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PURPOSE

Advanced testing methods for the dynamics of microdevices are

necessary to develop reliable marketable microelectromechanical

systems (MEMS). The main purpose for MEMS testing is to provide

feedback to the design-and-simulation process in an engineering

development effort. This feedback should include device behavior,

system parameters, and material properties. An essential part of a

more effective microdevice development is high-speed visualization

of the dynamics of MEMS structures. We have developed and

employed a full three-dimensional-motion-characterization system

for MEMS to observe the response of a gimballed microactuator, a

multi-degree-of-freedom microdevice. [Keywords: MEMS testing,

interferometry, stroboscopy, image processing, hard-disk drives]

INTRODUCTION

MEMS are typically characterized by comparing the system

output with a defined input function. For example, in the case of an

electrostatic actuator with an integrated sensor, the input driving

voltage is compared with the signal of the capacitive sensor that

corresponds to the actuator displacement. Static characteristics as

well as frequency-response behavior can be investigated with these

methods, but it does not provide knowledge about any failure

mechanisms of the microactuators. The dynamics of microstructures

have to be studied using optical-measurement techniques for this

information [1,2]. In the example of an electrostatic actuator, failure

modes might result from excitation of mechanical modes that

interfere with the pure deflection motion.

In this paper we present a new microscopic stroboscopic

interferometer system that allows the full three-dimensional-motion

measurement of rapidly moving microstructures. The interaction of

mechanical modes that move in plane with the out-of-plane-

deflection modes can be investigated with our system.  The system

extracts in-plane, rigid-body motion by employing digital-image

processing with a resolution better than 5nm.  In addition, the system

can measure out-of-plane-deflection maps at defined time points of a

periodical motion using interferometric techniques. Out-of-plane

displacement can be measured with a resolution better than 1nm. In-

plane and out-of-plane motions are measured together in a single

experiment and with high precision. This new system is capable of

measuring periodic or reproducible transient processes.

Extraction of MEMS in-plane, rigid-body motion from a pseudo-

cinematographic image sequence has been reported in [3,4]. We use

a similar technique for the in-plane-motion determination. The

algorithm reported previously is capable of extracting in-plane

displacements between two images that correspond to less than a

digital pixel. The algorithm presented in this paper extracts reliable

in-plane deflections over several pixels with sub-pixel resolution.

The measurement of out-of-plane deflections using a stroboscopic

interferometer system has been presented by us in [5,6]. Our new

system combines the out-of-plane deflection measurement with a

new in-plane motion-measurement feature. We demonstrate the use

of this three-dimensional motion-characterization method by

studying the response of a micromachined gimballed actuator

developed for a hard-disk-drive application.

The measurement of pure out-of-plane deflections can also be

performed with a commercially available Laser-Doppler-Scanning

Vibrometer from Polytec PI [7,8]. This system measures the velocity

of a moving surface via the Doppler frequency shift of a reflected

Laser beam. The displacement at a single spot of the surface under

investigation is computed by integrating the velocity measurement.

However, the vibrometer can only measure one-dimensional motion.

Full three-dimensional, rigid-body motion can be investigated with a

commercially available Networked Probe Station from Umech [9].

This system is a stroboscopic microscope. A periodic motion of a

microstructure, which is imaged with a microscope on a CCD

camera, is frozen with a strobed light. Digital image processing is

used to calculate the sub-pixel-in-plane motion. With an additional

interferometric technique out-of-plane motion is measured. The

Umech system is capable of measuring three-dimensional, rigid-body

motion, while the system presented in this paper is capable for the

first time of measuring rigid-body, in-plane motion together with

out-of-plane-deflection maps of a vibrating device surface in a single

experiment.

STROBOSCOPIC MICROSCOPIC INTERFEROMETER

In reference [5] we demonstrate a stroboscopic, computer-

controlled, phase-shifting interferometer in high-resolution

measurements of out-of-plane motions. In this paper, we describe a

system for full three-dimensional motion characterization.

Setup

The schematic of the new three-dimensional Stroboscopic

Microscopic Interferometer System (SMIS) is shown in Figure 1.

