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Full-Vector Gradient for Multi-spectral or

Multivariate Images

Hermine Chatoux1, Noël Richard1, François Lecellier1 and Christine Fernandez-Maloigne1

Abstract—Gradient extraction is important for a lot of met-
rological applications such as Control Quality by Vision. In
this work, we propose a full-vector gradient for multi-spectral
sensors. The full-vector gradient extends Di Zenzo expression
to take into account the non-orthogonality of the acquisition
channels thanks to a Gram matrix. This expression is generic
and independent from channel count. Results are provided for
a color and a multi-spectral snapshot sensor. Then, we show the
accuracy improvement of the gradient calculation by creating a
dedicated objective test and from real images.

Index Terms—Gradient, multi-spectral, Gram matrix, Di
Zenzo, multivariate, color.

I. INTRODUCTION

Thirty years after Di Zenzo’s paper [1], the gradient es-

timation is still an open question for multi-spectral or mul-

tivariate images. The interdependencies between acquisition

channels draw the limits of Di Zenzo’s expression. Facing

a lack of solutions in these domains, the existing surveys

are dedicated to the comparison of gradient extraction in the

visible and trichromatic color domain [2]–[4]. Furthermore,

the multi-spectral and multivariate domains are not restricted

to the visible range and to the sensitivity of the human

visual system, they are more relative to the metrology and

relationship between a physical acquired scene and the image

content. Hence this work focuses on the gradient calculation in

the acquisition space using the spectral sensitivity curves of

the imaging system for metrological purposes in the optical

and physical domain (Control Quality by Vision, Help to

Diagnostic...).

A. Related Work

Existing approaches assess the gradient using ideas from Di

Zenzo [1] or Canny [5]. A derivative form is measured from

the discrete image. To avoid a direct derivation in the spatial

domain, the images are usually convolved by a derivative

form of a bi-dimensional function [6], [7]. Direct approaches

process the gradient from each channel separately (marginal

processing) before defining empirically a merging function

to define the gradient norm and orientation (Shivakumara et

al. [8]). Ehrhardt and Arridge in [9] use an inter-correlation

between color channels specific to the image analyzed. Astola

et al. [10] took the vector’s nature into account by replacing

the linear convolution with non-linear filtering. Some authors

used this idea based on color distances [11]–[13]. Denis et

al. [14] measured the gradient in the frequency domain using

a quaternionic Fourier transform.
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As pointed out by Rivest et al. [15], gradients are relative to

high-spatial frequencies in images. These frequencies can be

produced by noise or edges between image structures. Mor-

phological gradients are defined to enhance pixel differences

in a local neighborhood, avoiding the use of a derivative

form on a non-continuous image. In addition, the extension

to a multivariate case depends only on a color or spectral

ordering [16]. Nevertheless, ordering often implies to select

spectral or color references that impact the final result [17]–

[19].

In [20], [21], the authors reduce the gradient to edges

between two homogeneous regions through the analysis of

local probability density functions. It can also be computed

through a model requiring to solve partial derivative equations

(Zareizadeh et al. [22]). The contributions from [23]–[25]

ask a common question in the color domain: which color

or multivariate space should be used to process the gradient?

Some existing publications propose to stay in the acquisition

space, so RGB spaces for color images. Nevertheless, the

spectral sensitivity functions of the sensor quite always over-

lap [26], [27]. Hence, corresponding acquisition channels are

not independent, and the associated axis are not orthogonal.

Since Carron and Lambert [28], lots of authors tried to transfer

the problem in other color spaces, such as in Hue-based spaces

where axis can be defined as semantically orthogonal (Lei et

al. [29]). Unfortunately, the color transformation is defined by

rotations from the initial RGB acquisition space, that does

not solve the problem of non-orthogonality, it only reduces its

impact depending on the image content.

Several comparisons of gradient extraction from different

color spaces conclude on the strong interest of CIELAB

space [24], [25]. This perceptually uniform color space is

well adapted to the perception variation relative to human

vision (Saez et al. [30]). But Bello-Cerezo et al. [23] showed

that CIELAB is more adapted when measurements required

to change color spaces correctly are provided. To improve

the gradient processing robustness to shadow or illumination

changes, some color invariants are proposed [31]–[34]. On the

other hand, Zhang et al. [35] use images edge detection before

the image’s demosaicing step.

Finally, when information about acquisition conditions are

provided, the CIELAB color space is the most adapted.

Otherwise, acquisition space fits better than other even with its

non-orthogonality limit. The channel dependency has a direct

impact on the L2-norm’s validity in acquisition space, and

consequently, on the gradient norm [1], [36].
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B. Notation and content

To lighten description of the different equations from this

paper, we summarize the most used notations in table I.

In this work, we explain why the Di Zenzo expres-

sion implicitly considers the representation space as ortho-

gonal (sec. II-B). Then, we present how to consider the channel

interdependency in the gradient processing (sec. II-C). Two

examples of color and multi-spectral domain adaptation are

presented. The third section recalls the pre-processing steps

allowing to compute a derivation from a non-continuous image

in the color domain. Section IV presents the artificial database

used in the result section. Two kinds of comparisons are

presented, an objective one based on an accuracy criterion

and generated images (sec. V-A and V-B) and a subjective one

using real images from known databases (sec. V-C). Finally,

we conclude in section VI.

II. COMPLETE EXPRESSION OF MULTIVARIATE GRADIENT

Few articles explain each step of a color or spectral gradient

extraction. We choose to start from the continuous domain to

address the discrete and multivariate case next. Effectively,

gradients are, most of the time, used as a black box. In this

paper, we wish to explain every step from a mathematical and

physical point of view.

