameter of the hub-hub topology, which means that the hub-hub topology can 

converge to one with small-world properties fairly quickly. 

6.2.3 Degree Balancing  

Because connections at the hub level are major channels for query routing and propagation of 

resource descriptions, hubs that are highly connected (i.e., with a high degree) may become 

potential bottlenecks which will restrict the information flow in the network.  In addition, an attack 

resulting in the removal of these highly connected hubs could cripple the network.  In our approach, 

special effort is made to balance connection degrees without undermining content-based small-

world properties.  Experimental results demonstrate that the resulting hub-hub topology can avoid 

query routing hotspots, and the removal of any hub does not dramatically increase the path lengths 

between the remaining hubs.     

6.2.4 Algorithm 

The dynamic evolution of hub-hub topology proceeds as follows.  When a hub H joins the network, 

if it was active in the network before, it first tries to connect to the hubs it previously connected to.  

If it fails or if it is completely new to the network, it obtains a list of existing hubs in the network by 

querying host-cache servers or by pinging the network.  Because it doesn’t have any providers 

connecting to it yet, it has an empty resource description.  Since the similarity between a hub with 

an empty resource description and any other hub is undefined, H can only randomly choose its hub 

neighbors at the moment.  H’s resource description is initialized when it responds to a provider’s 

join request or a hub’s transfer request to start a new content-based cluster.  Then H connects to the 

joining provider or the providers in the transferred sub-cluster.           

Each non-empty hub operates independently in a decentralized manner to select its own hub 

neighbors based on its local view of the content areas available in the network.  Given the dynamic 

conditions of a P2P network, a hub H periodically evaluates its content similarity to its direct hub 

neighbors and their direct hub neighbors (i.e., hubs within two hops from it) using the hubs’ 
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resource descriptions exchanged among them, and adjusts its outgoing connections to link to several 

most similar hubs and a few dissimilar hubs using the following procedure: 

1. H uses a threshold ρ* to distinguish between similar and dissimilar hubs among the hubs within 

two hops from it; 

2. H connects to Mol most similar hubs whose incoming hub connection capacities have not 

reached their maximally allowed values Mi, where Mol is the maximum number of outgoing 

local hub connections H can have; 

3. If all of H’s similar hubs have reached their maximum incoming hub connection capacities Mi, 

H requests them to recommend their similar hub neighbors, which may be repeated recursively 

until H establishes at least one local hub connection or the number of requests reaches a limit 

before it succeeds in finding any similar hub available for connection; 

4. H selects Mog dissimilar hubs that have not reached their maximum incoming hub connection 

capacities Mi with probability: 

                     
βρ −

≤∈ =≥ ),(*)),(|P(
}2),(:{ iiHHGDji HHcCDHHCDH

j
                               (6.1) 

where Mog is the maximum number of outgoing long-range (“global”) hub connections H can 

have, GD is the graph distance (number of hops) between hubs, CD is the content distance (the 

inverse of content similarity) between hubs, calculated based on the K-L divergence between 

hubs’ resource descriptions, β is an exponent that essentially controls the “distance scale” of 

long-range connections (i.e., smaller β biases towards greater content distance and thus more 

dissimilar hubs, and larger β biases towards smaller content distance and thus less dissimilar 

hubs), and c is a normalizing constant. 

By dynamically adapting each hub’s outgoing23 connections at the hub level, hub-hub topology 

effectively maintains content-based small-world properties.  Since each hub adjusts its connections 

only based on its local knowledge of the hubs that are located within two hops from it and possibly 

their recommended local contacts, no global information or control are necessary for the evolution 

of hub-hub topology.  The step of limiting each hub’s connection capacity and recommending other 

similar hubs when its own connection capacity becomes full helps in distributing connections at the 

hub level in a less skewed manner to avoid concentrating a large number of connections at a few 

hubs.  Establishing long-range connections based on a power-law distribution of content similarity 

enables each hub to have nearly uniformly distributed long-range hub connections over all “distance 

                                                 
 
23 The directions of hub-hub connections are only used for topology evolution.  They are ignored when hub-hub connections 

are used as data channels to exchange messages between hubs. 
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scales” (“similarity scales”), which allows hubs to route any query efficiently towards its targeted 

content area (Kleinberg 2000).    

6.3 Hub-Consumer Topology  

As mentioned in Section 3.2.3, a consumer C may perform characteristic search for which 

information requests are closely related to the user’s persistent interests in specific topics, and 

uncharacteristic search for which information requests are ad-hoc, transient in nature.  While a 

consumer cannot do much with regard to hub-consumer topology to optimize the performance of 

uncharacteristic search, for the benefit of characteristic search, C should establish permanent 

connections to hubs that cover content areas most similar to its interests in order to take advantage 

of interest-based locality.  In addition, if C is interested in several different topics, then the optimal 

set of hubs it should connect to may vary by topic.  Based on the dynamic observation of initial hub 

selection conducted by the consumer for characteristic queries (Section 4.4), the consumer can 

establish permanent connections to those hubs that are most frequently selected, and periodically 

adjust its connections to adapt to the change in user’s interests and hubs’ contents.    

6.4 Summary 

In this chapter, we describe a network evolution model to dynamically and autonomously construct 

a hierarchical P2P network topology with search-enhancing properties such as content-based 

locality, interest-based locality, and content-based small-world properties (described in our network 

overlay model) so that full-text federated search can be carried out efficiently and effectively using 

our network search model.   

Previous approaches to constructing a network topology with content-based locality either uses 

predetermined content partitions (e.g., based on an ontology or a classification hierarchy) to cluster 

peers into content-based clusters and establishes connections based on cluster membership (Crespo 

and García-Molina 2002a) (Schlosser et al. 2002) (Löser et al. 2003), or starts from a random 

topology and forms content-based locality by every peer seeking to rewire its connections to other 

peers with similar contents (Khambatti et al. 2002) (Asvanund 2004).  The former approach is only 

applicable to limited-domain content; the latter ignores the differences in peers’ connection 

bandwidth and processing power and doesn’t scale well.  Both approaches would not work well 

with open-domain full-text representations of contents that require nontrivial content propagation 

and similarity measurement for topology evolution.  In contrast, our network evolution algorithm 

for hub-provider topology works effectively in this case by using implicit, adaptive clustering 

policies instead of explicit, static ones to avoid partitioning the content space ahead of time.  In 

addition, most work is assigned to hubs to fully utilize their high connection bandwidth and 

processing power.  With selective propagation of providers’ content information at the hub level 
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and the mechanism designed to achieve better load balance, our hub-provider topology evolution 

algorithm also enables higher efficiency and scalability.       

To provide an adaptive, cost-efficient solution to constructing hub-hub topology with content-based 

small-world properties and good navigability, the network evolution algorithm must satisfy several 

requirements: i) peer distance is defined based on content similarity, ii) each hub must establish its 

connections based on a limited local view of the network, iii) hubs should be able to adjust their 

connections dynamically, and iv) the long-range connections should be based on a power-law 

instead of uniform distribution.  The topology evolution algorithms previously developed for P2P 

networks or for the World Wide Web either rely on simplified network models with unrealistic 

assumptions on the content and the amount of information available for topology construction 

(Watts and Strogatz 1998) (Kleinberg 2000) (Manna and Kabakcioglu 2003) (Clauset and 

Christopher 2004), or ignore the necessary conditions for a small-world topology to be navigable 

(Merugu et al. 2004) (Sakaryan and Unger 2003).  To the best of our knowledge, there has not been 

a single topology evolution algorithm capable of satisfying all the above requirements 

simultaneously.  Taking inspirations from earlier work, our network evolution algorithm for hub-

hub topology not only fulfills all the requirements, but also takes extra steps to avoid potential 

bottlenecks of information flow and reduce the network’s susceptibility to malicious attacks on 

highly connected hubs by balancing hub degrees.  Techniques developed by (Renda and Callan 

2004) to handle hub failures can be applied to further improve the robustness of the network.     

Although some previous research recognizes the existence of characteristic search (i.e., a 

consumer’s information requests expressing his persistent, long-term information needs) in P2P 

networks and designs topology evolution and/or search algorithms to improve its performance 

(Ramanathan et al. 2002) (Sripanidkulchai et al. 2003) (Shao and Wang 2004), the distinction 

between characteristic and uncharacteristic search, and the distinction between characteristic search 

for different topics of interest have not been studied for federated search in P2P networks.  In 

contrast, based on the dynamically learned user model at each consumer which uses query clusters 

to represent a user’s different interests, our hub-consumer topology evolution is able to make query-

specific adjustments to connection topology so that each user’s search pattern can be learned and 

taken advantage of to achieve optimal search performance.   
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C h a p t e r  7  

EVALUATION OF NETWORK EVOLUTION MODEL 

This chapter evaluates the effectiveness of our network evolution model in building a hierarchical 

P2P network topology with desired search-enhancing properties.  The same datasets used for 

evaluating the network search model (Section 5.1) were adopted to evaluate the network evolution 

model.  Because previous work has provided extensive experimental results and detailed analysis on 

the robustness of full-text federated search in hierarchical P2P networks with peer departures 

(Renda and Callan 2004), the evaluation of the network evolution model focuses primarily on the 

join process by assuming that all the hubs remain active in the course of topology evolution and no 

providers depart the network after joining it.  In order to be able to directly compare the 

performance of full-text federated search in different network topologies, full-text federated search 

was conducted at the end of the network evolution with all the information providers’ contents 

available.  The evolution algorithms for different components of the network topology (hub-

provider, hub-hub, and hub-consumer) were applied and evaluated one at a time by taking the same 

progressive evaluation approach used in Chapter 5.  The same performance measures described in 

Section 5.2 were used.  As discussed in Section 5.3.3, to focus on the performance of federated 

search by visiting a small percentage of the peers, the results shown in this chapter are limited to up 

to 50% of the hubs reached in the medium-sized network and up to 20% of the hubs reached in the 

large network.       

7.1 Hub-Provider Topology 

This section studies the effectiveness of the hub-provider topology evolution algorithm described in 

Section 6.1 in the following two aspects: i) whether the dynamically constructed hub-provider 

topology exhibited desired properties such as content-based locality and load balance, and ii) 

whether it was effective in enhancing search performance compared with a randomly generated 

hub-provider topology.  Experimental settings were described in the next section, followed by 

experimental results and analysis in Section 7.1.2. 

7.1.1 Experimental Settings 

The hierarchical P2P network to be evaluated was initialized to be a network of empty hubs (32 for 

the medium-sized network and 256 for the large-sized network) randomly connecting with one 

another without any providers.  To simplify the evolution process, information providers were 

assumed to join the network one at a time.  The connections between hubs remained static in order 

to focus on the evolution of hub-provider topology.     
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The hub-provider topology evolution algorithm uses a dynamic, adaptive clustering strategy which 

cultivates multiple sub-clusters of information providers within each hub’s content-based cluster in 

order to dynamically adjust the granularity of the content area covered by each hub.  Two thresholds 

are needed to categorize the similarity between a provider’s content and the contents covered by a 

sub-cluster (measured by the negative of the K-L divergence between their full-text resource 

descriptions).  The high-marginal threshold is used to distinguish between high and marginal 

similarity values in order to determine whether to accept the provider into an existing sub-cluster, or 

to accommodate the provider by initializing a new sub-cluster within an existing content-based 

cluster.  The marginal-low threshold is used to distinguish between marginal and low similarity 

values so that a provider with a low similarity to all existing sub-clusters can initiate a new content-

based cluster when there is an empty hub available.  In our experiments, the high-marginal 

threshold was set to -1.0 and the marginal-low threshold was -2.0. 