FIGURE 1. SCHEMATIC OF STROBOSCOPIC INTERFEROMETER SYSTEM.

THE ABBREVIATIONS USED ARE AS FOLLOWS: L � �/2- WAVE-PLATE, P

� POLARIZER, PBS � POLARIZATION BEAM SPLITTER, fc � CONDENSER

LENS, fi � IMAGING LENS, AND fm � MICROSCOPE OBJECTIVE FOR

IMAGING, LD � LASER DIODE, M � REFERENCE MIRROR
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The new system can be conveniently used as common light

microscope if the light beam that goes to the reference mirror is

shadowed with shutter S. Through the stroboscopic visible-light

illumination, a set (set 1) of images is taken of the periodic motion

without forming an interference pattern. We have developed a new

algorithm to extract the in-plane motion from this sequence with a

subpixel resolution better than 5nm. After the system has taken a set

of images (set 1) without interference fringes the shutter is moved

out of the laser beam. Now the system is an interferometer and a set

of images (set 2) is taken. The interferometer forms an image of the

MEMS device that is crossed by bright and dark fringes that can be

interpreted as a contour map of object surface heights. The optical

arrangement is that of a Twyman-Green interferometer and is

described in detail in [5,6]. To measure the shape of a static

specimen or that of a moving specimen, �frozen� by the strobe light,

phase-shifting interferometry (PSI) is used.

A five-step PSI algorithm (Hariharan�s Algorithm) in which the

fringe pattern of a specimen is visualized five times for five different

reference-mirror positions is used [6]. The translation data extracted

from set 1 are then used to recalculate the in-plane motion from the

images of set 2. Finally, the out-of-plane motion is calculated with

nm resolution using the five-step-PSI algorithm.

Set 2 contains five images for every single time point where the

surface-height map is measured because of the five-step-PSI method.

Therefore, to investigate the three-dimensional deflection at 10 time

points the systems saves 10 images for the in-plane-motion

extraction and 5 times 10 images for the out-of-plane-motion

computation. Therefore, full sequence for a measurement at 10 time

points contains 60 images.

Analysis Software

The structure of the algorithm, which computes full three-

dimensional motion, is presented using analysis software written

with MATLAB
�

 (The MathWorks, Inc) and is shown in Figure 2.

FIGURE 2. STRUCTURE OF THE ANALYSIS SOFTWARE

Algorithm for In-plane-Motion Computation

The user has to specify two regions in the first image of set 1

(image 1) before the in-plane displacement can be calculated. The

first region defines the region for the in-plane algorithm.  The second

region has to be inside the region for the algorithm (ROA) and is

termed in Figure 3 as region of interest (ROI). The ROI must be a

part of image 1 that shows only the moving structure. The algorithm

can only work properly if the structure of the image part in ROI is

not deformed somewhere in the ROA of the remaining images of set

1. This is the demand on the definition of ROA that must be ensured

by the user. If the ROA is too big, the computation time increases

unnecessarily.

In the following, the algorithm for in-plane computation is

explained on the example of two images in set 1. The restrictions for

the definition of ROA and ROI are specified in Figure 3. For in-plane

motion, SMIS can only measure rigid-body motion. The reason for

this restriction is that the algorithm can only calculate the in-plane-

translational motion of an undeformed structure on the moving

specimen in the ROI.

FIGURE 3. DEFINITION AND RESTRICTION OF ROA AND ROI. THE

IMAGE SIZE IS DEFINED THROUGH THE RECTANGULAR FRAME.

We number the columns of each picture with in and the rows with

jn ( ��nn ji , ). In opposite to the common way row number jn=1 is

at the bottom of the image. Column number in=1 is at the first

column at the left side as usual. The advantage of this definition is

that we can define a coordinate system i and j ( ��ji, ) that

coincides for integer values with the numbers of the columns in and

rows jn. The displacement di and dj in Figure 3 are computed using

digital-image processing. The Progressive-Scan-CCD camera

captures 8-bit gray-level images that are saved as TIF-files on the

hard disk. They are transformed to matrices using MATLAB
�

.