Table I
NOTATIONS

Notation Meaning

x, y, z Spatial location in R
n: x = (x1, x2) for a 2D space.

a, b, c
Color/multivariate coordinate in R

m,
c = (c1, c2, c3) for a trichromatic color space.

si, Si()
Channel band si, i ∈ [1,m]
defined by its spectral sensitivity curve Si().

I, F,G
Set or image, two definitions are considered:
I : Rn → R

m I(x) = c, c is a function;
I ∈ R

n × R
m I(x, c) a continuous map in x and c.

X , C, F
Support of the specified variable x, c, f :
x ∈ X = {xi ∈ [xmini;xmaxi]; i ∈ [1;n]}.

S(x) Spatial neighborhood of x.

#S Cardinal of mentioned set.

‖.‖p Lp norm (order-p Minkowski norm).

〈., .〉p Scalar product associated to the corresponding Lp norm.

dΣ(., .) Mahalanobis distance relative to the covariance matrix Σ.

[a]b a Modulo b.

∗ Convolution.

Continuous space

∂I(a)

∂b

Partial derivative of I(a) with respect to b:
∂I(c2)

∂x1

: x1 part of gradient measured at c2.

∇I
Gradient of the image I:

for I : R2 → R
3

∇I(x, c) =









∂I(c1)

∂x1

∂I(c2)

∂x1

∂I(c3)

∂x1

∂I(c1)

∂x2

∂I(c2)

∂x2

∂I(c3)

∂x2









.

Discrete space

∆bI(a)
Partial derivative of I(a) with respect to b:
∆x1I(c2) is the difference of two c2 along x1 direction.

∇I
Gradient of image I:

for I : R2 → R
3

∇I(x, c) =

(

∆x1I(c1) ∆x1I(c2) ∆x1I(c3)
∆x2I(c1) ∆x2I(c2) ∆x2I(c3)

)

.

A differential is a linear function defined by equation (1).

When applied to a vector, the differential provides the deriv-

ative along the vector’s direction p.

lim
‖h‖2→0

‖I(p+ h)− I(p)− dI(p) · h‖2
‖h‖2

= 0, (1)

where I : E → F is a function (E and F two vector

spaces) and dI the differential with p, h ∈ E. The derivative

dI(p) belongs to F , the multivariate or color domain, it is

the differential of I in p. Due to the limit definition dI(p) is

meaningful only close to p.

When measuring the differential of a basis vector of E, we

obtain a partial derivative. Regrouping all partial derivatives in

a vector is the gradient definition. In 2D gray level images, a

basis is given by the derivative along x1 and x2 axis defining

the gradient as a vector in R
2. In multivariate cases, the vector

is 2+m dimensional. Typically in the color case, the gradient

is defined by:

∇I(x, c) =

































∂I(x, c)

∂x1

∂I(x, c)

∂x2

∂I(x, c)

∂c1
∂I(x, c)

∂c2
∂I(x, c)

∂c3

































. (2)

This gradient informs on the spatial and color direction of

the image variations around x.

A. Derivative adaptation to discrete context

Equation (1) is defined for continuous functions. In a

discrete domain, h increments are limited to integer values,

defining so the Roberts cross operator [37]:

∆x1I(x) = I(x1 + 1, x2)− I(x1, x2), (3)

∆x2I(x) = I(x1, x2 + 1)− I(x1, x2).

To avoid the asymmetry induced by the previous expression,

even values of h are preferred, starting with h = 2:

∆x1
I(x) = I(x1 + 1, x2)− I(x1 − 1, x2), (4)

∆x2
I(x) = I(x1, x2 + 1)− I(x1, x2 − 1).

B. Adaptation to a theoretical multivariate context

Di Zenzo was the first to propose a color extension to gra-

dient processing considering color space as a vector space [1].

Koschan and Abidi [36] introduced the same idea with a

physical approach whereas Di Zenzo has a mathematical

one. Both papers study color information in a spatial auto-

correlation matrix:

ACor =







∥

∥

∥

∂I(x,c)
∂x1

∥

∥

∥

2

2

〈

∂I(x,c)
∂x1

,
∂I(x,c)
∂x2

〉

2
〈

∂I(x,c)
∂x1

,
∂I(x,c)
∂x2

〉

2

∥

∥

∥

∂I(x,c)
∂x2

∥

∥

∥

2

2






, (5)
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with

∥

∥

∥

∥

∂I(x, c)

∂xi

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∂I(x, c1)

∂xi

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∂I(x, c2)

∂xi

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

∂I(x, c3)

∂xi

∥

∥

∥

∥

2

2

(6)

and

〈

∂I(x, c)

∂x1

,
∂I(x, c)

∂x2

〉

2

=
∂I(x, c1)

∂x1

∂I(x, c1)

∂x2

(7)

+
∂I(x, c2)

∂x1

∂I(x, c2)

∂x2

+
∂I(x, c3)

∂x1

∂I(x, c3)

∂x2

.

The theoretical RGB color space is orthogonal, but in reality,

RGB color spaces are not. Di Zenzo implicitly considers the

scalar product between channels to be null. The complete norm

should be:

∥

∥

∥

∥

∂I(x, c)

∂xi

∥

∥

∥

∥

2

2

=

3
∑

j=1

3
∑

k=1

〈

∂I(x, cj)

∂xi

,
∂I(x, ck)

∂xi

〉

2

. (8)

The absence of cross product in Di Zenzo’s formulation

implies the orthogonal hypothesis on the representation space

axis.