To avoid propagating a provider’s resource description in the network indefinitely, each message 

carrying a provider’s resource description has a finite TTL (Time-To-Live) value so that the 

provider’s content is only propagated within a certain radius from the initial hub.  The TTL was set 

to 4 to be consistent with the setting used in Chapter 5.  The threshold used by a hub to determine 

which neighboring hubs to select for further propagation of a provider’s description (based on the 

K-L divergence between the provider’s description and neighborhood descriptions) was 1.5.  

In our algorithm, when there is an empty hub available, a sub-cluster exceeding a certain size limit 

can be spun off to create a new content-based cluster in representing a new emerging content area.  

5 was used in the experiments for the spin-off size limit of a sub-cluster.  The size of the content-

based cluster at each hub also has a limit for the purpose of load balance.  A hub stops accepting 

new providers once the limit has been reached.  Its value was set to 275.   

Full-text federated search in the dynamically constructed or the randomly generated hub-provider 

topology was based on the settings consistent with those used in Chapter 5, i.e., each query was 

issued with increasing initial TTL values by a consumer connected to a hub located farthest on 

average from relevant content, each hub that received the query message forwarded it with a 

decreased TTL value to the top-ranked neighboring providers selected based on provider 

descriptions and the learned threshold, and the top one neighboring hub selected based on 

exponentially decayed neighborhood descriptions until the TTL value reached zero, each provider 

returned up to 50 top-ranked documents, and hubs used the extended Kirsch’s algorithm for result 

merging and returned the top-ranked documents (50 for the medium-sized network and 200 for the 

large-sized network) to the consumer.  The consumer used the raw score merge to merge the results 

returned by multiple hubs.   
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7.1.2 Experimental Results 

The degree of content-based locality in the dynamically constructed hub-provider topology was first 

measured by the cohesion of each hub’s content-based cluster formed by its neighboring providers.  

The K-L divergence between each information provider and its connecting hub was calculated and 

the distribution of the calculated divergence values for all connecting provider-hub pairs is shown in 

Figure 7.1 (a) for the medium-sized network.  As a comparison, Figure 7.1 (a) also includes the 

within-cluster divergence distributions of a randomly generated hub-provider topology and a hub-

provider topology created by statically clustering all 2,500 information providers into 32 clusters 

(equal to the number of hubs in the network) using the K-means clustering algorithm.  Figure 7.1 

(b) plots the within-cluster divergence distributions of the dynamically constructed and the 

randomly generated hub-provider topologies in the large-sized P2P network.  Due to the 

computational costs of clustering 25,000 providers with large-sized representations, the statically 

clustered hub-provider topology was not generated for the large-sized network.  Both figures show 

that the dynamically constructed hub-provider topology had smaller mean in the distribution of the 

within-cluster divergence than the randomly generated hub-provider topology, indicating a higher 

degree of cohesion for content-based clusters than random clusters.  The humps between the K-L 

divergence values of 1.0 and 1.5 and the long tails for the distribution curves of the dynamically 

constructed hub-provider topologies were due, respectively, to the existence of provider members 

with marginally similar or remotely related contents in each cluster, resulting from the diverse 

nature of the contents and the hubs’ sharing responsibility for serving providers with unpopular 

contents.  Figure 7.1 (a) also shows that content-based clusters constructed using the topology 

evolution algorithm and those created using the K-means clustering algorithm had similar degree of 
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                      (a)  medium-sized network                                                              (b) large-sized network 

     Figure 7.1  The within-cluster divergence distributions of different hub-provider topologies  

in the networks of different sizes.                                  
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cohesion, demonstrating that our incremental, adaptive clustering approach was able to generate 

clusters with a satisfactory degree of content-based locality. 

If a hierarchical P2P network exhibits good content-based locality, then most contents relevant to an 

information request are expected to be concentrated in a small part of the network so that only a 

small percentage of the hubs need to be contacted in order to obtain sufficient relevant documents.  

Therefore, the degree of content-based locality can also be measured by the degree of concentration 

of information providers with relevant contents (“relevant providers”) among different hubs.  Given 

a set of queries with (real or pseudo) relevant judgments, for each hub-provider topology, we ranked 

the hubs by the number of relevant providers24 contained in their clusters, and defined R^
n to be the 

percentage of the relevant providers that had been accumulated via the n top-ranked hubs.  The 

values of R^
n for different queries were averaged.  A similar metric has been used to evaluate the 

effectiveness of resource selection in traditional distributed information retrieval (French et al. 

1998).   

Figures 7.2 (a)-(d) show the results for different hub-provider topologies using different sets of 

queries in two network sizes.  From the figures we can see that the degree of relevant content 

concentration in the network with a dynamically constructed hub-provider topology was 

consistently higher than that in the network with a random hub-provider topology.  The dynamically 

constructed and the statically clustered hub-provider topologies yielded similar relevant content 

concentration, again illustrating that the dynamic topology evolution algorithm was able to generate 

a hub-provider topology with the desired content-based locality.   

The slightly worse performance of the statically clustered topology in Figure 7.1(a) and Figures 7.2 

(a)-(b) was due more to the random choice of initial cluster centroids for the K-means algorithm, 

and the network’s heterogeneous contents with varied qualities, than to its actual inferiority to the 

dynamically generated hub-provider topology.  The difference is not significant nor would it 

necessarily be expected to repeat in an experiment with a slightly different configuration.  

Therefore, dynamic clustering with our local algorithm and static clustering with a global algorithm 

are expected to yield similar degree of cluster cohesion and relevant content concentration. 

An indicator of whether a hub-provider topology has balanced load is the distribution of the sizes of 

clusters formed by hub-provider connections.  Figures 7.3 (a)-(b) compare the cluster size 

distributions of the dynamically constructed and the statically clustered hub-provider topologies in 

the medium-sized network.  Most content-based clusters had less than 100 provider members as 

shown in both figures.  However, compared with the distribution plotted in Figure 7.3 (a) for the 

statically clustered hub-provider topology, the distribution in Figure 7.3 (b) for the dynamically 

                                                 
 
24 Ranking the hubs by the number of relevant documents contained in their clusters yielded similar figures. 
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constructed hub-provider topology was less skewed, as evident by its smaller percentage values of 

small and large clusters, and larger percentage values of medium-sized clusters.   

Figure 7.3 (c) depicts the cluster size distribution of the hub-provider topology in the large-sized 

network constructed using the dynamic topology evolution algorithm.  As a comparison, we applied 

to the large-sized network the same dynamic hub-provider topology evolution algorithm without 

limiting cluster sizes or transferring sub-clusters from heavily connected hubs to lightly connected 

ones, and the resulting cluster size distribution is shown in Figure 7.3 (d).  The differences between 

Figure 7.3 (c) and Figure 7.3 (d) indicate that without the steps of balancing the load, dynamic 

topology evolution based on distributed, adaptive clustering criteria may overload a few hubs with a 

large number of information providers sharing popular contents while wasting the resources of 

many other hubs on serving a small number of providers with less-than-popular contents.  Load 
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       (c)  TREC queries 701-800, large-sized network                           (d) GOV queries, large-sized network 

Figure 7.2 The cumulative distributions of the relevant providers among hubs                

for different hub-provider topologies in the networks of different sizes. 
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balancing in combination with distributed cultivation of sub-clusters was able to spread the 

responsibility of serving popular contents to more hubs as well as reduce the number of hubs solely 

occupied by unpopular contents, resulting in a less skewed cluster size distribution.   

In a few words, the cluster size distributions of the dynamically constructed hub-provider topologies 

in different network sizes demonstrate that our topology evolution algorithm’s attempt to achieve 

more balanced load was successful.   

The above experimental results demonstrate that the dynamic hub-provider topology evolution 

enabled a high degree of content-based locality and load balance.  However, the aspect of topology 

evolution that concerns federated search most is whether a dynamically constructed hub-provider 

topology can further enhance search performance compared with a randomly generated hub-
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Figure 7.3  The distributions of cluster sizes for different hub-provider topologies             

in the networks of different sizes.  
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provider topology.  Figures 7.4 (a)-(d) and 7.5 (a)-(d) compare the performance of federated search 

in precision and recall for different sets of queries in medium- and large-sized networks with 

dynamic or random hub-provider topologies.  The figures show no significant performance 

improvement (except Figure 7.5 (c)) for the dynamically constructed hub-provider topologies, 

which seems to suggest that content-based locality didn’t help in federated search.  To explain the 

unattractive results, let’s note that at this stage of the evaluation, although hub-provider connections 

were determined by content-based clustering, hub-hub connections were still random.  The 

advantage of having each hub cover a cohesive content area was limited without the support of 

good navigability among the hubs, because the effectiveness of query routing at the hub level was 

the main factor that affected federated search performance.  Therefore, content-based locality must 

be combined with content-based small-world properties in order to facilitate more effective and 

efficient federated search, the results of which are shown in the next section. 
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Figure 7.4  The search performance of different hub-provider topologies                    

in the medium-sized network. 
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The experiments above were run in a “static” network setting where the provider and neighborhood 

descriptions maintained by each hub were most up-to-date.  To test whether the dynamically 

constructed hub-provider topologies could have a bigger advantage over random hub-provider 

topologies for full-text federated search based on dated resource descriptions in the face of dynamic 

content change in P2P networks, the following experiments were conducted.  Given a dynamic or 

random hub-provider topology, for each query, an information provider containing relevant 

documents was randomly chosen with a probability proportional to its number of relevant 

documents, and its resource description was segregated from the description of the hub it connected 

to (in each of the hub-provider topologies to be evaluated) and consequently from the descriptions 

of all neighborhoods containing this hub.  However, the description of the chosen provider was not 

removed from the storage of its connecting hub, so it was still visible to this hub but not to the rest 

of the network.  This was to simulate the scenario in dynamic environments when a hub already 
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                        (c)  GOV queries, precision                                                       (d) GOV queries, recall 

Figure 7.5  The search performance of different hub-provider topologies                    

in the large-sized network. 
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acquired the description of a newly joined information provider but hasn’t updated the 

corresponding neighborhood descriptions yet since it takes more resources and longer time to 

compute and update neighborhood descriptions.   

Figures 7.6 (a)-(d) show the performance of federated search in medium- and large-sized networks 

with different hub-provider topologies based on “incomplete” neighborhood descriptions.  One can 

expect that for a query with a sufficient number of relevant documents, the average precision at top- 

ranked documents was not likely to be affected very much even if the relevant provider whose 

description was excluded could not be reached, but the set-based recall was more likely to suffer in 

this case.  Therefore, only the results in set-based (overlap) recall are included to highlight the 

differences in search performance.  Since failure to reach one particular relevant provider wouldn’t 

result in any substantial loss if the number of relevant documents it contributed was too small 
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          (c) TREC queries 701-800, large-sized network                      (d) GOV queries, large-sized network 

Figure 7.6  The search performance (recall) of different hub-provider topologies              

based on “incomplete” neighborhood descriptions in the networks of different sizes. 
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compared with the total number of relevant documents, the figures only show the results for those 

queries that had at least 10% of the relevant documents contained in the “excluded” relevant 

providers. 