In digital-image processing an image is defined as the continuous

gray-level-distribution function I(i,j) that one would get with an

image sensor having infinite small pixels with the same characteristic

as the CCD camera [10]. We use this definition for image in the

following.

The sampled-image matrix M with components Is(in,jn) is the

TIF-image or MATLAB
�

 matrix and the resampled image Ir(i,j) is

the continuous gray-level distribution function that can be calculated

from the sampled image by employing the Nyquist-Sampling

Theorem. Equation 1 demonstrates this for a sampled image with n

columns and m rows.
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The in-plane-motion algorithm calculates the shift di and dj

between image 1 (I1) and image 2 (I2) using the least-square-

optimization criterion
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is the L2 norm [11]. The least-square problem in (2) is solved by

employing the Nelder-Mead algorithm [12] that is implemented in

MATLAB
�

. This algorithm is very robust in finding the global

optimum so that displacements over several pixels are calculated

with subpixel resolution. In-plane rotation computation can also

easily be implemented with this method using the operation
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with the fulcrum c and the rotation angle �.

However, the direct employment of these methods is not

applicable because the computation time for image translation and

rotation even for small ROIs is too long (1hour computation time

with a Pentium II computer for the data shown in Figure 5 even when

linear interpolation is used instead of (1)).

We have developed an algorithm that translates and resamples an

image with linear interpolation in one step. The restriction for this

algorithm is that rotations in ROI cannot be computed. The algorithm

contains a function to shift the columns of a sampled image M

oldinewi cc ,1, �
�   , oldinewi cc ,1, �

� (4)

to the left or to the right, respectively. Here newic , is the in

column after the column shift and oldic ,1� the 1�ni column before

the shifting. The left column 1c of a new right-shifted matrix is set to

the null vector. The right column of the matrix, before it is right-

shifted, vanishes because the image size stays the same.  The

opposite is implemented for a shift to the left. The image matrix can

be shifted along rows in the same way

oldinewi rr ,1, �
�   , 

oldinewi rr ,1, �

�   , (5)

where ir is the in row.

Shifts with subpixel resolution are performed with linear

combinations of (4) and (5). If we define a matrix kM that is right-

shifted about k pixels by employing operation (4) a shift to the right

about 0, ��� ii  is expressed by

� � � � 11
�

����� kki MikMkiM   , (6)

when k is the greatest integer which is smaller than i ((i-k)<1).

Respectively, a shift to the left about 0�i  pixel is defined by

� � � � 11
�

����� kki MikMkiM   , (7)

where k is the smallest integer that is greater than i. The equations

for a shift up or down about ��j pixel are similar to (6) and (7).

For every image the displacement is calculated in respect to the

first image. Therefore, no error is accumulated. The calculation time

of the data shown in Figure 6 is reduced to 1 minute by formulating

the optimization problem (2) with the translation method expressed

by (6) and (7).

Algorithm for Out-of-plane-Motion Computation

The in-plane-displacement data between the images is used to

calculate the in-plane motion from the interferograms of image set 2

with the image-translation method expressed by (6) and (7). This is

necessary to make sure that out-of-plane deflection is computed in

respect to points on the device surface. Otherwise the algorithm

would compare different points on the surface to calculate deflection,

which would be without value. Then we use an algorithm (reported

in detail in [3]) summarized as follows.

To measure the shape of a static specimen or that of a moving

specimen �frozen� by the strobe light we use phase-shifting

interferometry (PSI). We choose a five-step PSI algorithm in which

the fringe pattern of a specimen is visualized five times for five

different reference-mirror positions. The five-step PSI algorithm

calculates a wrapped-phase map and is known as Hariharan�s

Algorithm. The algorithm calculates the wrapped phase �(i,j) from

the five intensity amplitudes I1(i,j)...In(i,j)...I5(i,j) using the formula
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Inputs to this algorithm should change phase by approximately

�/2 in each data-acquisition step. The surface under test is assumed

to be smooth and continuous; abrupt steps are removed by software.