To estimate the gradient’s norm, the eigenvalues of the

autocorrelation matrix are used. Different expressions were

proposed, Sapiro [38] expressed, for example, the gradient

magnitude Mag as the difference between the two eigenval-

ues:

Mag2 =

(

∥

∥

∥

∥

∂I(x, c)

∂x1

∥

∥

∥

∥

2

2

−
∥

∥

∥

∥

∂I(x, c)

∂x2

∥

∥

∥

∥

2

2

)2

(9)

+4

〈

∂I(x, c)

∂x1
,
∂I(x, c)

∂x2

〉2

2

.

The spatial direction θ of the gradient, defined by Jin et
al. [39], lifts the imprecision of ±π

2 from the initial Di Zenzo
expression:

θ =







































Undefined if

(

∥

∥

∥

∂I(x,c)
∂x1

∥

∥

∥

2

2
−

∥

∥

∥

∂I(x,c)
∂x2

∥

∥

∥

2

2

)2

+ (τ)2 = 0

sign (τ) arcsin







β+ −
∥

∥

∥

∂I(x,c)
∂x1

∥

∥

∥

2

2

2β+ −
∥

∥

∥

∂I(x,c)
∂x1

∥

∥

∥

2

2
−

∥

∥

∥

∂I(x,c)
∂x2

∥

∥

∥

2

2







with τ =
〈

∂I(x,c)
∂x1

,
∂I(x,c)

∂x2

〉

2
else

(10)

where β+ is the maximum eigenvalue.

C. Adaptation to non-independent channel context

Color sensors and a great majority of multi-spectral sensors

are constructed with overlapping spectral sensitivity functions

as shown in figures 1 or 2. Therefore, there is a correlation

between channels and the classical scalar product in 3D is not

suitable. To take care of the color spaces non-orthogonality,

the scalar product between I(x) and I(y) must be defined with

the Gram matrix (eq. (12)). It is a matrix computed from the

scalar product of each basis element [40], [41]. Equation (11)

is normalized in reference to white balance.

〈I(x), I(y)〉 = I(x)T ·Gm · I(y)
‖Gm‖∞

, (11)

Figure 1. Spectral sensitivity functions of the camera Canon 500D.

Gm =











‖s0‖22 〈s0, s1〉2 . . . 〈s0, sm〉2
〈s1, s0〉2 ‖s1‖22 . . . 〈s1, sm〉2

...
...

. . .
...

〈sm, s0〉2 . . . 〈sm, sm−1〉2 ‖sm‖22











.

(12)

Scalar products in the Gram matrix are supposed to be our

initial basis decomposed in an orthogonal one. No orthogonal

basis is known in an RGB color space. Therefore, we need

a different scalar product defined in the spectral domain. We

use the spectral sensitivity functions Si() and Sj() of each

channel. The Gram matrix coefficients are defined by:

〈si, sj〉2 =

∫

R

Si(λ)Sj(λ)dλ. (13)

1) Application in color domain: considering a real case,

using a Canon 500D photographic sensor, spectral sensitivity

functions can be obtained by experimental measures or directly

from the constructor. In figure 1, all three spectral sensitivity

functions r(), g() and b() show strong correlations between

channels. In such case, Gram matrix is reduced to

Gm =





‖R‖22 〈R,G〉2 〈R,B〉2
〈R,G〉2 ‖G‖22 〈G,B〉2
〈R,B〉2 〈G,B〉2 ‖B‖22



 , (14)

with 〈R,G〉2 =

∫ λmax

λmin

r(λ)g(λ)dλ, (15)

where λmin = 360 nm and λmax = 780 nm, the CIE

standard limits of the visible range. This color sensor Gram

matrix is given in equation (16).

GmCanon500D =





0.140 0.166 0.047
0.166 0.566 0.268
0.047 0.268 0.388



 . (16)

We can see the matrix is far from diagonal. The integral of

the red sensitivity curves is smaller than for the green, which

explains the different coefficient on the diagonal. Due to a

small overlapping, the red and blue curves present a small

correlation factor of 0.047. Blue and green overlap more,

hence a higher correlation 0.268.

In a more generic context, when the spectral sensitivity

functions of the sensor are unknown, the CIE sensitivity



4

Figure 2. Spectral sensitivity functions of the multi-spectral snapshot camera
CMS-V (SILIOS Technologies) with eight spectral bands and one panchro-
matic channel (CMS-C 3×3 matrix).

curves can be used as an approximation. Since we work with

synthetic dataset and color images without known calibration

information, we will consider the CIERGB as the acquis-

ition space and use the CIE sensitivity curves obtained for

observations at 10◦ of visual angle for our experiments. As a

physical sensor cannot have negative values, we have added

a constant to the CIERGB sensitivity curves to only have

positive values. The Gram matrix obtained in this case is:

GmCIERGB =





0.623 0.227 0.150
0.227 0.183 0.117
0.150 0.117 0.129



 . (17)

Contrary to GmCanon500D, the GmCIERGB red coefficients

(first row and column) are high due to the correlation of the

CIERGB red sensitivity curves with the blue and green ones.

Overlapping between blue and green curves is weak which

explains smaller coefficients.

To use the full-vector gradient with another acquisition

space, one only needs the sensitivity curves to estimate the

Gram matrix associated to the sensor. It could be adapted to

a display device but this asks another question that needs new

perceptual experiments and a whole new scientific paper.

2) Application to the Multi-Spectral Domain: the proposed

expression is fully generic and can be directly adapted for

different multivariate cases. To illustrate this, we extend it

to the multi-spectral domain for a 9-bands sensor (fig. 2).