The figures illustrate that in the simulated “dynamic” settings, the dynamically constructed hub-

provider topologies with content-based locality enabled substantially more relevant contents to be 

reached by federated search than the randomly generated hub-provider topologies.  It was especially 

the case with WT10g queries, which have in general a very small number of relevant providers for 

each query so that any miss could significantly degrade search performance.  Paired two-sided sign 

tests revealed that the improvement of search accuracy in the dynamically constructed hub-provider 

topologies was statistically significant at the 0.01 significance level when various percentages of the 

hubs were reached.   

Compared with the results in the static settings, the dynamically constructed hub-provider 

topologies with content-based locality resulted in much less performance degradation than the 

randomly generated hub-provider topologies in the simulated “dynamic” settings.  By having 

content-based locality, the volatility of hub and neighborhood descriptions in dynamic 

environments was greatly reduced so that even if the description of a relevant provider was 

excluded, neighborhood descriptions still provided enough clues to guide resource selection towards 

the right direction in locating this provider.  Our experimental results show that as neighborhood 

descriptions became more out-of-date and failed to include the descriptions of the providers 

covering a larger percentage of the relevant documents, the performance of federated search in the 

hub-provider topologies with content-based locality degraded more gracefully.  Even if random 

selection was used for query routing among the hubs due to the lack of updated resource 

descriptions, the search performance was still better in the content-based hub-provider topologies 

than in the random topologies, making federated search more resilient to dynamic content change in 

the network.   

In summary, our topology evolution algorithm for hub-provider topology was effective in 

dynamically constructing a hub-provider topology with a high degree of content-based locality and 

load balance in an efficient and scalable manner, and the resulting topology enabled slightly more 

effective and much more robust full-text federated search compared with a random hub-provider 

topology.       

7.2 Hub-Hub Topology 

Basing hub-provider topology evolution on the dynamic topology evolution algorithm evaluated in 

previous section, this section focuses on the effectiveness of the hub-hub topology evolution 

algorithm described in Section 6.2.  We are primarily interested in i) whether the dynamically 

constructed hub-hub topology exhibited content-based small-world properties and balanced hub 



 114

degrees, and ii) whether it was effective in enhancing search performance compared with a 

randomly generated hub-hub topology.   

7.2.1 Experimental Settings 

The same testbeds and settings described in Section 7.1.1 were used with the exception that the 

connections between hubs were adjusted dynamically using the hub-hub topology evolution 

algorithm instead of remaining static.   

Because in reality large-scale P2P networks are typically sparse, and it is quite expensive for each 

hub to acquire and maintain neighborhood descriptions for a large number of hub neighbors, we 

chose small values for various maximum connection capacities to simulate the topology evolution 

of a sparse network.  For the medium-sized network, a hub’s maximum number of outgoing local 

hub connections Mol was 2, its maximum number of outgoing long-range hub connections Mog was 

3 minus its actual number of outgoing local hub connections, and its maximum number of incoming 

hub connections Mi was 3.  For the large-sized network, the values of Mol, Mog, and Mi were 4, 4, 

and 12 respectively.  For both networks, the exponent β for the power-law distribution was 2.0.  

Simple cycle detection was used to avoid cycles of length 3 in hub-hub connections to improve the 

accuracies of neighborhood descriptions and the efficiency of query routing.      

7.2.2 Experimental Results          

The characteristics of content-based small-world properties at the hub level are locational proximity 

of similar content areas and short global separation of dissimilar content areas.  To evaluate whether 

the dynamically constructed hub-hub topology had content-based small-world properties, both the 

content distance (K-L divergence between hub descriptions) and the graph distance (number of 

hops) between each pair of hubs were calculated and the graph distances for different pairs of hubs 

with the same range of content distance were averaged.  Figure 7.7 plots the relations between 

content distances and graph distances for hub pairs in both the medium-sized network and the large-

sized network.  The figure shows not only small graph distances between hubs with similar content 

areas (K-L divergence no more than 1.0), but also small-to-medium graph distances between hubs 

with dissimilar content areas.  Particularly, for the large-sized network with as many as 256 hubs 

and a network density of 0.0388, the average graph distances didn’t exceed 4 and the maximum 

graph distance was 5 for hub pairs with very large content distances.  Therefore, the dynamically 

constructed hub-hub topologies exhibited content-based small-world properties.   

Figure 7.8 depicts the degree distributions at the hub level for the dynamically constructed hub-hub 

topologies.  Although the degree distribution of the medium-sized network shows nothing 

interesting due to its small scale, the degree distribution of the large-sized network illustrates that 

the dynamically constructed hub-hub topology for the network of 256 hubs didn’t have a power-law 
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distribution due to the constraints of the topology evolution algorithm on the minimum and 

maximum numbers of hub connections for each hub, which was designed on purpose to avoid 

overloading a few hubs with a large number of connections by distributing these connections to a 

larger number of hubs.  When the network scales to an even larger size, the middle range of the 

distribution curve is expected to behave more and more like a power-law distribution, but instead of 

a long, diminishing tail to the right side which is typical of a power-law distribution, the curve will 

turn upward before finishing at the maximum allowed connection capacity.  Because the highly 

connected peers in a network topology with a power-law degree distribution can easily become 

bottlenecks of information flow or targets of malicious attacks, balancing hub degrees by truncating 

the power-law degree distribution can effectively alleviate these problems. 

If a hub-hub topology exhibits content-based small-world properties, when an information request 

is initiated from a network region containing relevant contents, which is most likely the case with 

characteristic queries of persistent interests issued by consumers to selected hubs (Section 4.4) in a 

dynamically constructed hub-consumer topology (Section 6.3), most relevant documents should be 

covered by nearby hubs due to local clustering of hubs with similar content areas.  When an 

information request is initiated from a non-relevant region, which may happen for uncharacteristic 

queries of transient interests, the request should only need to travel along a short path to reach a 

relevant region thanks to the short path length between hubs of dissimilar content areas.  Therefore, 

whether content-based small-world properties can enhance search performance can be measured by 

the effectiveness and efficiency of hub-hub query routing when queries start from different regions.   

Figures 7.9-7.12 show the performance of federated search for different sets of queries in different 

networks with the dynamically constructed topologies.  To start search in a relevant region, each 

query was initiated by a consumer connected to a hub selected among those nearest to relevant 

content.  To start search in a non-relevant region, each query was issued by a consumer connected 

to a hub located farthest on average from relevant content.  The results of federated search in the 

networks with random hub-hub topologies are included for comparison.  Paired two-sided sign tests 
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 Figure 7.7  Content distances vs. graph distances.   Figure 7.8  Hub-hub degree distributions. 
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were applied, and the vertical dashed lines in the figures mark the ranges within which the 

dynamically constructed topologies yielded statistically significant improvement at the 0.01 

significance level compared with the random topologies.  Lack of vertical dashed lines in some 

figures indicates that the results shown in these figures had no statistically significant difference.   

The figures indicate that when queries were initiated from relevant regions, compared with search in 

the random hub-hub topologies, federated search in the dynamic hub-hub topologies had better 

performance with statistical significance right from the beginning when a very small percentage of 

the hubs were reached.  The improvement can be explained by the fact that similar contents (and 

therefore more relevant contents) were near to one another in the dynamically constructed hub-hub 

topologies but most certainly not so in the random hub-hub topologies.  When queries were initiated 

from non-relevant regions, search in the dynamically constructed hub-hub topologies had 
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             (c)  precision, start from relevant regions                              (d) recall, start from relevant regions 

Figure 7.9  The search performance of different hub-hub topologies for TREC queries       

451-550 in the medium-sized network with search started from different regions. 
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statistically significantly better performance for TREC queries (precision and recall) and GOV 

queries (recall), and similar performance for WT10g queries.  This was not only because short 

global separation between dissimilar content areas enabled hub-hub query routing to reach relevant 

contents quickly, but also because locational proximity of similar content areas resulted in 

additional relevant contents (if any) to be located in short distance once relevant regions were 

reached.   

The range of settings within which the dynamically constructed hub-hub topologies had statistically 

significant improvement over the random topologies was mostly wider for queries initiated from 

relevant network regions than for those from non-relevant regions.  Routing a query from a non-

relevant neighborhood to a relevant neighborhood, and then to the most relevant hub required a 

sequence of correct decisions made by the resource selection component of each hub along the path.  
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Figure 7.10  The search performance of different hub-hub topologies for WT10g queries      

in the medium-sized network with search started from different regions. 
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Restricting hubs to selecting only one neighboring hub in our experiments yielded longer path 

length for query routing and higher likelihood of selecting a suboptimal hub somewhere along the 

path, thus increasing the chance for query routing to deviate from the optimal path and diminishing 

the improvement in the search performance of the dynamically constructed topologies.  Possible 

methods to enhance the advantage of the dynamically constructed content-based topologies include 

allowing each hub to route the query it receives to multiple neighboring hubs, selecting a variable 

instead of fixed number of hub neighbors for query routing based on their estimated relevance for 

the query, or making an effort to start the query in a relevant neighborhood in order to reduce the 

path length to reach relevant content.  In this dissertation, we focus on the last method, using user 

modeling to dynamically construct a hub-consumer topology and conduct interest-based hub 

selection, so that queries of persistent user interests can start in relevant neighborhoods.  The next 

section (Section 7.3) describes in detail the evaluation on the effectiveness of this method. 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

a
v
e

ra
g

e
 p

re
c
is

io
n

 o
v
e

r 
1

-3
0

 d
o

c
u

m
e

n
t 
c
u

t-
o

ff
s

statistically significant   

dynamically constructed
randomly generated     

 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

s
e
t-

b
a

s
e
d

 r
e

c
a

ll

statistically significant 

dynamically constructed
randomly generated     

 

           (a)  precision, start from non-relevant regions                     (b) recall, start from non-relevant regions 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

a
v
e
ra

g
e
 p

re
c
is

io
n
 o

v
e
r 

1
-3

0
 d

o
c
u

m
e
n

t 
c
u
t-

o
ff
s

statistically significant    

dynamically constructed
randomly generated     

 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

s
e
t-

b
a

s
e
d

 r
e

c
a

ll

statistically significant    

dynamically constructed
randomly generated     

 

              (c)  precision, start from relevant regions                             (d) recall, start from relevant regions 

Figure 7.11  The search performance of different hub-hub topologies for TREC queries     

701-800 in the large-sized network with search started from different regions. 
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By comparing Figures 7.9-7.12, we can see that the performance gain by using a dynamically 

constructed topology was bigger and more consistent in the large network than in the medium-sized 

network.  Another observation is that the performance differences between different topologies 

were bigger for queries whose relevant documents were mostly covered by multiple hubs (TREC 

queries 451-500, TREC queries 701-800, GOV queries) instead of just one or two hubs (WT10g 

queries).  These indicate that as the network grew larger to include more contents and connections, 

efficient resource location became a more difficult task, therefore having content-based small-world 

properties for good navigability yielded a bigger advantage. 

To summarize, by only utilizing limited local information about the network, the topology evolution 

algorithm for hub-hub topology was effective in dynamically constructing a hub-hub topology with 

content-based small-world properties and relatively balanced hub degrees, and the resulting 
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              (c)  precision, start from relevant regions                             (d) recall, start from relevant regions 

Figure 7.12  The search performance of different hub-hub topologies for GOV queries        

in the large-sized network with search started from different regions. 
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topology could further improve the effectiveness (particularly recall) and efficiency of full-text 

federated search compared with a random hub-hub topology.   