Our single-wavelength system measures wave-front-phase

modulo 2���and, therefore, calculates a �wrapped� phase map from

the interferogram sequence. The unwrapped phase map �(i,j) = �(i,j)

+ 2n(i,j)� is determined from the wrapped-phase function �(i,j) and

describes the phase difference of the measurement beam and the

reference beam at every pixel of the CCD sensor. The spatially

varying integer n(i,j) is present because the optical phase can only be

measured modulo 2� in a single-wavelength interferometer.

Finally, the surface-height map h( i, j) can be found using

��� 4/),(),( jijih ��    .                 (9)

This procedure is repeated for different strobed-light delays �t,

corresponding to a strobed-light-phase delay � = 2� fs �t, with fs the
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strobe frequency. In addition a time unwrapping algorithm is

employed to enable the system to measure pure piston motion.

GIMBALLED ELECTROSTATIC MICROACTUATOR

The fully three-dimensional motion characterization of SMIS has

been used to study the dynamics of a gimballed electrostatic

microactuator [13]. The microactuator, shown in Figure 4, has been

designed to increase bandwidth and data-storage capacity of compact

hard-disk drives. The microgimbal structure provides pitch and roll

compliance between the microactuator and the support system, and

thus offers mechanical isolation from external disturbances. These

actuators are required to operate in close proximity to the magnetic

media. The gap-closing microactuator operates in the yaw direction,

co-planar with the spinning hard disk.

Microactuator

Using micromachined actuators for secondary actuation as part of

a dual-stage servo control of the read/write-head position has been

proposed for increasing data-track density [14]. Secondary actuation,

utilizing a microactuator, increases the bandwidth of the system, by

allowing faster data-access times. The microactuator developed at the

Berkeley Sensor&Actuator Center utilizes an electrostatic drive

[15,16].  Figure 4 shows a gimballed actuator with an attached slider.

The slider is a rigid, ceramic block that contains the magnetic

circuitry that is the read/write head. The slider has an air-bearing

surface that improves its aerodynamics as it slides over the disk. The

gimballed microactuator is manufactured using a high-aspect ratio

dual-thin-film-micromolding process and includes embedded

electrical interconnects to the microactuator and the actuated load

[15].

FIGURE 4. SEM PHOTOGRAPH OF GIMBALLED MICROACTUATOR

The force F in an electrostatic gap-closing actuator consisting of

two parallel capacitive plates is given by

� �
2

2

2

1

g

A
VVF ��   , (10)

where V is the applied voltage, � is the permittivity constant in

air, A the area of the capacitive plates, and g the variable gap

between two plates. Clearly, the force has a nonlinear dependence on

the applied voltage. The electrostatic actuator has been designed

using a differential-drive-gap-closing configuration, which improves

the linearity of the force [16].  A schematic of this configuration for a

nominal gap g0 is shown in Figure 5.

FIGURE 5. SCHEMATIC OF DIFFERENTIAL-GAP-CLOSING DRIVE

The differential-drive configuration has three electrodes. The first

electrode is a moving shuttle with a constant applied voltage VDC.   A

time-dependent-input voltage V1=V(t) is applied to the first set of

stator electrodes and the voltage V2=-V(t) is applied to the second set,

as shown in Figure 5. The improved linearity is due to out-of-phase

sinusoid applied to upper and lower sets of electrodes (V1 and V2,

respectively). Each of the fingers attached to the moving shuttle is

acted on simultaneously by two stationary fingers with the distances

g0 and �g0, respectively.

Theoretical Dynamic Behavior

In the case of rotational actuators, such as the one shown in

Figure 4, torques have to be considered instead of forces. With the

assumption of small rotation angles � and a long distance from the

capacitive plates to the fulcrum of the actuator, the sum of all applied

electrostatic torques yields
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where N is the number of capacitive plate pairs, l is the overlap

length, h is the height of the plates, and r is the distance from the

fulcrum to the middle of the capacitive plates. By developing (11) in

a Taylor expansion with respect to V and � the electrostatic torque

Teg of the actuator can be approximated.

By assuming a linear mechanical spring with the spring constant

km, linear viscous damping with the viscous-friction coefficient b the

dynamic equation of the electrostatic actuator is derived:

� �� �tVTkbJ egmm ,���� ���
���   , (12)

where Jm is the moment of inertia of the actuator moving shuttle

and the load slider.