The first eight spectral filters are centered respectively at

{561, 596, 638, 673, 722, 758, 801, 838} nm. The last one is

a panchromatic filter. Knowing the spectral sensitivity curves

from the sensor constructor, The Gram matrix is directly

deduced from the measurements:



























0.141 0.107 0.073 0.072 0.073 0.058 0.057 0.058 0.115
0.107 0.168 0.107 0.095 0.073 0.062 0.061 0.064 0.122
0.073 0.107 0.149 0.115 0.079 0.070 0.070 0.063 0.119
0.072 0.095 0.115 0.149 0.094 0.079 0.071 0.064 0.118
0.073 0.073 0.079 0.094 0.130 0.092 0.074 0.065 0.112
0.058 0.062 0.070 0.079 0.092 0.104 0.081 0.068 0.095
0.057 0.061 0.070 0.071 0.074 0.081 0.091 0.072 0.089
0.058 0.064 0.063 0.064 0.065 0.068 0.072 0.077 0.082
0.115 0.122 0.119 0.118 0.112 0.095 0.089 0.082 0.148



























.

(18)

To comment on this Gram matrix, first, we note that diagonal

values are higher than others. Channels corresponding to

the red and near infrared present a reduced sensitivity, their

corresponding values are smaller than values corresponding to

channels in the lowest wavelengths. Secondly, we observe the

relative importance of all the values for the panchromatic filter

on the last column and row. It is explained by the shape of

this filter (gray on fig. 2). Thirdly, the sub-diagonal present

higher correlation than the rest of the matrix. When looking

at figure 2, we observe a filter (except the panchromatic one)

overlaps mostly with only two other filters: the previous and

the next ones.

III. COLOR AND DISCRETE ADAPTATION

In this section, we raise the problem of discrete function

derivation. Indeed, these functions require low-pass filtering.

Secondly, we will present Carron’s gradient which takes into

account inter-channel dependency in HLS color space.

A. Toward C1-Class Function

Mathematically, to estimate a gradient, a function must be

differentiable and the derivative has to be continuous. In other

words, it must be a C1-class function. By construction, digital

images are not C0 [15], thus a low-pass filter is required to

satisfy the constraint.

Sobel and Feldman in [42], then Prewitt in [43] were the

first to propose low-pass filtering in the orthogonal direction of

gradient extraction. In both cases, the authors use symmetrical

gradient estimation (h = 2). Prewitt filter is constructed

from a basic average filter. Sobel uses a filter approaching

Gaussian coefficients. It offers better filtering performances.

For example, the 3× 3 Sobel filter is given by:

∂I(x)

∂x1
=





−1 0 1
−2 0 2
−1 0 1



 ∗ I(x), (19)

and
∂I(x)

∂x2
=





−1 −2 −1
0 0 0
1 2 1



 ∗ I(x).

Later, Canny [5] proposed to use a bi-dimensional Gaussian

filter (eq. (20)) before the gradient computation in order to

obtain a C1-class function.

G(I(x)) =
1

σ
√
2π

e
−x2

2σ2 . (20)

B. Adaptation to the color specificities

The choice of color space is always important and crucial

in color image processing. In 2014, Wang et al. [24] com-

pared different color spaces for segmentation purposes and

concluded that CIELAB is the most robust one. Bello-Cerezo

et al. [23] experimented on the same question for classification

purposes. The authors are more precise as their interest lies in

existing or estimated calibration information. The color axis

orthogonality of CIELAB space and the perceptual distance

validity allow asserting the CIELAB superiority for material

classification. Nevertheless, the bias introduced by bad calib-

ration information reduces performances compared to those
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obtained in RGB spaces. In response to this problem, Carron

proposed in 1994 to decompose the gradient calculation in

HLS space, supposed orthogonal [28].

C. Taking Channel Interdependency in HLS Color Space

HLS is not a Euclidean space and has cylindrical coordin-

ates. Therefore, Carron defined the gradient as a weighted

combination of marginal derivatives extracted in HLS color

space. The weighted combination takes into account saturation

magnitude, to set the hue information relevance. The proposed

expression uses fuzzy logic to obtain a behavior close to

human vision. The hue gradient is defined as:

∆(I(x,H), I(y,H)) = p (I(x, S), I(y, S)) [I(x,H)−I(y,H)]π,
(21)

with

p(I(x, S), I(y, S)) =
√

α (I(x, S)) .α (I(y, S)), (22)

and α(S) being a function giving relevance to the hue when

saturation is high. Finally, the three derivatives are combined

accordingly:

∇C =

























∥

∥

∥

∥

p
∂I(x,H)

∂x1

∥

∥

∥

∥

1

+ (1− p)

∥

∥

∥

∥

∂I(x, S)

∂x1

∥

∥

∥

∥

1

+(1− p)

∥

∥

∥

∥

∂I(x, L)

∂x1

∥

∥

∥

∥

1
∥

∥

∥

∥

p
∂I(x,H)

∂x2

∥

∥

∥

∥

1

+ (1− p)

∥

∥

∥

∥

∂I(x, S)

∂x2

∥

∥

∥

∥

1

+(1− p)

∥

∥

∥

∥

∂I(x, L)

∂x2

∥

∥

∥

∥

1

























, (23)

where p is the coefficient of equation (22).

For the experiment, a selected constraint for the gradient is

to manage the channel dependencies. Thus, we will compare

the full vector gradient with Di Zenzo’s gradient computed in

the acquisition space. We add to this list the Carron gradient

processed in IHLS space [44].

D. Complete expression of the full-vector gradient

In this section, we give the complete expression of the full-

vector gradient (FVG), starting from the Di Zenzo construction

expressed through the spatial autocorrelation matrix (eq. (24)).