7.3 Hub-Consumer Topology 

Because the establishment and adjustment of each consumer’s permanent connections to the hubs 

during topology evolution are completely based on the continuous observation about which hubs 

are most frequently selected by the consumer in recent search, the effectiveness of hub-consumer 

topology evolution can be evaluated by the performance of initial hub selection conducted by the 

consumer.  Section 4.4 proposes a resource selection method that uses a user model constructed by 

clustering past queries based on their top-ranked search results to recognize different types of user 

interests (“characteristic”, persistent interests versus “uncharacteristic”, transient interests) and 

different topics of characteristic interests, and applies different search strategies accordingly in order 

to take advantage of the strengths of both resource selection by consumers and resource selection by 

hubs.  Since its effectiveness largely depends on regulated content placement and carefully 

controlled topology evolution, it naturally becomes the last component to be evaluated in our 

progressive evaluation of the network evolution model.   

Given the support of the dynamically evolved hub-provider and hub-hub topologies, the 

performance of the proposed method was measured for both characteristic queries and 

uncharacteristic queries and compared against the performance of several other hub selection 

methods.  Before presenting the experimental results and analysis in Section 7.3.4, we devote 

Section 7.3.1 to introducing the hub selection methods used for comparison, Section 7.3.2 to 

presenting the query sets created to include different types of queries in different topics, and Section 

7.3.3 to describing experimental settings.   

7.3.1 Hub Selection Methods 

The hub selection method described in Section 4.4 is referred to as hub selection based on clustered 

user modeling in order to distinguish it from other hub selection methods introduced in this section.  

It uses interest-based initial hub selection based on the clustered user model for characteristic 

queries representing persistent interests, and random initial hub selection followed by full-text hub 

selection conducted by hubs for uncharacteristic queries of transient information needs.   

Hub selection based on non-clustered user modeling generates a non-clustered user model by 

aggregating the contents of the top-ranked retrieved documents for previous queries, and uses the 

same performance measure as hub selection based on clustered user modeling to evaluate the hubs.  

Because it constructs a user model explicitly, it has the ability to separate uncharacteristic queries 

from characteristic ones in order to apply different search strategies.  However, it can only measure 
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each hub’s performance for past queries as a whole without distinguishing the differences in 

performance for different interests.   

Performance-based hub selection uses the same measure for the hubs’ resource location 

performance as hub selection based on user modeling.  However, it maintains the hubs’ measured 

performance by accumulating the total number of top-ranked merged documents returned by each 

hub for previous queries without explicitly constructing a user model from document contents.  As a 

result, it lacks the ability to distinguish between characteristic queries representing persistent user 

interests and uncharacteristic queries expressing transient information needs, which means that only 

a single search strategy can be applied to all the queries.   

Content-based hub selection uses the K-L divergence resource selection algorithm based on the 

content models of the hubs learned from previous search results.  Each consumer cumulatively 

constructs its own hub models using the contents of the top-ranked documents it received from the 

hubs for previous queries.  Similar to performance-based hub selection, content-based hub selection 

neither constructs a user model nor distinguishes different interests.  Therefore, it also applies a 

single search strategy to all the queries.   

Random hub selection randomly selects hubs from the list of hubs maintained by each consumer to 

issue queries.   

Random+full-text hub selection randomly selects one hub to start search and continues with full-

text hub selection conducted by hubs for multiple-hop hub-hub query routing.   

To highlight the differences between different hub selection methods in terms of search strategies, 

hub selection based on clustered or non-clustered user modeling uses two different strategies for 

characteristic and uncharacteristic queries.  Hub selection based on clustered user modeling uses 

interest-based initial hub selection by consumers for characteristic queries, while hub selection 

based on non-clustered user modeling uses performance-based initial hub selection by consumers 

for characteristic queries.  Both methods use random initial hub selection by consumers followed by 

full-text hub selection conducted by hubs for uncharacteristic queries.  Performance-based, content-

based, and random hub selection methods treat all queries as characteristic queries and only use 

initial hub selection conducted by consumers to reach the hubs.  Random+full-text hub selection 

treats all queries as uncharacteristic queries and uses random initial hub selection by consumers 

followed by full-text hub selection conducted by hubs to reach the hubs.     

7.3.2 Queries 

Two sets of queries were selected from the queries automatically generated by extracting key terms 

from the documents in WT10g (Section 5.1.3) to be used in the medium-sized P2P network.  The 

first query set (“WT10g-broad”) consists of 563 characteristic queries manually chosen to represent 
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a user’s persistent interests in 8 relatively broad topics, and 437 uncharacteristic queries 

automatically selected to express the user’s transient information needs not related to the 

aforementioned 8 topics.  The topics were determined by soft-clustering the 2,500 providers based 

on their resource descriptions and inspecting the most frequent non-stopword terms from each 

cluster.  Therefore, these topics are representative of the contents provided in the medium-sized 

network.  Table 7.1 shows for each “broad” topic a general description, the number of queries 

selected for the topic, and sample queries with query terms stemmed using the k-stem stemmer 

(Krovetz 1993).  Among the 8 topics, “Finance”, “Education”, “Health” and “Technology” are 

popular in the network with a large number of providers providing related contents.  By 

comparison, “Music”, “Law”, “Religion”, and “Government” are much less popular.  Samples of 

uncharacteristic queries are also included in the table.  The second query set (“WT10g-narrow”) 

includes 400 characteristic queries in 8 topics which can be regarded as sub-topics of the above 

“broad” topics and 600 uncharacteristic queries.  Table 7.2 shows sample queries for these “narrow” 

topics.   

Table 7.1 Stemmed sample queries from WT10g-broad query set. 

Topic # queries Sample queries 

Music 72 Billy Joel, Adam Ant album, Jesse Jones play band 

Finance 67 capital Macquire, common share Chrysler, mortgage market product 

Education 80 elementary educate, Stanford university program, ohio college 

Health 78 medical rehabilitate, home care nurse, primary care physician Santara 

Technology 75 BSDI Internet, free agent software, secure product kerbero 

Law 64 supreme court, law resource legal federal, war crime international law 

Religion 67 lord Samuel Israel, holy spirit testament, god Jesus church sin 

Government 60 tax cut, budget deficit govern, federal govern department 

Uncharacteristic 437 Ocean Spray, CraftWEB bookstore, Torreblanca resort Acapulco 

Table 7.2 Stemmed sample queries from WT10g-narrow query set. 

Topic # queries Sample queries 

Classical music 50 Bach sonata, Richard Strauss record, ninth symphony Beethoven 

Stock  50 stock split, Dow Jones index, Alcoa pay bonus dividend 

Online education 50 distance educate, enroll online course, university phoenix online 

Personal health 50 nutrition vitamin, calorie fat pretzel, fat oil cholesterol 

Image processing 50 Adobe Photoshop, image browse Kudo, Epson photo image software 

Civic regulation 50 water hazard rule, waste pollution control, sewage sludge regulate 

Religious study 50 Christian theology, religion history study, lecture Islamic Muslim 

Tax issues 50 income tax, tax reform, tax cut legislate 
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Queries for the large-sized P2P network were selected from the query set provided by AOL for 

*.gov domains.  Each query was associated with the domain of the search result clicked by one or 

more users.  Queries associated with the same domain were considered to be from the same topic.  

The GOV-broad query set consists of 500 characteristic queries manually chosen from 5 relatively 

broad domains, and 500 uncharacteristic queries not related to these 5 domains.  The GOV-narrow 

query set consists of 500 characteristic queries selected from 7 relatively narrow domains, and 500 

uncharacteristic queries from other domains.  Tables 7.3 and 7.4 show respectively sample queries 

for these two query sets.        

7.3.3 Experimental Settings 

The testbeds used were the same as those defined in Section 5.1 and used for evaluating the network 

search model (Section 5.3), the hub-provider topology evolution algorithm (Section 7.1), and the 

hub-hub topology evolution algorithm (Section 7.2).  The hub-provider and hub-hub topologies 

were constructed by using the topology evolution algorithms described in Sections 6.1 and 6.2, and 

evaluated in Sections 7.1 and 7.2.     

Given a query set, queries in the set were issued by an information consumer in a random order.  

The information consumer was not given information about which queries represented which types 

Table 7.3 Sample queries from GOV-broad query set. 

Domain # queries Sample queries 

USGS 100 pelicans, bald eagle, ruby throated hummingbird 

NIH 100 cirrhosis, kidney stones, restless leg syndrome 

NPS 100 sequoia, grand canyon, great smoky mountains 

NASA 100 jupiter, electromagnetic spectrum, columbia space shuttle 

BLS 100 paralegal, respiratory therapist, occupational outlook handbook  

Uncharacteristic 500 commonwealth, us senators, energy policy act of 2005 

Table 7.4 Sample queries from GOV-narrow query set. 

Domain # queries Sample queries 

IRS 100 1040ez, tax refund, earned income tax credit 

NOAA 100 storms, doppler radar, national weather service 

FTC 50 debt, cash loans, credit report companies 

ED 60 mentoring, school finder, post secondary education 

HUD 90 mortgages, buying a house, first time home owner 

DOT 50 airbags, car safety, drunk driving laws in south Carolina 

DOL 50 unemployment, labor laws, injury compensation for federal employees 
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or topics of interests.  Regardless of the hub selection method, the first 50 queries (among the 1,000 

queries in a given query set) were issued to one randomly selected hub with a TTL value of 15 for 

the medium-sized network or 50 for the large-sized network so that the consumer could learn 

sufficient information about the hubs in the network.  For performance-based, content-based, and 

random hub selection, all the queries after the first 50 were issued as characteristic queries.  For 

random+full-text hub selection, all the queries were issued as uncharacteristic queries.  For hub 

selection based on clustered or non-clustered user modeling, after the first 50 queries, it was up to 

the consumer to decide whether to issue a query as a characteristic query or as an uncharacteristic 

query.  Specifically, the K-L divergence values between the query and existing query clusters 

whose size exceeded Smin = 5 were calculated.25  If none of the divergence values were smaller than 

the classification threshold Tclassify which was set to 7.0 for hub selection based on clustered user 

modeling and 9.0 for that based on non-clustered user modeling26, then the query was regarded as 

uncharacteristic; otherwise, it was considered characteristic.  A query issued as characteristic query 

was sent to the top-ranked hubs selected using initial hub selection conducted by the consumer with 

a TTL value of zero for hub routing so that federated search completely relied on initial hub 

selection to reach the hubs.  In this case, the percentage of the hubs reached for the query was 

controlled by the number of the top-ranked hubs selected by initial hub selection.  A query issued as 

uncharacteristic was sent to a randomly selected hub with a non-zero TTL value so that federated 

search used full-text hub selection conducted by a hub to reach other hubs in the network.  The 

value of TTL determined the percentage of the hubs reached for the query.       

For resource selection by hubs, each hub that received the query message with a non-zero TTL 

value forwarded it to the top-ranked neighboring providers based on the learned threshold and the 

top one neighboring hub that hadn’t been reached for the query with a decreased TTL value.  For 

document retrieval, each provider returned up to 50 top-ranked documents.  For result merging, the 

hubs used the extended Kirsch’s algorithm and returned the top-ranked documents (50 for the 

medium-sized network and 200 for the large-sized network) to the consumer.  The consumer used 

the raw score merge to merge the results returned by multiple hubs. 

For hub selection based on clustered user modeling, the consumer used the contents of Dtop = 10 

top-ranked merged documents to generate a more detailed representation of the query, and its 

similarity to existing query clusters was measured by the K-L divergence values between the query 

representation and the representations of these clusters.  The clustering threshold Tcluster used to 

determine whether to include the query into existing clusters or to create a new cluster was set to 

1.5.  The maximum number of recorded clusters Nmax was 50.  Therefore, when the number of 

                                                 
 
25 For hub selection based on non-clustered user modeling, there was only one single query cluster for all previous queries that 

were considered characteristic.   