By setting all significant terms of the Taylor expansion of (11) in

(12) the dynamic equation becomes the structure of a Duffing

equation [13]
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The influence of the different terms on the dynamic behavior of

the micro actuator is investigated experimentally in the next section.

EXPERIMENTAL RESULTS

The gimballed microactuator is driven electrostatically by

applying a constant voltage VDC at the rotor of the device and a time-

dependent voltage V(t) at the stators. We have studied the influence

of the nonlinear terms in (13) on the dynamic behavior of the

actuator.

Investigation of in-plane motion

We have studied the in-plane behavior by investigating the device

response after a constant voltage V at the stator has been switched off

at t = 0�s. Figure 6 shows the mechanical ring down of the actuator

deflection d = r�� for a voltage VDC=0V at the rotor.

FIGURE 6. RING DOWN OF GIMBALLED ACTUATOR FOR AN INITIAL

DEFLECTION OF 255nm (VDC=0V)

In this case the right side of (13) is zero. The ring-down data

shown in Figure 5 depend on the resonance frequency

m

m

J
k

f
�2

1
0 �

 and the dimensionless damping factor

mm Jk
bD

2
�

. The final deflection and the initial velocity at 0�s

also influence the measured ring down and were identified but are

not a general system property. The best fit for a second-order system

is shown with the measurements in Figure 6. The root-mean-square

deviation between the measurements and simulated deflections is

1.69nm. The extracted resonance frequency and damping factor are

f0=921.2Hz and D=0.043, respectively. The moment of inertia was

calculated to be Jm = 356pg�m
2 

[13] and is slightly higher than the

moment of inertia of the slider alone (342pg�m
2
). From the measured

data, the mechanical spring constant is km = 11.5�N�m/rad and the

friction coefficient is b = 171pN�m/(s�rad).

For higher values of the rotor voltage the oscillation frequency

during the ring down decreases as shown in Figure 7. The voltage at

the rotor is VDC = 15V for this experiment. The extracted resonance

frequency for this second order system is f0=801Hz. The reason for

the lower resonance frequency is the spring-softening effect

expressed through (14) that has a quadratic dependence on VDC.

FIGURE 7. RING DOWN OF GIMBALLED ACTUATOR FOR AN INITIAL

DEFLECTION OF 199nm (VDC=15V)

In addition, nonlinear behavior due to the Duffing term (term

with coefficient kD in (13)) appears for higher deflections, because

this term has a cubic dependence on the deflection and a quadratic

dependence on VDC. The experimental result in Figure 8

demonstrates that the oscillation frequency decreases further for

higher deflections (940nm instead of 199nm) through the influence

of the Duffing term. The extracted resonance frequency is f0=674Hz

for the experiment shown in Figure 8.

FIGURE 8. RING DOWN OF GIMBALLED ACTUATOR FOR AN INITIAL

DEFLECTION OF 940nm (VDC=15V)
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Comparison with Laser-Doppler-Vibrometer Measurements

The slider assembled on the microactuator is 0.3mm high.

Therefore, it is possible to shine the HeNe-laser beam of the

commercial Laser-Doppler-Vibrometer (LDV) OFV 510 from

Polytec PI on the side of the slider and measure the in-plane motion

this way. The results of the SMIS in-plane-motion experiments are

compared to results obtained with the LDV. Results of the

experiments with the LDV are shown in Figure 9.  We have

measured the frequency response of the microactuator between 200

and 1200Hz. The scale of the amplitude (velocity at an edge of the

slider) and the frequency are linear. For all experiments the input

voltage is a sine wave with an amplitude of 250mV. For VDC =15V

the actuator is more sensitive to the input signal and, therefore, the

amplitude of the motion is higher.

FIGURE 9. FREQUENCY RESPONSE MEASURED WITH LDV

Measurements of resonance frequencies obtained with SMIS for

small (<300nm) and large initial deflections (>300nm) and obtained

with the LDV for different stator voltages are shown in Figure 10.

The resonance frequency for small deflection and large deflections

were extracted from ring down experiments. For small deflections

the decrease of the resonance frequency results only from the spring-

softening term. For higher deflections, the Duffing term has also an

influence when the voltage at the stator is VDC = 10V or higher.