ACor =





〈

∂I(x,c)
∂x1

,
∂I(x,c)
∂x1

〉 〈

∂I(x,c)
∂x1

,
∂I(x,c)
∂x2

〉

〈

∂I(x,c)
∂x1

,
∂I(x,c)
∂x2

〉 〈

∂I(x,c)
∂x2

,
∂I(x,c)
∂x2

〉



 . (24)

To define this gradient, we need to express the complete

scalar product. To take into account the non-orthogonality

of the representation space, the scalar products inside the

autocorrelation matrix ACor must be defined using the Gram

matrix (eq. (12)):

〈

∂I(x, c)

∂xk

,
∂I(x, c)

∂xl

〉

=

(

∂I(x,c)
∂xk

)T

Gm

(

∂I(x,c)
∂xl

)

‖Gm‖∞
. (25)

(a) Image taken with a Canon 500D

(b) Full-vector gradient

Figure 3. Example of the full-vector gradient with an image from a Canon
500D.

The scalar product associated with the Gram matrix is meas-

ured with the spectral sensitivity curves Si() corresponding to

each sensor’s channel si:

〈si, sj〉2 =

∫ λmax

λmin

Si(λ)Sj(λ)dλ. (26)

Due to the optical filter before the sensor and to the sensor

limits, the integral bounds are a lower wavelength and an upper

wavelength.

The gradient magnitude is then defined directly from the

Di Zenzo expression and the scalar product defined in equa-

tion (25):

Mag2 =

(〈

∂I(x, c)

∂x1

,
∂I(x, c)

∂x1

〉

−

〈

∂I(x, c)

∂x2

,
∂I(x, c)

∂x2

〉)

2

+4

〈

∂I(x, c)

∂x1

,
∂I(x, c)

∂x2

〉2

. (27)

Figures 3 and 4 give an acquisition of the same scene

for a Canon 500D and a SILIOS CMS-V camera and the

calculation of the full-vector gradient on these acquisitions.

Figures 3b and 4d should not be compared. Firstly, because the

two sensors have very different spatial resolutions. Secondly,

the multi-spectral sensors do not perceive blue wavelength but

infrared ones. Finally, the sensors sizes are different, as the

cameras objectives. That explains the difficulty to compare

both images.

IV. PROPOSED PROTOCOL

The second contribution of this article is to propose an

objective test for gradient performance assessment. Facing a
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(a) CMS-V channel 1 (b) CMS-V channel 6 (c) CMS-V panchro-
matic channel

(d) Full-vector gradient

Figure 4. Example of the full-vector gradient with a multi-spectral image
from a CMS-V camera (SILIOS Technologies).

lack of existing and reference results in the multi-spectral

domain to compare the proposed approach, we choose to

develop this assessment in the trichromatic color domain.

As the proposed gradient is generic, there is no necessity to

assess its validity in every possible spectral/multivariate case.

Secondly, gradient assessment is widely developed in color

domain, with an important literature allowing to compare our

approach to existing ones.

We will, first, describe our motivations, then how color

distributions are created. Then, we will present the separability

rate that allows us to measure the difficulty to extract an

edge. Thanks to the separability rate and the color distribution

shapes, we have an artificial dataset. Finally, the comparison

criterion based on classification is presented.

A. Motivations

Magnier et al. propose a gray-level gradient quality assess-

ment on real images in [45]. As ground truth depends on a

human performing segmentation, we have decided to create

an artificial dataset.

We assume it is easy to perform a gradient detection when

both regions are two uniform colors, even if the color differ-

ence is low. But when the regions are not perfectly uniform,

they are defined by their respective color distributions. The

central idea of this dataset is to consider each side of the edge

as a color distribution. The gradient extraction complexity is

relative to the intersection of the two color distributions. The

more they overlap, the more difficult it is for the gradient to

segment correctly.

The proposed protocol is based on two color distributions

generated with a given separability rate r, distribution shapes

and color averages (figure 5).

(a) r = 0.5, C1 = (85;−47; 7),
C2 = (96;−42; 5).

(b) r = −0.5, C1 = (85;−47; 7),
C2 = (96;−42; 5).

(c) r = 0, C1 = (38; 52; 3),
C2 = (37; 60;−7).

(d) r = −1, C1 = (38; 52; 3),
C2 = (37; 60;−7).

Figure 5. Examples of generated images. The separability rate values (r) and
the color pairs location is given per images. The color difference between the
distribution center is fixed to 12 to perceive differences.

B. Color Distribution Generation

The generated color distribution is defined using a mul-

tivariate Gaussian distribution N3(µ,Σ) in a given color space

(CIERGB). To avoid bias due to quantification step, values

are kept in double precision.

The multivariate Gaussian distribution structure is controlled

by the variance-covariance matrix Σ, a rotation matrix R and

a shape matrix S (eq. (28)). A scalar parameter a allows

controlling the distribution shape, spherical when a tends to

1, or oblong when a tends to 5 (eq. (29)). This parameter

is randomly defined in the experiment. The R matrix is

a classical rotation matrix defined by three angles θ, also

randomly selected.

Σ = RTSR, (28)

with S =





a 0 0
0 1

a
0

0 0 1
a2



 . (29)

Figure 6 shows some examples of obtained shapes. At this

level, all distributions are centered and normalized (N3(0,Σ)).
The ellipsoids represent the distribution’s hull at a Mahalan-

obis distance of 3 from the center.