26 The classification threshold Tclassify for hub selection based on non-clustered user modeling had a looser value because the 

representation of the single query cluster for all characteristic queries of various interests was more heterogeneous than the 

representation of a query cluster for queries of a particular interest.   
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clusters reached 50 but a new cluster was needed, the smallest cluster among the r = Nmax /4 least 

recently used clusters was removed to make room for the new cluster.  The information about how 

many documents returned by each hub appeared among the Dtop top-ranked merged documents was 

used to update the hubs’ measured resource location performance for the cluster which the query 

joined or created.   

For hub selection based on non-clustered user modeling, whether to integrate the new representation 

generated from the Dtop top-ranked merged documents into existing user model depended on 

whether the K-L divergence between them was less than Tcluster.  The information about how many 

documents returned by each hub appeared among the Dtop top-ranked merged documents was 

accumulated as a way to measure the hubs’ resource location performance for hub selection based 

on non-clustered user modeling and for performance-based hub selection.  Content-based hub 

selection used the contents of Dtop top-ranked documents returned by the hubs to update the 

corresponding hub content models maintained by the consumer.   

The similarity thresholds Tclassify and Tcluster could be tuned automatically by the system given the 

types of a small number of queries as training data.  Our previous experimental results show that the 

performance of hub selection based on user modeling is quite robust when the similarity threshold 

values are chosen within a certain range (Lu and Callan 2006b).  Small values for Smin (the 

minimum cluster size for representing a persistent interest) and Dtop (the number of the top-ranked 

documents per query used by hub selection methods) were used since our previous work indicates 

that a small amount of training data are sufficient in learning a user model with satisfactory 

accuracy (Lu and Callan 2006b).   

7.3.4 Experimental Results 

This section compares the performance of full-text federated search using different methods of hub 

selection in the dynamically evolved network topologies.   

Figures 7.13 (a)-(d) plot the search accuracy (y-axis) against the percentage of the hubs reached (x-

axis) for the WT10g-broad query set using different hub selection methods in the medium-sized 

P2P network.  The average performance values for characteristic queries and uncharacteristic 

queries are shown separately.  Figures 7.13 (a)-(b) show that hub selection based on non-clustered 

user modeling underperformed that based on clustered user modeling for characteristic queries.  

This was because although the best hubs for different interests were most likely to be different due 

to content-based locality, without using query clustering to distinguish between different 

characteristic interests, hub selection based on non-clustered user modeling could only select hubs 

that had best resource location performance for characteristic queries in general but not necessarily 

for those of a particular interest.  By comparison, hub selection based on clustered or non-clustered 

user modeling yielded similar performance for uncharacteristic queries since they were both capable 

of distinguishing uncharacteristic queries from characteristic ones so that federated search could 
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rely on full-text hub selection conducted by hubs to guarantee effectiveness.  Performance-based 

hub selection had similar search performance for characteristic queries compared with hub selection 

based on non-clustered user modeling since they essentially used the same measure for hubs’ 

resource location performance.  However, due to its inability to recognize uncharacteristic queries 

and apply a different search strategy accordingly, performance-based hub selection was much less 

effective than hub selection based on user modeling for uncharacteristic queries.  Content-based hub 

selection based on the learned hub content models was very effective for characteristic queries but 

quite ineffective for uncharacteristic queries, which was not a surprise since the limited information 

the consumer learned about the hubs as a byproduct of past search was only helpful in guiding 

initial hub selection for future queries similar to past ones.  As expected, random hub selection 

which blindly selected hubs resulted in the worse performance among all hub selection methods.  

Compared with random+full-text hub selection, hub selection based on clustered user modeling had 
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                (c)  precision, uncharacteristic queries                                    (d) recall, uncharacteristic queries 

Figure 7.13  The search performance of different hub selection methods for WT10g-broad 

queries in the medium-sized network. 
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better performance for characteristic queries and comparable performance for uncharacteristic 

queries, demonstrating that it was able to combine the strengths of both resource selection by 

consumers and resource selection by hubs, which outperformed federated search that only relied on 

the power of resource selection by hubs.  Overall, hub selection based on clustered user modeling 

consistently gave near-best performance for both characteristic and uncharacteristic queries of the 

WT10g-broad query set in the medium-sized network. 

Figures 7.14 (a)-(d) show the experimental results for the WT10g-narrow query set using different 

hub selection methods in the medium-sized P2P network, which led to the same conclusions with 

respect to the relative effectiveness of different hub selection methods as those drawn from the 

results of the WT10-broad query set.  The main difference between the results for these two query 

sets is that hub selection based on non-clustered user modeling and performance-based hub 
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Figure 7.14  The search performance of different hub selection methods for WT10g-narrow 

queries  in the medium-sized network. 
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selection were much more effective for characteristic queries in the WT10g-narrow query set than 

for characteristic queries in the WT10g-broad query set.  One possible reason to explain the 

difference was that queries of more focused interests (as those in the WT10g-narrow query set) 

required fewer hubs to cover most relevant contents and these hubs more easily stood out even 

without distinguishing the hubs’ resource location performance for different interests, which made 

performance-based initial hub selection more effective as long as the number of hubs to be selected 

was not too small.   

One might expect that user interests that were more focused could be better modeled and could 

enable more effective interest-based initial hub selection.  However, because each query cluster 

used to represent a persistent interest was created automatically and adaptively instead of manually 

or statically, each broad interest provided in the WT10g-broad query set could be automatically 
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Figure 7.15  The search performance of different hub selection methods for GOV-broad 

queries in the large-sized network. 
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broken down into interests of finer granularity.  Therefore, as shown in the results, interest-based 

initial hub selection used by hub selection based on clustered user modeling for characteristic 

queries only had slightly superior results for the WT10g-narrow query set than for the WT10g-

broad query set, further demonstrating the effectiveness of our query clustering approach to 

modeling different user interests with various granularities.    

The experimental results for the GOV-broad query set and the GOV-narrow query set using 

different hub selection methods in the large-sized P2P network are shown Figures 7.15 (a)-(d) and 

7.16 (a)-(d) respectively.  If we compare the results in the large-sized network with those in the 

medium-sized network, we can see that the advantage of hub selection based on clustered user 

modeling over other hub selection methods for characteristic queries was smaller in the large-sized 

network, and performance-based hub selection worked much better for uncharacteristic queries in 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

a
v
e

ra
g
e

 o
v
e
rl

a
p

 p
re

c
is

io
n

 o
v
e
r 

1
-3

0
 d

o
c
u

m
e
n

t 
c
u

t-
o
ff
s

clustered user modeling    
content-based              
random+full-text           
non-clustered user modeling
performance-based          
random                     

 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

s
e
t-

b
a

s
e
d

 o
v
e
rl

a
p
 r

e
c
a

ll

clustered user modeling    
content-based              
random+full-text           
non-clustered user modeling
performance-based          
random                     

 

                 (a)  precision, characteristic queries                                           (b) recall, characteristic queries 

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

a
v
e

ra
g
e

 o
v
e
rl

a
p

 p
re

c
is

io
n

 o
v
e
r 

1
-3

0
 d

o
c
u

m
e
n

t 
c
u

t-
o
ff
s

random+full-text           
clustered user modeling    
non-clustered user modeling
performance-based          
content-based              
random                     

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

percentage of the hubs reached

s
e
t-

b
a

s
e
d

 o
v
e
rl

a
p
 r

e
c
a

ll
random+full-text           
clustered user modeling    
non-clustered user modeling
performance-based          
content-based              
random                     
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Figure 7.16  The search performance of different hub selection methods for GOV-narrow 

queries in the large-sized network. 
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the large-sized network than in the medium-sized network.  These differences can be explained by 

the fact that the GOV queries selected for the query sets used in the large-sized network are better-

defined and require a smaller percentage of the hubs to cover most relevant contents even for 

uncharacteristic queries, making it easier to select hubs based on the hubs’ performance measured 

by the number of top-ranked documents each hub returned.  Despite the changes in the performance 

of several hub selection methods, our proposed method of hub selection based on clustered user 

modeling still consistently yielded one of the best performances compared with other hub selection 

methods in the large-sized network.   

To conclude, as demonstrated in the experimental results, hub selection based on clustered user 

modeling was effective and robust for various sets of queries, network sizes, and content 

granularities, thanks to its ability to adaptively model diverse user interests and apply different 

search strategies to different types of queries in optimizing the overall search performance.  Because 

the evolution of hub-consumer topology depends on hub selection conducted by consumers, the 

consistently good performance of hub selection based on clustered user modeling gives us 

confidence in the effectiveness of hub-consumer topology evolution.   

7.4 Summary 

Although the evaluation in Chapter 5 demonstrates that even without carefully controlled content 

placement and topology evolution, our network search model is able to provide a better 

combination of accuracy and efficiency than existing common alternatives for full-text federated 

search, the results and analysis in this chapter show that the network evolution model is still desired 

for the effectiveness, robustness, and scalability of federated search in peer-to-peer networks.   

Using the testbeds and the settings consistent with those used for evaluating the network search 

model, this chapter progressively evaluates various components of our network evolution model by 

studying the properties of the dynamically evolved topology and measuring its effectiveness in 

enhancing federated search performance.  Experimental results show that the topology evolution 

algorithms developed are effective in constructing a network topology with the desired search 

enhancing properties (interest-based locality, content-based locality, and content-based small-world 

properties) and load balance without relying on central coordination and control.  The resulting 

network topology is capable of not only further improving the effectiveness of full-text federated 

search, but also increasing its robustness and scalability in dynamic environments.  It also provides 

an environment where user modeling of a person’s characteristic information needs can lead to 

greater search accuracy and efficiency.     
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C h a p t e r  8  

CONCLUSION 

In this chapter, we summarize the research presented in this dissertation, discuss our major 

contributions and their significance, and point out directions for future work.   

8.1 Summary 

The work discussed in this dissertation provides the first integrated framework for full-text 

federated search of text digital libraries using hierarchical P2P networks as a federated search layer.  

A network overlay model is proposed to extend previous notions of hierarchical P2P network 

overlays by enhancing the functionalities of peers and their connections, and explicitly defining the 

properties of a network topology capable of supporting effective, efficient, robust and scalable full-

text federated search.  The components of query routing, document retrieval, and result merging 

required for federated full-text ranked retrieval are incorporated in a network search model, which 

utilizes the functionalities and search-enhancing properties of the network overlay model to 

optimize search performance.  The problem of constructing the proposed network overlay 

dynamically and autonomously is tackled with a network evolution model, which enables effective, 

efficient, and scalable topology evolution in decentralized, open-domain environments.   

The network overlay model defines the functionalities and organization of peers in a P2P network 

to support full-text federated search.  Peers that share or request information (providers or 

consumers) are located at the lower level of the network, free from the responsibilities of directing 

unrelated query traffic.  Peers that provide regional directory services (hubs) are located at the upper 

level to form the backbone of the network, sharing all the necessary responsibilities related to search 

and topology evolution.  Connections between peers are distinguished by the functionalities of the 

peers they link and the purposes they serve, so that peers can be organized to achieve desired 

content distribution and navigability by taking advantage of interest-based locality, content-based 

locality, and small-world properties.  The defined network overlay is revolutionary in its effective 

incorporation of multiple search-enhancing network properties in a single framework, which 

weaves otherwise disorganized peer connections into an integrated platform that actively supports 

more effective, efficient, and robust federated search.   