Therefore, for VDC = 15V the measured resonance frequency is

higher for a small initial deflection (see Figure 7). The amplitude of

the motion was high for the LDV measurement and, therefore, the

value obtained with the LDV corresponds to the value measured with

SMIS at a large initial deflection (see Figure 8). For VDC = 18V the

influence of the Duffing term is dominant even for small deflection

amplitudes. Therefore, Figure 10 does not show a result obtained

with the SMIS at VDC = 18V for a small initial deflection.

The LDV show a good correlation to the results obtained with the

SMIS at large initial deflections. As a result of these investigations

we are able to estimate limits for the driving signal to avoid influence

through the Duffing term. Nonlinear behavior through the Duffing

term does appear if the input voltage at the stator is 250mV or higher

when the DC voltage at the rotor is higher than 10V.

F

FIGURE 10. SMIS VERSUS LDV RESULTS

Investigation of out-of-plane motion

The torsion springs of the gimbal have been designed to be very

stiff in out-of-plane and in-plane directions because the only wanted

degree of freedom is rotation, so that the gimbal resonance of vertical

displacement should be at higher frequencies as the resonances out-

of-plane motion. However, mode coupling could result due to a

misalignment between the actuated load and gimballed actuator.

Since the load, the read/write head, is much heavier then the

micromachined device a slight misalignment could excite an

undesired mode if the load main axes of inertia are not parallel or

perpendicular to the torque generated by the microactuator. Another

cause could be imperfections of the actuator gap-closing structure

due to the manufacturing process. The shapes of the etched molds

that are used to build the actuator fingers have a limited accuracy and

can generate out-of-plane forces. Such effects have to be small to

guarantee a reliable dynamic behavior of the device.

No out-of-plane motion was measured at in-plane resonance for

different DC voltages (5V, 10V, 15V). Therefore, out-of-plane

deflection is smaller than the out-of-plane resolution (5nm) when the

device is driven with a harmonic input signal with 0.25V amplitude.

However, higher input voltages have to be applied if the device is

driven at higher frequencies to achieve sufficient in-plane motion.

The highest out-of-plane motion has been empirically found to be

1250Hz by shifting the input frequency with 50Hz steps.

Figure 11 shows the interferograms at 0 and 180 degree phase

shift in respect to the input signal with an amplitude of the input

voltage of 7.5V (VDC=16V). The height maps corresponding to the

interferograms in Figure 11 are presented in Figure 12. In this case

the maximal out-of-plane deflection is approximately 100nm. The

excited out-of-plane motion consists of pitch and roll motion. We

have used a lens combination to take the interferograms in Figure 11

with a low numerical aperture. Therefore, the spatial in-plane

resolution of the interferograms is very low (s=10�m) and in-plane

motion can not be measured. To demonstrate our combined in-plane

and out-of-plane algorithm, we have measured the full three-

dimensional motion at one single area on the slider surface for an

harmonic input signal with a frequency of 1250Hz, an amplitude of

Vm=7.5V (V(t) = Vm sin(2� f t)), and a DC voltage VDC=16V. The
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area on the device surface that has been investigated is marked in

Figure 11.

a)         b)

FIGURE 11. INTERFEROGRAMS AT 0 (A) AND � (B) RAD STROBE-

PHASE DELAY IN RESPECT TO THE HARMONIC INPUT

SIGNAL (1250HZ)

a)           b)

FIGURE 12. CALCULATED HEIGHT MAPS AT 0 (a) AND � (b) RAD

STROBE-PHASE DELEAY

Figure 13 shows the freezed images of set 1 at �	= �/2 (a) and �	=

3�/2 rad (b) strobe-phase delay in respect to the input signal.

 a)            b)

FIGURE 13. IMAGES OF SET 1 AT � /2 (a) AND 3�/2 (b) RAD STROBE-

PHASE DELAY IN RESPECT TO THE INPUT SIGNAL. THE REGION OF

INTEREST (ROI) IS ZOOMED

The displacement can be clearly seen in the zoomed region of

interest. Altogether, 16 strobe-phase delays have been captured. The

in-plane algorithm expressed by (6) and (7) is used to calculate the

in-plane motion shown in Figure 14.