Then, we modify their means and add a scalar parameter α

to control the volume of the distribution. The final covariance

matrix is then defined by Σ′
i = α2

iΣi. This step allows us to

control the distributions overlap. Two centers are randomly

selected C1 and C2 in CIELAB to be at a ∆E color

difference of 3.

C. Separability rate

The gradient detection complexity is proportional to the

intersection of the two three-dimensional ellipsoids relative

to the multivariate Gaussian distributions N3(C1,Σ
′
1) and

N3(C2,Σ
′
2).

We propose to use the normalized algebraic distance

between the two color distribution hulls (eq. (30)) to define the

separability rate (r) as illustrated in figure 7. The hull of the
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(a) a = 1.0, θ = (247; 49; 162) (b) a = 1.8, θ = (280; 298; 251)

(c) a = 3.0, θ = (282; 117; 16) (d) a = 3.9, θ = (9; 110; 275)

Figure 6. Examples of distribution hull at a Mahalanobis distance of 3 units
from the center of the generated distributions.

considered color distribution is defined by the ellipsoid surface

at a Mahalanobis distance of 3 units from the distribution

center. The value of 3 units allows containing more than 99%
of the sample data inside the ellipsoid hull.

r =
C ′

1C
′
2

||C1C2||2
with dΣ′

i
(Ci, C

′
i) = 3, (30)

and {C ′
1, C

′
2} ∈ (C1C2).

A null value of the separability rate r expresses a single

intersection point between the two ellipsoids. The two distribu-

tions overlap on less than 1% of color pixels. A negative value

of r expresses a more important intersection, in opposition to

a positive value that shows an empty intersection of the ellips-

oids (but distributions can slightly overlap). The normalization

is relative to the distance between the distribution center.

This normalization allows comparison between different color

center differences and/or different color spaces.

Another possibility for the separability rate could be the

Kullback-Leibler divergence (sometimes called Jeffrey’s di-

vergence). Obviously, the non-linear nature1 of this kind of

similarity measures makes the dynamics of the results more

difficult to interpret.

D. The artificial dataset

To explore all possible colors in the experiment, color pairs

(C1, C2) are randomly chosen. Both distribution magnification

rates αi are calculated given the separability rate r:

α = α1 = α2 =
(1− r)dΣ1

(C1, C2)dΣ2
(C2, C1)

3(dΣ1(C1, C2) + dΣ2(C2, C1))
. (31)

1The Kullback-Leibler divergence of a multivariate Gaussian distribution is
easy to produce but shows a square relationship to the distance centers and a
log difference of the variance-covariance matrices.

(a) Distributions 6a (green) and 6d (red) with r = 0.5

(b) Distributions 6a (green) and 6d (red) with r = −0.5

Figure 7. Illustration of the separability rate (r) depending on the overlap
between two color distributions.

The separability rate explores the range [−1,+1]. In addi-

tion, we verify that both color distributions belong to the

CIERGB color gamut. Color distributions are then generated

in CIERGB.

In figure 5, we present four generated images with two pairs

of color Ci. In order to see the color difference between the

two regions defined by their color distributions, we selected

a color difference ∆E(C1, C2) = 12. Parameters of the

distributions in figures 5a and 5b induce a difference mainly at

a luminance level. On the contrary, the other two figures differ

at a hue level. The separability rate on figure 5b (resp. 5d)

is higher than figure 5a (resp. 5c), because the distributions

overlap more. They are trickier to segment.

E. Criteria of Comparison

To assess the quality of gradients, we will segment the

images and use a criterion initially exploited in data clas-

sification assessment. Each test image is composed of two

rectangular regions R1 and R2 (fig. 5 presents images (I)

where gradients will be measured). Our objective is to evaluate

our channel interdependency management and not the edge

direction. Thus, we have chosen to focus on one vertical edge.

Edge location is based on the maximal norm of the computed

gradient per row. True positive (T P) pixels (resp. true negative

T N ) are pixels affected after the edge detection to the R1 side
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(resp. R2 side) and initially located in the R1 region (resp.

R2 region). False positive (FP) and negative (FN ) pixels

correspond to pixels that are located on the wrong side of the

edge after gradient processing. Figure 8 shows a theoretical

segmentation and a practical one for 3 × 3 regions. We use

the accuracy criteria to evaluate performances:

Acc =
#T P +#T N

#I . (32)

Accuracy results are expected to be between 0% and 100%,

100% being the perfect response.

(a) Theoretical segmentation (b) Example of practical result

Figure 8. Example of practical segmentation compared to the theoretical
case. In 8b, white is true positive, light gray is false positive, dark gray is
false negative and black is true negative compared to 8a. The accuracy in this

example is of
8 + 7

18
.

V. RESULTS AND DISCUSSION

In this section, we compare the edge extraction accuracy

using a gradient computed from synthetic and real images.

The first two experiments use the artificial dataset, the first

one assessing the impact of the color distribution shapes on

the edge detection performances, and the second assessing

the global performances. The third one compares the gradient

detection of real world images (Stex [46] and VisTex [47]

database).

A. Impact of Color Distribution Shape

In the real world, the color distribution shapes are not

always spherical. This experiment assesses the impact of the

distribution shape on the edge extraction performances. Four

different shapes are defined (fig. 6) allowing to create 16 pairs

of color distributions. In each case, 10 pairs of color were used

to create color images. Figure 9 presents the average from the

10 color pairs at each separability rate in the case of four

relevant pairs of distribution shapes (the other twelve present

similar results).

Results from figure 9a evaluate the edge extraction from

regions generated with almost spherical color distributions, so

without channel interdependency. As expected the Di Zenzo

approach presents good performances followed closely by the

full-vector gradient approach. In the second result, one of the

two distributions is slightly ellipsoidal and oriented (fig. 9b).