The network search model provides a comprehensive full-text federated search mechanism which 

includes new developments for each main component of federated search from resource 

representation to resource selection to result merging.  First, to target the unique characteristic of 

resource selection in P2P networks due to multiple-hop query routing, we define the concept of a 
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neighborhood and an exponentially decayed resource representation to effectively describe the 

contents reachable along each path at the hub level, and propose a resource selection method based 

on search radius-dependent neighborhood descriptions for each hub to select neighboring hubs for 

query routing.  This approach has been proven to provide more effective resource location than the 

commonly used resource selection based on descriptions of direct neighbors or non-decayed 

neighborhood descriptions.  Second, to enable each hub to learn its provider selection threshold 

autonomously without manual heuristic threshold tuning, we develop several unsupervised 

threshold learning methods that utilize the pseudo relevance feedback provided by result merging, 

and use a hybrid approach to combine their complementary strengths, which is able to automatically 

find the optimal threshold in consideration of both accuracy and efficiency.  Third, in addition to 

effectively distinguishing different user interests to better establish and take advantage of interest-

based locality, our approach of user modeling for resource selection of hubs by consumers is the 

first to recognize the need to use different search strategies for different types of queries (e.g., 

persistent, long-term versus transient, short-term), and to support it for optimizing the overall search 

performance.  Fourth, by extending the Kirsch’s algorithm for result merging to use substitute 

corpus statistics, accurate relevance-based document rankings can be generated without requiring 

global corpus statistics.               

The network evolution model dynamically and autonomously constructs the network overlay 

described in the network overlay model in order to best support the network search model by 

providing desired search-enhancing network properties.  It is designed to work effectively and 

efficiently for open-domain, unstructured text contents without relying on central coordination or 

control.  Furthermore, the algorithms developed for the network evolution model also put extra 

effort on load balancing for the benefit of robustness and scalability.  Specifically, content-based 

locality is established by using adaptive clustering that dynamically adjusts the granularity of the 

content area covered by each hub by cultivating multiple sub-clusters of providers within each 

hub’s content-based cluster.  Content-based small-world properties are the product of hubs 

periodically adjusting local and long-range hub connections based on limited local information and 

a power-law distribution of content similarity, which enables good network navigability without 

requiring global knowledge of the network.  By observing resource selection of hubs conducted by 

consumers based on user modeling and adjusting connections accordingly, the network can obtain 

interest-based locality with few additional costs.   

The detailed descriptions of the network overlay, search, and evolution models are accompanied by 

extensive experiments and analysis using two large-scale P2P testbeds created based on TREC test 

collections of real-content documents.  Comprehensive evaluations measure the performance of 

each main component in the framework and compare it with existing common alternatives.  

Experimental results provide strong empirical evidence for the effectiveness of the approaches 

proposed in this dissertation for full-text federated search in P2P networks.                
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8.2 Contributions 

Today, vast amounts of useful information contents exist in text form in distributed environments, 

many of which are hidden from conventional search engines.  Effective and practical techniques 

must be developed to retrieve distributively located relevant contents for satisfying information 

needs.  Federated search in peer-to-peer networks for accessing distributed information has become 

an important research topic that draws the attention of practitioners from multiple research areas, 

especially database management and networking.  Although it can be regarded as a particular type 

of information retrieval activity in a particular type of environment, federated search in P2P 

networks has largely been explored independently from the research area of information retrieval.  

Previous work for federated search in P2P networks has mostly been targeted for known-item 

search of documents with representations based on names, annotations, or keywords from small, 

controlled vocabularies.  P2P networks have so far provided very limited support for efficient full-

text search of document contents with relevance-based document ranking.  In contrast, full-text 

ranked retrieval has become common practice for information retrieval in traditional search 

environments, and is widely used for search over unstructured text documents of heterogeneous, 

open-domain contents.   

The objective of this dissertation is to study federated search in P2P networks from an information 

retrieval perspective, and to develop new techniques to complement existing approaches in P2P 

networks that are mostly only applicable to limited domains.  Particularly, we aim at providing 

comprehensive full-text ranked retrieval capability for federated search of text digital libraries in 

P2P networks.  Our development offers one of the first sets of practical solutions to enable full-text 

federated search in P2P networks, which can be deployed now for networks of at least a few tens of 

thousands of small- and medium-sized digital libraries.  It not only broadens the application 

territory of sophisticated information retrieval techniques, but also expands the use of federated 

search in P2P networks to more domains.     

Application areas of full-text federated search using P2P networks include but are not restricted to 

the “Hidden Web” and enterprise networks.  The “Hidden Web” consists of independent or loosely 

affiliated text digital libraries on the Internet that provide search access to their contents via their 

own search interfaces, but do not allow their contents to be crawled by Web search engines for 

centralized search.  Using a P2P network to organize these digital libraries, “wrap” them in a 

standard P2P protocol, and conduct full-text federated search across them offers a single interface to 

access the “hidden” Web contents that cannot be reached using conventional Web search engines.  

Full-text federated search using P2P networks also provides an effective, convenient and cost-

efficient solution to federated search of heterogeneous, multi-vendor, and lightly-managed 

distributed collections of text documents in enterprise networks or other environments where it is 

not feasible or practical to have a strong central IT infrastructure to support centralized search.         

The models developed as integrated parts of the framework for full-text federated search in P2P 

networks can find their uses in other applications as well.  One application for the network overlay 
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and evolution models is large-scale centralized search.  Due to the vast amount of information that 

needs to be stored and processed, even a centralized architecture has to rely on multiple connected 

computing and storage resources (the server farm) to provide the services of a central authority and 

control.  Since the organization of these resources can be regarded as a particular type of network 

environment, the network overlay defined in our network overlay model can be used to organize 

them in order to provide regulated content distribution for more efficient query processing.  The 

algorithms developed for the network evolution model can help to dynamically manage the 

resources in the face of constant changes in contents, requests and workload.   

In recent years, with millions of individuals publishing contents and interacting with one another 

through the Internet, the analysis and management of large-scale social networks have drawn 

increasing attention.  The distributed adaptive clustering approach proposed in the network 

evolution model can be adapted to more effectively organize groups or communities in social 

networks, and the network search model can be quite useful for distributed search in this highly 

dynamic environment.   

Additional application areas that may benefit from our work are meta-search and personalized 

search.  Our approach to user modeling, which recognizes and distinguishes long-term and short-

term information needs and applies different search strategies accordingly, may provide useful 

insight into the development of effective techniques to optimize the overall search performance in 

these applications. 

In addition to the models, the dissertation also provides valuable resources for the evaluation of 

federated search in large-scale P2P networks with realistic settings.  Two P2P testbeds with large 

numbers of text collections and queries have been developed and used for evaluating existing and 

new approaches to full-text federated search and providing useful guidance for future research.  

Both testbeds have been published in a form that allows them to be used by other researchers.27  

Hopefully, our effort of building a useful evaluation platform with a flavor of large-scale P2P 

environments in the real world will benefit future research in this field.      

8.3 Future Work 

To minimize the computation and bandwidth usage of peers with limited resources, the network 

overlay defined in the proposed framework relies on hubs at the upper level of the network to act as 

communication gateways so that leaf peers (providers and consumers) don’t need to connect 

directly among themselves.  However, some lightweight communications at the lower level of the 

network may greatly improve search performance without significantly increasing costs.  For 

instance, similar to content-based clusters formed by providers with similar contents, consumers 

                                                 
 
27 http://www.cs.cmu.edu/~jielu/testbed.html 
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having similar interests can form interest-based clusters and share their user models within each 

cluster so that the performance of resource selection conducted by consumers can be improved 

collectively.  There has also been some recent work on distributed collaborative filtering in P2P 

networks, in which the goal is to recommend other items to a user based on the items he/she 

previously downloaded (Wang et al. 2005).  It would be interesting to extend our framework to 

incorporate collaborative search and filtering in P2P networks.     

The proposed framework for full-text federated search in P2P networks currently includes models 

focusing primarily on search accuracy measured in precision/recall and efficiency measured in the 

percentage of the network reached for query messages.  However, the framework is sufficiently 

flexible to allow more factors to be considered in addition to accuracy and efficiency in measuring 

search performance.  For example, a utility-based approach can be used in the network search and 

evolution models to replace the similarity-based approach in ranking resources or establishing 

connections.  The utility function can combine content-dependent features that we use for our work, 

as well as content-independent but resource-dependent features such as authority, reliability, 

response time, latency, and monetary cost, etc.  The decision-theoretic model proposed in 

(Nottelmann and Fuhr 2007) provides such an approach for decentralized query routing, which may 

be extended to network evolution as well.  This development will certainly make full-text federated 

search more practical and useful in a wider range of distributed environments.         

The algorithms in our models assume that the document collection at each information provider is 

moderately sized and contains relatively homogeneous contents in a small number of topics.  

However, real applications may include a few giant information sources that provide a much larger 

number of documents in various topics and act more like large commercial Web search engines.  

Because resource selection without very accurate size normalization is unlikely to work well when 

comparing resource descriptions that vary greatly in the magnitudes of their vocabulary sizes and 

term frequencies, the search model needs to be extended in order to incorporate giant information 

providers.  Different search strategies might be applied to typical versus giant information 

providers, and techniques developed for data fusion might be adapted to take advantage of the 

usually high degree of overlap between the document collections of giant information providers.  

Resource descriptions of giant providers might also be compared at the same level as neighborhood 

descriptions that aggregate content information of small providers.  For network topology evolution, 

the approaches briefly described in Section 6.1.5 (pages 98-99) might be used for a giant 

information provider to establish content-based and/or popularity-based connections to multiple 

hubs to facilitate more effective and efficient search.     

Although our work has provided some solutions and analysis to address the issue of load balance 

for full-text federated search, more studies on dynamic load balancing are still needed to ensure a 

smooth execution of federated search and network evolution.  A search/evolution hotspot can 

become a bottleneck of search/evolution if the peer in the hotspot cannot efficiently handle the 

workload with its connection bandwidth and/or processing power.  A provider may be overloaded if 

the contents it provides are popular by demand.  A hub may form a search/evolution hotspot if the 
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content area it covers is popular by demand/supply, or if it is the pivot of busy routing paths among 

hubs.  New developments are required for hubs to dynamically and cooperatively monitor the load 

in the network to detect hotspots, and to alleviate the burdens of peers in the hotspots by using 

techniques such as result caching and query traffic redirection.   

The topology evolution algorithms proposed in our network evolution model enable the network to 

recover from hub failures through dynamic adaptation, but the recovery may be slow without 

maintaining certain redundancy.  An isolated provider due to the failure of its connecting hub must 

rejoin the network by running the join process all over again if it does not have any knowledge of 

the similarities between its content and the content areas covered by other hubs.  When a hub loses 

its local or long-range hub connections due to the failure(s) of its neighboring hubs, it must seek 

new connections through topology adaptations if it does not keep a record of the information it 

acquired earlier about other hubs.  One simple redundancy scheme to facilitate fast fault handling is 

for each peer to store the time-stamped information it obtains during topology evolution (with a 

time-out schedule), which may include the identities of other peers, their resource descriptions, 

and/or the similarities between resource descriptions.  Because this information is the byproduct of 

topology evolution, this redundancy scheme does not require extra communication and coordination 

between peers.  However, the simple redundancy scheme is not sufficient to avoid long-distance 

migration of peer locations in network topology when network connectivity and peer accessibility 

are restored from hub failures by establishing new connections.  Because long-distance changes in 

network topology cause changes in the distribution of contents, and dramatic changes in content 

distribution result in costly updates in the resource descriptions required by full-text resource 

selection, a more complex redundancy scheme with extra communication and coordination among 

hubs should be developed in future work to minimize dramatic changes in topology and content 

distribution.  For example, each hub can store information about local topological structure in a 

range larger than its immediate neighbors, so that the connections of a failing hub can be quickly 

taken over by its nearby hubs.   