Then, the in-plane displacement, which is also captured in the

images of set 2 is removed by the software using the data shown in

Figure 14 and by employing the image-translation method expressed

through equations (6) and (7). After the in-plane displacement is

removed the surface profile and out-of-plane deflection is calculated

with the algorithm expressed by (8) and (9).

a)         b)

FIGURE 14. IN-PLANE-MOTION AT 1250KHZ, x (a) AND y (b)

DEFLECTION

By performing a least-square optimization a plane is fitted to

every height map of the 16 investigated strobe phases. One fit

parameter is the z-displacement of the plane that is the out-of-plane

deflection. The worst-case-out-of-plane deflection is shown in Figure

15.

FIGURE  15. OUT-OF-PLANE MOTION AT 1250KHZ

We were only able to excite out-of-plane motion at frequencies

higher that 1000Hz and with an very high input-signal amplitude

(Vm=7.5V, VDC=16V). It can be guaranteed that for signals with

values f<1000Hz, V<1V, and VDC<15V no significant out-of-plane

motion is excited and that the slider is capable of sliding smoothly on

the air bearing.

SMIS SPECIFICATION

The in-plane-profile resolution is the spatial resolution limited by

the numerical aperture of the imaging optic and is approximately

1�m if fm is a 20x objective. The in-plane-displacement resolution

depends on the algorithm and has been investigated with a test image

for different initial displacements. A steady object, the slider without

any applied voltages, has been captured. No motion should be

detected but the measurement in Figure 16 shows a random

deflection with maximum amplitude of �8nm. This experiment

shows the noise of the in-plane measurement.

The root-mean-square deviation of this noise measurement is

3.6nm. The noise can result from mechanical vibration or noise of
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the camera. The system can detect harmonic motion with an

amplitude greater than the root-mean-square deviation (3.6nm),

which is the resolution for in-plane motion. Single displacement

measurements have a resolution of the maximal noise peak-to-peak

amplitude, which is approximately 15nm.

FIGURE 16. TYPICAL IN-PLANE NOISE MEASUREMENT

The resolution of the out-of-plane surface measurement is limited

through imperfections in the optical elements and through dust in the

optical path. Our improved system keeps the features for out-of-

plane measurement that we have reported in [5,6]. The out-of-plane-

profile repeatability is less than 5nm and is the limit for displacement

resolution. The root-mean-square deviation of out-of-plane noise is

approximately 0.7nm and is the limit for the resolution out-of-plane-

motion measurements. The out-of-plane-profile resolution is limited

through imperfections in the system optics and is approximately

20nm.

CONCLUSIONS AND OUTLOOK

We have presented a MEMS testing system that is capable for the

first time of measuring full three-dimensional motions and device-

surface profiles of micromachined, multi-degree-of-freedom devices

in a single experiment. The new setup is a stroboscopic microscopic

interferometer system that saves two sets of images on the computer

hard disk. One set is a pseudo-cinematographic-image sequence and

is used to compute the in-plane motion.  The in-plane-displacement

resolution of our new system is less than 5nm. The other set contains

interferograms that are used to compute the out-of-plane profile of

the specimen for every strobe-light delay that is captured. The

resolution for out-of-plane displacement is less than 1nm.

The capability of our system has been demonstrated on the

example of a micromachined, electrostatically driven actuator for

read/write heads in disk drives. We have investigated linear and

nonlinear, in-plane behavior of our device. Nonlinear behavior

appears at high input signals and large deflections. Because the slider

assembled on the microactuator is 0.3mm high we were able to to

shine the HeNe-laser beam of the commercial Laser-Doppler-

Vibrometer (LDV) OFV 510 from Polytec PI on the side of the slider

and measure the in-plane motion this way.  The results obtained with

the LDV are in good agreement with the results measured with our

new system.

In addition we have measured the worst-case, out-of-plane motion

that can be excited. As a result of this investigation we have

determined system parameters and limits of operation of the

microdevice to guarantee a reliable dynamic behavior.
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