The Di Zenzo approach becomes less efficient. This result

is reinforced when the second distribution is more oblong

(fig. 9c). Figure 9d illustrates the results obtained in a more

generic case: two ellipsoidal and oriented distributions. In this

last case, the limits of marginal and Di Zenzo’s approaches

are reached.
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(a) Distributions 6a and 6a
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(b) Distributions 6a and 6b
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(c) Distributions 6a and 6d
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(d) Distributions 6c and 6b

Figure 9. Examples of edge detection accuracy assessment for images
generated with ∆E = 3. Only two distributions are used per results. The
shape of these distributions is given per sub figure and refers to figure 6.

B. Combining Different Color Distribution Shapes

To compare results on a larger scale, we raise the number

of cases using 500 images for each separability rate. Fifty

distribution shapes for the images left part and 50 others for the

right with 10 color pairs. We estimated the average accuracy

for eight separability rates (tab. II).

The full-vector gradient performs better than the other gra-

dients. The differences are less important than those observed

previously due to the random shape parameter a which creates

round or ellipsoid shape. The ellipsoid/round shape does not

evolve linearly with the parameter a. There are rounder shapes

than ellipsoid ones among the 100 generated distributions.

Sobel results are close to the full-vector gradient ones. It can

be explained by color pairs oriented on the lightness axis.

This theory is reinforced by the statement from Novak and

Shafer [48] (cited by, for example [2], [6], [12]) stating that

90% of color edges can be processed in gray-level.

In order to better understand the results of table II, we

present several cases of edges extraction in different cases of

color distribution shapes and separability rates (fig. 10). Each

column presents the segmentation results of the four presented

gradients. The first row contains the images to segment.

The first column presents two green regions, the variations

are mainly developed along one of the RGB acquisition

channels. Due to this particular distribution, the Di-Zenzo

approach is well adapted. In addition, since color variations

on the other axis are reduced, Sobel gradient also presents a

good accuracy level.

In the second case, the color distribution is based on a

pink color, so a not-saturated red, hence we are closer to

the achromatic axis. Here, the channel combination is more

crucial for the gradient extraction, even if we are theoretically

in a easier case (r = 0.5). This necessity of an accurate color

consideration explains the good accuracy of FVG versus the
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Table II
AVERAGE AND STANDARD DEVIATION OF ACCURACY FOR GIVEN SEPARABILITY RATE

Di Zenzo FVG Sobel Carron
r Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

-1 76.41 0.14 79.41 0.46 78.45 0.38 75.84 0.19

-0.5 78.57 0.30 83.17 0.62 81.36 0.61 76.97 0.25

-0.25 80.84 0.47 86.22 0.75 83.68 0.72 78.26 0.50

-0.15 82.17 0.66 87.70 0.77 84.75 0.84 78.96 0.56

0 84.78 0.69 90.04 0.81 86.58 0.96 80.48 0.79

0.15 88.02 0.74 92.46 0.84 88.62 1.07 82.66 0.85

0.25 90.59 0.84 94.11 0.85 90.08 1.12 84.48 0.92

0.5 96.58 0.66 97.55 0.75 93.31 1.09 90.94 0.66

others.

The results of the third column express the difficulty for

the different approaches to work around the achromatic axis.

In this case, the Sobel approach developed in gray-level color

space is well adapted. We observe that the Carron approach,

which includes an intensity axis, obtains the second score.

Finally, in the last case, the yellow distributions are far from

the acquisition channels and from the achromatic axis. In this

case, the necessity to correctly combine the color axis becomes

important and explains the FVG score.

C. Subjective Comparison of Performance from Real Images

To obtain an objective and valid comparison of perform-

ances requires image databases with known and accurate

segmentation. We also need to know the color complexity

of the problem to establish an associated separability rate.

This is clearly not achievable with the existing multimedia

databases. Thereafter, we will only subjectively compare the

studied gradient approaches on some selected images from two

databases. To reach color content expectations, we selected

images from the natural world which present a sufficient color

(a) r = −0.5 (b) r = 0.5 (c) r = −1 (d) r = −0.5

(e) Full Vector Gradient seg-
mentation, Acc = 85%

(f) Full Vector Gradient seg-
mentation, Acc = 99%

(g) Full Vector Gradient seg-
mentation, Acc = 75%

(h) Full Vector Gradient seg-
mentation, Acc = 85%

(i) Di Zenzo segmentation,
Acc = 87%

(j) Di Zenzo segmentation,
Acc = 78%

(k) Di Zenzo segmentation,
Acc = 76%

(l) Di Zenzo segmentation,
Acc = 74%

(m) Carron segmentation,
Acc = 76%

(n) Carron segmentation,
Acc = 77%

(o) Carron segmentation,
Acc = 78%

(p) Carron segmentation,
Acc = 72%

(q) Sobel segmentation,
Acc = 81%

(r) Sobel segmentation,
Acc = 80%

(s) Sobel segmentation,
Acc = 86%

(t) Sobel segmentation,
Acc = 74%

Figure 10. Examples of edge detection for images generated with ∆E = 3. Figures 10a, 10b, 10c and 10d are used to estimate gradients. Others present the
segmentation results obtained, the accuracy results are given in the subtitle.
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(a) Reference (b) Gray level Sobel gradient (c) Carron gradient

(d) Color histogram and a 2-class model (e) Full vector gradient (f) Di Zenzo gradient

Figure 11. Gradient comparison of a cloud image (VisTex database). Figure 11d represents the color image histogram separated into two Gaussian distributions.
These distributions give a separability rate of r = −0.91. Gradient images have been inverted.

complexity compared to man-made objects.