Our algorithms for federated search and topology evolution all take into consideration the highly 

dynamic nature of P2P networks.  However, our work doesn’t directly address several issues in 

dynamic environments such as the effect of content drift in collections, and the departures of 

providers and hubs.  Future research to study the responsiveness of the current algorithms, and 

perhaps to extend them for fast-changing environments, might be required. 

As described in Chapter 5 and Chapter 7, our evaluation on full-text federated search in P2P 

networks uses real-world document collections and queries.  Due to the difficulty of doing research 

on large-scale P2P networks in an academic environment without thousands of networked 

computers and real users, the properties of the underlying physical network layer and the 

interactions between logical protocol layer and physical network layer are largely ignored.  Because 

the simplification of network settings and peer behaviors might disguise problems that could 

emerge in the real world, evaluation of our models using a large real-world P2P application with 

real users is needed.  In addition, the performance of search on large (huge) digital libraries remains 
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to be studied in order to provide a more comprehensive evaluation of full-text federated search in 

P2P networks. 

 



 138

BIBLIOGRAPHY 

Adamic L, Lukose R, Puniyani A and Huberman B (2001) Search in power-law networks.  Physical 

Review E, 64(4): 46135-46143. 

Asvanund A, Krishnan R, Smith M, Telang R, Bagla S and Kapadia M (2003) Intelligent club 

management in peer-to-peer networks.  In Workshop on Economics of Peer-to-Peer Systems.  

Asvanund A (2004) Peer-to-peer networks: user behaviors, network effects and protocol extensions.  

Ph.D. thesis, the Heinz School of Public Policy and Management, Carnegie Mellon University. 

Atkeson C, Moore A and Schaal S (1997) Locally Weighted Learning.  Artificial Intelligence 

Review, 11(1-5): 11-73.   

Barabási A, Albert R and Jeong H (1999) Emergence of scaling in random networks.  Science, 286: 

509-512.   

Baeza-Yates R and Ribeiro-Neto B (1999) Modern Information Retrieval.  ACM Press/Addison 

Wesley, NewYork, NY. 

Bailey P, Craswell N and Hawking D (2001) Engineering a multi-purpose test collection for web 

retrieval experiments.  Information Processing and Management. 

BearShare, http://www.bearshare.com. 

Bender M, Michel S, Triantafillou P, Weikum G and Zimmer C (2006) P2P content search: Give 

the Web back to the people.  In Proceedings of the 5th International Workshop on Peer-to-Peer 

Systems (IPTPS2006). 

Bloom B (1970) Space/time trade-offs in hash coding with allowable errors.  Communications of 

the ACM, 13(7): 422-426. 

Borgman C (1999) What are digital libraries?  Competing visions.  Information Processing & 

Management, 35(3): 227-243.  

Buckley C and Voorhees E (2004) Retrieval evaluation with incomplete information.  In 

Proceedings of the 27th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval.     



 139

Callan J, Lu Z and Croft W B (1995) Searching distributed collections with inference networks.  

In Proceedings of the 18th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval.    

Callan J (2000) Distributed information retrieval.  In Croft W B ed. Advances in Information 

Retrieval, chapter 5, pp. 127-150.  Kluwer Academic Publishers. 

Callan J and Connell M (2001) Query-based sampling of text databases.  Transactions on 

Information Systems, 19(2): 97-130. 

Castiglion R and Melucci M (2007) An evaluation of a recursive weighing scheme for information 

retrieval in peer-to-peer networks.  Submitted to the 29th European Conference on Information 

Retrieval Research (ECIR 2007). 

Caverlee J, Liu L and Bae J (2006)  Distributed query sampling: A quality-conscious approach.  In 

Proceedings of the 29th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval.    

Clarke C, Craswell N and Soboroff I (2004) Overview of the TREC 2004 Terabyte Track.  In 

Proceedings of the 2004 Text Retrieval Conference. 

Clauset A and Christopher M (2004) How do networks become navigable?  oai:arXiv.org:cond-mat 

/0304563.    

Craswell N, Hawking D and Thistlewaite P (1999) Merging results from isolated search engines.  In 

Proceedings of the 10th Australasian Database Conference.   

Craswell N, Bailey P and Hawking D (2000) Server selection on the World Wide Web.  In 

Proceedings of the 5th ACM Conference on Digital Libraries. 

Crespo A and García-Molina H (2002a) Semantic overlay networks for P2P systems.  Technical 

report, Computer Science Department, Stanford University. 

Crespo, A. and García-Molina H (2002b) Routing indices for peer-to-peer systems.  In Proceedings 

of the 22nd International Conference on Distributed Computing Systems (ICDCS). 

Cuenca-Acuna F and Nguyen T (2002) Text-based content search and retrieval in ad hoc p2p 

communities.  Technical Report DCS-TR-483, Rutgers University. 

Dabek F, Kaashoek M, Karger D, Morris R and Stoica I (2001) Wide-area cooperative storage with 

CFS.  In Proceedings of the 18th ACM Symposium on Operating Systems Principles (SOSP ’01). 



 140

Daswani S and Fisk A  Gnutella UDP Extension for Scalable Searches (GUESS) v0.1. 

Dury A (2004) Balancing access to highly accessed keys in peer-to-peer systems.  In Proceedings of 

IEEE International Conference on Services Computing (SCC’04).   

Edutella, http://edutella.jxta.org. 

eDonkey, http://www.edonkey2000.com. 

eMule, http://www.emule-project.net. 

French J, Powell A, Viles C, Emmitt T and Prey K (1998) Evaluating database selection techniques: 

A testbed and experiment.  In Proceedings of the 21st Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval.   

French J, Powell A, Callan J, Viles C, Emmitt T, Prey K and Mou Y (1999) Comparing the 

performance of database selection algorithms.  In Proceedings of the 22nd Annual International 

ACM SIGIR Conference on Research and Development in Information Retrieval.   

Gao J (2004) A distributed and scalable peer-to-peer content discovery system supporting complex 

queries.  Ph.D. thesis, School of Computer Science, Carnegie Mellon University.   

Glance N (2001) Community search assistant.  In Proceedings of the 2001 International 

Conference on Intelligent User Interfaces. 

Gnucleus, http://www.gnucleus.com. 

Gnutella v0.4, http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf. 

Gnutella v0.6, http://rfc-gnutella.sourceforge.net. 

Gnutella2, http://www.gnutella2.com. 

Gravano L, García-Molina H and Tomasic A (1994) The effectiveness of GlOSS for the text 

database discovery problem.  In Proceedings of the 1994 ACM SIGMOD International 

Conference on Management of Data.   

Gravano L and García-Molina H (1995) Generalizing GlOSS to vector-space databases and broker 

hierarchies.  In Proceedings of 21th International Conference on Very Large Data Bases 

(VLDB’95). 



 141

Gravano L, Chang C, García-Molina H and Paepcke A (1997) STARTS: Stanford proposal for 

internet meta-searching.  In Proceedings of the ACM-SIGMOD International Conference on 

Management of Data. 

Gravano L, García-Molina H and Tomasic A (1999) GlOSS: Text-source discovery over the 

Internet.  ACM Transactions on Database Systems, 24(2). 

Hawking D and Thistlewaite P (1999) Methods for information server selection.  ACM 

Transactions on Information Systems, 17(1). 

Hawking D (2000) Overview of the TREC-9 Web track.  In Proceedings of the 9th Text Retrieval 

Conference (TREC-9).   

Hull D (1993) Using statistical testing in the evaluation of retrieval experiments.  In Proceedings of 

the 16th Annual International ACM SIGIR Conference on Research and Development in 

Information Retrieval.     

Intel (2003) Peer-to-peer content distribution: Using client PC resources to store and distribute 

content in the enterprise.  White paper, Intel Information Technology.   

Ipeirotis P and Gravano L (2002) Distributed search over the hidden web: Hierarchical database 

sampling and selection.  In Proceedings of the 28th International Conference on Very Large 

Databases (VLDB). 

Ipeirotis P and Gravano L (2004) When one sample is not enough: Improving text database 

selection using shrinkage.  In Proceedings of the ACM-SIGMOD International Conference on 

Management of Data. 

IRIS, http://www.project-iris.net/. 

Jansen M, Spink A and Saracevic T (2000) Real Life, real users, and real needs: A study and 

analysis of user queries on the Web.  Information Processing and Management, 36(2). 

JXTA, http://www.jxta.org. 

Javasim, http://javasim.ncl.ac.uk. 

Kalogeraki V, Gunopulos D and Zeinalipour-Yazti D (2002) A local search mechanism for peer-to-

peer networks.  In Proceedings of the 11th International Conference on Information Knowledge 

Management (CIKM 2002).   



 142

Karger D and Ruhl M (2004) Simple efficient load balancing algorithms for peer-to-peer systems.  

In Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and 

Architectures.   

KaZaA, http://www.kazaa.com.  

Khambatti M, Ryu K and Dasgupta P (2002) Efficient discovery of implicitly formed P2P 

communities.  Int’l Journal of Parallel and Distributed Systems and Networks. 

Kirsch S (1997) Document retrieval over networks wherein ranking and relevance scores are 

computed at the client for multiple database documents.  U.S. Patent 5,659,732.   

Klampanos I, Poznanski V, Jose J and Dickman P (2005) A suite of testbeds for the realistic 

evaluation of peer-to-peer information retrieval systems.  In Proceedings of the 27th European 

Conference on Information Retrieval Research (ECIR 2005). 

Kleinberg J (2000) The small-world phenomenon: an algorithmic perspective.  In Proceedings of 

32nd ACM Symposium on Theory of Computing.       

Kleinberg J (2001) Small-world phenomena and the dynamics of information.  Advances in Neural 

Information Processing Systems (NIPS). 

Krishnamurthy B and Wang J (2000) On Network-Aware Clustering of Web Clients.  AT&T Labs-

-Research Technical Memorandum HA1630000-000101-01TM. 

Krovetz R (1993) Viewing morphology as an inference process.  In Proceedings of the 16th Annual 

International ACM SIGIR Conference on Research and Development in Information Retrieval.     

Le Calv A and Savoy J (2000) Database merging strategy based on logistic regression.  Information 

Processing and Management, 36(3): 341-359. 

Li X and Wu J (2005) Searching techniques in peer-to-peer networks.  To appear in Wu J ed. 

Handbook of Theoretical and Algorithmic Aspects of Ad Hoc, Sensor, and Peer-to-Peer 

Networks.  CRC Press. 

Limewire, http://www.limewire.com. 

Lin K and Kondadadi R (2001) A similarity-based soft clustering algorithm for documents.  In 

Proceedings of the 7th International Conference on Database Systems for Advanced Applications.  



 143

Liu K, Yu C, Meng W, Santos A and Zhang C (2001) Discovering the representative of a search 

engine.  In Proceedings of the 10th International Conference on Information Knowledge 

Management (CIKM 2001).   