The first selected image (fig. 11a) is composed of clouds

(gray to white) on a non-uniform blue sky. Sobel gradient

computed from a gray level image or Carron’s approach

should give a good result. Unfortunately, they do not, even if

color complexity seems weak, a more adapted color gradient

is required. The image histogram (fig. 11d) explains these

limits. Gaussian mixture model estimates two classes from the

histogram. Both ellipsoids highly overlap. This model allows

processing the separability rate: −0.91. It explains why the

Sobel, Carron and Di Zenzo approaches fail. Di Zenzo’s image

is noisier. Edges are missing on the cloud in the top and small

clouds under it. The full-vector gradient extracts these edges

correctly. Due to the high-level luminosity, channel values are

important and nothing manages the interdependency between

channels. Di Zenzo approach overestimates small differences

in the blue sky and loses discrimination between diffuse clouds

and sky. This result is fully consistent with synthetic data

results.

The second image represents a flower from Stex database.

This image is more chromatic, mainly in the orange, with a

brown crown and some specular peaks due to water drops.

Carron gradient produces better results than in the previous

case, but its dynamic is weak (gradient histogram in fig. 12d).

At first glance, Di Zenzo approach seems to propose more

information. But the extracted dots correspond to the specular

peaks observed in the flower center. These specular dots reduce

the discrimination of pistils. Despite these differences, the two

approaches produce similar results.

Figure 13 presents three results of edge extraction after

segmenting the gradient image. The threshold applied is the

third quartile of gradient histograms. Black pixels are edges

detected by both gradients. Red pixels are edges detected by

FVG but not by Di Zenzo. On the contrary, cyan pixels are

edges detected by Di Zenzo and not by FVG. The three colors

legend allows comparing both approaches.

On figure 13d (as fig. 12), edges from the full-vector

gradient (black and red pixels) show the rounded part of the

flower center and segment better the stamens on the left. On

the contrary, Di Zenzo (black and cyan pixels) segments the

shiny water.

On figure 13e, Di Zenzo approach overestimates the texture

variation in the light wood stick. On the contrary, the full-

vector gradient is more sensitive in dark regions.

Figure 13f is the most interesting. The flower center has

a concentric shape construction, from brown to yellow, white

and finally blue. On the bottom right flower (fig. 13f), Di

Zenzo gradient highlights all the yellow pixels, while the full-

vector gradient focuses on the white borders. The white center

of the top right flower is better segmented by the full-vector

gradient than Di Zenzo. We can say the full vector gradient

gives better results than Di Zenzo.
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(a) Reference (b) Gray level Sobel gradient (c) Carron gradient

(d) Gradient’s Histograms (e) Full vector gradient (f) Di Zenzo gradient

Figure 12. Gradient comparison of a flower image (Stex database). Figure 12d represents the gradient histograms. Gradient images have been inverted.

(a) Yellow flower (b) Bark (c) Blue flower

(d) Di Zenzo and full-vector gradient seg-
mentation

(e) Di Zenzo and full-vector gradient seg-
mentation

(f) Di Zenzo and full-vector gradient seg-
mentation

Figure 13. Differences in edge extraction between FVG and Di-Zenzo approaches. The threshold is fixed to the third quartile of the image gradient histogram.
Black pixels correspond to edges extracted by the two approaches, Cyan pixels are attributed when Di Zenzo approach extracts edges but not FVG and red
pixels when FVG approach extracts edges but not Di Zenzo.
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VI. CONCLUSION

In this article, we address the question of the gradient

computation from multi-spectral images, where the acquisition

space is not defined by independent axis. Such space configur-

ations are due to the overlapping of sensors’ spectral sensitivity

curves. Under this definition, the trichromatic color sensor is

considered as a multi-spectral sensor. Our work is dedicated

to metrological purposes using color and spectral imaging, so

the gradient is processed in the acquisition space.

Firstly, we have shown that the vectorial gradient proposed

by Di Zenzo was implicitly defined for theoretical repres-

entation space based on orthogonal channels. Then, the full-

vector gradient (FVG) is defined embedding a complete scalar

product between the spectral sensitivity curves of the sensor

using the Gram matrix. This construction is fully generic,

whatever the number or entanglement of the acquisition chan-

nels. Hence, Di Zenzo approach becomes a sub-case of the

proposed construction for the trichromatic color acquisitions

in the visible range. Results are provided for the same scene

acquired in color (three channels) and using a multi-spectral

snapshot sensor (nine channels).

Due to the lack of multi-spectral domain reference results

of gradient extraction, the result performances are compared

to the most-used approaches in the color domain: the classical

Di Zenzo in the acquisition space (RGB), the Carron gradient

dividing the process into an IHLS color space and the Sobel

gradient in the equivalent gray-level image. Performances

were assessed from generated images with controlled color

distributions. When different color distributions are merged in

the experimental test, the gain in performance reaches 6%.

Nevertheless, for specific color distributions, the gain is up

to 15%. This second case is closer to real applications in

Control Quality by Vision. Gradient extraction comparison

from real images reinforced the results obtained from the

artificial dataset. The full-vector gradient is more sensitive to

color variations than the Di Zenzo approach. In the presented

cases, Sobel and Carron’s approaches were unadapted to

extract the expected edges.

In order to construct an objective test, we created controlled

color distributions in the CIERGB color space. Nonetheless,

for a complete validation under metrological constraints, a

new dataset must be developed in order to produce physical

samples for validation in and outside the visible range, but with

fully controlled conditions of the pixel value distributions.
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