Löser A, Naumann F, Siberski W, Nejdl W and Thaden U (2003) Semantic overlay clusters within 

super-peer networks.  In Proceedings of Information Systems and P2P Computing in Conjunction 

with the VLDB 2003. 

Lu J and Callan J (2002) Pruning long documents for distributed information retrieval.  In 

Proceedings of the 11th International Conference on Information Knowledge Management (CIKM 

2002).   

Lu J and Callan J (2003a) Content-based retrieval in hierarchical peer-to-peer networks.  In 

Proceedings of the 12nd International Conference on Information Knowledge Management 

(CIKM 2003). 

Lu J and Callan J (2003b) Peer-to-peer testbed definitions: trecwt10g-2500-bysource-v1 and 

trecwt10g-query-bydoc-v1.  http://www.cs.cmu.edu/~callan/Data. 

Lu J and Callan J (2004a) Merging retrieval results in hierarchical peer-to-peer networks (poster 

description).  In Proceedings of the 27th Annual International ACM SIGIR Conference on 

Research and Development in Information Retrieval.    

Lu J and Callan J (2004b) Federated search of text digital libraries in hierarchical peer-to-peer 

networks.  In Peer-to-Peer IR Workshop of the 27th International ACM SIGIR Conference on 

Research and Development in Information Retrieval. 

Lu J and Callan J (2005) Federated search of text-based digital libraries in hierarchical peer-to-peer 

networks.  In Proceedings of the 27th European Conference on Information Retrieval Research 

(ECIR 2005). 

Lu J and Callan J (2006a) Full-text federated search of text-based digital libraries in peer-to-peer 

networks.  Journal of Information Retrieval, Volume 9, Number 4.   

Lu J and Callan J (2006b) User modeling for full-text federated search in peer-to-peer networks.  In 

Proceedings of the 29th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval.    

Lv C, Cao P, Cohen E, Li K and Shenker S (2002)  Search and replication in unstructured peer-to-

peer networks.  In Proceedings of ACM SIGMETRICS’02. 



 144

Manku G, Bawa M and Raghavan P (2003) Symphony: Distributed hashing in a small world.  In 

Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems (USITS). 

Manna S and Kabakcioglu (2003) A Scale-free network on Euclidean space optimized by rewiring 

of links.  oai:arXiv.org:cond-mat/0302224.   

Maymounkov P and Mazières D (2002) Kademlia: A peer-to-peer information system based on 

the XOR metric.  In Proceedings of the 1st International Workshop on Peer-to-Peer Systems 

(IPTPS 2002). 

Menczer F (2002) Growing and navigating the small world Web by local content.  National 

Academy of Sciences, 99(22): 14014-14019.   

Merugu S, Srinivasan S and Zegura E (2004) Adding structure to unstructured P2P networks: the 

use of small-world graph.  Journal of Parallel and Distributed Computing on Theoretical and 

Algorithmic Aspects of Sensor, Ad Hoc Wireless and P2P Networks. 

Morpheus, http://www.morpheus.com. 

MusicNet, http://www.musicnet.com. 

Nottelmann H and Fuhr N (2003) Evaluation different methods of estimating retrieval quality for 

resource selection.  In Proceedings of the 26th Annual International ACM SIGIR Conference on 

Research and Development in Information Retrieval.   

Nottelmann H and Fuhr N (2007) A decision-theoretic model for decentralized query routing in 

hierarchical peer-to-peer networks.  In Proceedings of the 29th European Conference on 

Information Retrieval Research (ECIR 2007). 

Ogilvie P and Callan J (2001) Experiments using the Lemur toolkit. In Proceedings of the 10th Text 

Retrieval Conference (TREC-10).  

Ramanathan M, Kalogeraki V and Pruyne J (2002) Finding good peers in peer-to-peer networks.  In 

Proceedings of 16th International Parallel and Distributed Processing Symposium.  

Ratnasamy S, Francis P, Handley M, Karp R and Shenker S (2001) A scalable content-addressable 

network.  In Proceedings of the ACM SIGCOMM’01 Conference.  

Ratnasamy S, Shenker S and Stoica I (2002) Routing algorithms for DHTs: Some open questions.  

In Proceedings of the 1st International P2P Workshop (IPTPS'02). 



 145

Renda M E and Callan J (2004) The robustness of content-based search in hierarchical peer to peer 

networks.  In Proceedings of the 13th International Conference on Information and Knowledge 

Management (CIKM'04). 

RevConnect, http://www.revconnect.com. 

van Rijsbergen C (1979) Information Retrieval.   

Rohrs C (2001) Query routing for the Gnutella network.  http://rfc-gnutella.sourceforge.net. 

Rowstron A and Druschel P (2001) Pastry: Scalable, distributed object location and routing for 

large-scale peer-to-peer systems.  In IFIP/ACM International Conference on Distributed Systems 

Platforms, pages 329-350. 

Sakaryan G and Unger H (2003) Topology evolution in distributed P2P networks.  In Proceedings 

of Applied Informatics (AI 2003). 

Sakaryan G, Wulff M and Unger H (2004) Search methods in P2P networks: a survey.  In 

Proceedings of I2CS-Innovative Internet Community Systems (I2CS 2004).   

Schlosser M, Sintek M, Decker S and Nejdl W (2002) A scalable and ontology-based P2P 

infrastructure for semantic Web services.  In Proceedings of the 2nd IEEE International 

Conference on P2P Computing (P2P2002). 

Shareaza, http://www.shareaza.com. 

Shao Y and Wang R (2005) BuddyNet: history-based P2P search.  In Proceedings of the 27th 

European Conference on Information Retrieval Research (ECIR 2005).   

Shokouhi M, Zobel J, Scholer F and Tahaghoghi S (2006) Capturing collection size for distributed 

non-cooperative retrieval.  In Proceedings of the 29th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval. 

Si L and Callan J (2003a) Relevant document distribution estimation method for resource selection.  

In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval.  

Si L and Callan J (2003b) A semi-supervised learning method to merge search engine results. ACM 

Transactions on Information Systems, 21(4): 457-491.  

Si L and Callan J (2004a) The effect of database size distribution on resource selection algorithms.  

Distributed Multimedia Information Retrieval.  LNCS 2924, Springer.     



 146

Si L and Callan J (2004b) Unified utility maximization framework for resource selection.  In 

Proceedings of the 13rd International Conference on Information Knowledge Management 

(CIKM 2004).   

Sripanidkulchai K, Maggs B and Zhang H (2003) Efficient content location using interest-based 

locality in peer-to-peer systems.  In Proceedings of Infocom 2003.   

Stenmark D (2005) Query expansion on a corporate intranet: Using LSI to increase relative 

precision in explorative search.  In Proceedings of HICSS 2005.  

Stoica I, Morris R, Karger D, Kaashoek M and Balakrishnan H (2001) Chord: A scalable peer-to-

peer lookup service for internet applications.  In Proceedings of the ACM SIGCOMM’01 

Conference. 

Stutzbach D and Rejaie R (2005) Characterizing the two-tier Gnutella topology.  In Proceedings of 

the ACM SIGMETRICS’05 Conference. 

Swapper.NET, http://www.revolutionarystuff.com/swapper/. 

Tang C, Xu Z and Dwarkadas S (2003) Peer-to-peer information retrieval using self-organizing 

semantic overlay networks.  In Proceedings of the ACM SIGCOMM’03 Conference. 

Tang C, Dwarkadas S and Xu Z (2004) On scaling latent semantic indexing for large peer-to-peer 

systems.  In Proceedings of the 27th Annual International ACM SIGIR Conference on Research 

and Development in Information Retrieval. 

Tang C and Dwarkadas S (2004) Hybrid global-local indexing for efficient peer-to-peer information 

retrieval.  In Proceedings of the 1st Symposium on Networked System Design and Implementation. 

Tsoumakos D and Roussopoulos N (2003a) Adaptive probabilistic search for peer-to-peer 

networks.  In Proceedings of the 3rd International Conference on Peer-to-Peer Computing 

(P2P’03). 

Tsoumakos D and Roussopoulos N (2003b) A comparison of peer-to-peer search methods.  In 

Proceedings of the 6th International Workshop on the Web and Databases. 

Viles C and French J (1995) Dissemination of collection wide information in a distributed 

information retrieval system.  In Proceedings of the 18th Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval. 



 147

Voorhees E, Gupta N and Johnson-Laird B (1995) Learning collection fusion strategies.  In 

Proceedings of the 18th Annual International ACM SIGIR Conference on Research and 

Development in Information Retrieval. 

Wang X, Zhang Y, Li X and Loguinov D (2004) On zone-balancing of peer-to-peer networks: 

analysis of random node join.  In Proceedings of the ACM SIGMETRICS’04 Conference. 

Wang J, Reinders M, Lagendijk R and Pouwelse J (2005) Self-organizing distributed 

collaborative filtering.  In Proceedings of the 28th Annual International ACM SIGIR Conference 

on Research and Development in Information Retrieval. 

Watts D and Strogatz S (1998) Collective dynamics of small-world networks.  Nature, 393. 

Wen J, Nie J and Zhang H (2002) Query clustering using user logs.  ACM Transactions on 

Information Systems, 20(1). 

Xu J and Croft W B (1999) Cluster-based language models for distributed retrieval.  In Proceedings 

of the 22nd Annual International ACM SIGIR Conference on Research and Development in 

Information Retrieval. 

Yaga, http://www.yaga.com. 

Yang B and García-Molina H (2002) Improving search in peer-to-peer systems.  In Proceedings of 

the 22nd International Conference on Distributed Computing Systems (ICDCS). 

Yuwono B and Lee D (1997) Server ranking for distributed text retrieval systems on Internet.  In 

Proceedings of the 5th International Conference on Database Systems for Advanced Applications. 

Zhai C, Jansen P, Stoica E, Grot N and Evans D (1998) Threshold Calibration in CLARIT adaptive 

filtering.  In Proceedings of the 7th Text Retrieval Conference (TREC-7).   

Zhai C, Jansen P and Evans D (2000) Exploration of a heuristic approach to threshold learning in 

adaptive filtering.  In Proceedings of 23rd Annual International ACM SIGIR Conference on 

Research and Development in Information Retrieval. 

Zhai C and Lafferty J (2001) A study of smoothing methods for language models applied to ad hoc 

information retrieval.  Research and Development in Information Retrieval, pp. 334-342.   

Zhang H, Goel A and Govindan R (2002) Using the small-world model to improve Freenet 

performance.  In Proceedings of Infocom 2002. 



 148

Zhang Y and Callan J (2001) Maximum likelihood estimation for filtering thresholds.  In 

Proceedings of 24th Annual International ACM SIGIR Conference on Research and Development 

in Information Retrieval.  

Zhang Y, Xu W and Callan J (2002) Exact maximum likelihood estimation for word mixtures.  In 

Workshop on Text Learning of the 9th International Conference on Machine Learning (TextML’ 

2002). 

Zhao B, Huang L, Stribling J, Rhea S, Joseph A and Kubiatowicz J (2004) Tapestry: A resilient 

global-scale overlay for service deployment.  IEEE Journal on Selected Areas in 

Communications, 22(1): 41−53. 

Zhu Y and Hu Y (2003) Efficient proximity-aware load balancing for structured peer-to-peer 

systems.  In Proceedings of the 3rd IEEE International Conference on Peer-to-Peer Computing 

(P2P2003). 





 

 


