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Abstract—The spontaneous emission rate (SER) is an im-
portant figure of merit for any quantum bit (qubit), as it
can play a significant role in the control and decoherence of
the qubit. As a result, accurately characterizing the SER for
practical devices is an important step in the design of quantum
information processing devices. Here, we specifically focus on the
experimentally popular platform of a transmon qubit, which is a
kind of superconducting circuit qubit. Despite the importance of
understanding the SER of these qubits, it is often determined us-
ing approximate circuit models or is inferred from measurements
on a fabricated device. To improve the accuracy of predictions
in the design process, it is better to use full-wave numerical
methods that can make a minimal number of approximations
in the description of practical systems. In this work, we show
how this can be done with a recently developed field-based
description of transmon qubits coupled to an electromagnetic
environment. We validate our model by computing the SER for
devices similar to those found in the literature that have been
well-characterized experimentally. We further cross-validate our
results by comparing them to simplified lumped element circuit
and transmission line models as appropriate.

Index Terms—Circuit quantum electrodynamics, transmon
qubit, spontaneous emission rate, computational electromagnet-
ics.

I. INTRODUCTION

OF the many hardware platforms being pursued to de-
velop quantum information processing devices, circuit

quantum electrodynamics (QED) architectures are one of the
most popular due to the engineering control that is capable
with these systems [1]–[3]. Built with superconductors, these
devices leverage the quantized interactions between electro-
magnetic fields in the microwave frequency regime and large
collections of Cooper pairs (charge carriers in superconduc-
tors) on a macroscopic scale of typical circuit components.
Due to the macroscopic size of these systems, the interactions
with electromagnetic fields can be strongly controlled using
microwave engineering principles. As a result, these systems
utilize many circuit components and techniques that are very
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familiar to classical microwave engineers; including coplanar
waveguide transmission lines and resonators, circulators, wire
bonds or airbridges, and distributed inductors and capacitors,
to name a few [3]–[5]. Using these tools, circuit QED designs
for a wide range of quantum technologies have been demon-
strated, including analog quantum computers [6], digital or
gate-based quantum computers [7]–[10], single photon sources
[11]–[13], quantum memories [14], [15], and components of
quantum communication systems [16].

Due to the wide variety of circuit QED technologies being
developed, the figures of merit that need to be characterized in
the design process are similarly broad. However, one charac-
teristic that is important for all of these quantum technologies
is the spontaneous emission rate (SER) of the artificial atom
that serves as the quantum bit (qubit) in these devices [17].
Depending on other device design and fabrication factors, the
SER of the qubit can play a significant role in the overall
relaxation time (denoted as T1) of the qubit.

It is well known that the SER of a qubit depends not only on
the internal properties of the qubit, but also on the structure
of the electromagnetic environment the qubit is coupled to
(this is known as the Purcell effect) [18]. Hence, engineering
the electromagnetic environment around a qubit can provide
a vital tool for controlling the relaxation time of a qubit.
This is imperative for many quantum technologies; e.g., in
single photon sources where it is desirable to enhance the
SER to make the source “on-demand” [11]–[13] or in quantum
computers where the SER must be suppressed to not limit
qubit coherence [17]. As a result, there is a need for accurate
numerical predictions of the SER of a qubit over many orders
of magnitude and possible operating frequencies (especially in
the case of frequency-tunable qubits).

Traditionally, the SER of a superconducting qubit has been
considered from a lumped element circuit theory perspective
[19], [20]. Here, it was found that when spontaneous emission
dominated the qubit lifetime, T1 was approximately equal
to the classical decay time of the circuit. This result gave
T1 ≈ Cq/Re{Yeq(ω)}, with Cq being the qubit capacitance
and Yeq(ω) the equivalent admittance of the entire circuit seen
by the qubit [20]. Hence, many tools from classical circuit
and microwave engineering disciplines can be used to control
this important quantum property of a superconducting qubit.
Although convenient in its simplicity, this result was found to
lead to significant inaccuracy (multiple orders of magnitude)
if Yeq(ω) was not computed accurately enough by including
a sufficient number of modes of the electromagnetic system
(e.g., a transmission line resonator) in the model [17]. This
issue was overcome in [17] by extending the circuit theory
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result to consider a more complete transmission line model
for the calculation of Yeq(ω).

Obviously, any circuit or transmission line theory approach
necessarily incorporates multiple approximations of varying
levels of accuracy to the complete electromagnetic physics
involved depending on the system being analyzed. As a result,
it is desirable to have a general full-wave theory to characterize
the SER of superconducting qubits. This provides a method for
attaining the utmost modeling accuracy, and can also guide the
development of simpler circuit and transmission line models
for complex systems, as appropriate.

In this work, we develop such a full-wave theory for charac-
terizing the SER of one of the most popular superconducting
qubits; namely, the transmon qubit [21], [22]. This qubit is
popular due to its resilience to certain common sources of
decoherence and the maturity of qubit control and readout
techniques; leading to it being a key component in recent
demonstrations of a computational quantum advantage [7], [8].
To facilitate the development of a full-wave theory for the SER
of a transmon qubit, we use our recently developed field-based
description of circuit QED systems involving transmon qubits
[23] and other standard results from QED theory [24].

Preliminary results on the development of a full-wave theory
for computing the SER of transmon qubits were reported in
[25]. This work expands on [25] by providing more details
on the theoretical derivation and by further extending the
derivation to highlight how standard computational electro-
magnetics methods can be used to easily perform the needed
analysis. Further, we present many new numerical examples
that are designed to closely replicate devices characterized
experimentally in the literature to provide qualitative validation
of our approach.

The remainder of this work is organized in the following
way. In Section II, we review the necessary background
on the field-based description of circuit QED architectures
with transmon qubits developed in [23]. Following this, we
present in Section III the formulation of how this field-based
description can be used to develop a full-wave computation
process for the SER of transmon qubits. We then validate
our formulation by comparing numerical results to various
experimental and theoretical results in Section IV. Finally, we
present conclusions on this work in Section V.

II. FIELD-BASED CIRCUIT QED BACKGROUND

Before presenting the full-wave approach to computing the
SER of transmon qubits, it is necessary to review certain
details of the field-based description of circuit QED systems
involving transmon qubits developed in [23]. There, it was
shown that the Hamiltonian describing the coupled field-
transmon system could be given as

Ĥ = ĤT + ĤF + ĤI , (1)

where ĤT is the free transmon Hamiltonian, ĤF is the free
field Hamiltonian, and ĤI is the interaction Hamiltonian
describing the coupling between the two systems.

More specifically, we have for the free transmon Hamilto-
nian that

ĤT = 4EC n̂
2 − EJ cos ϕ̂, (2)

where n̂ is the charge operator of the transmon qubit that
counts the number of Cooper pairs that have tunneled through
the Josephson junction of the qubit compared to some equi-
librium reference point and ϕ̂ is the phase operator that char-
acterizes the phase difference across the Josephson junction
of the transmon qubit [21], [22]. We further have that EC is
the single electron charging energy of the total capacitance of
the qubit system, and that EJ is the Josephson energy that
measures the energy associated with a Cooper pair tunneling
through the junction. Transmon qubits are often characterized
as an optimized form of charge qubit with EJ/EC � 1 [21],
[22].

Next, we have for the free field Hamiltonian that

ĤF =
1

2

∫∫∫ (
εÊ2 + µĤ2

)
dr, (3)

where Ê and Ĥ are the electric and magnetic field operators,
respectively. This free field Hamiltonian can be easily rec-
ognized as the total electromagnetic energy within a volume
by comparing it to the well-known Poynting’s theorem. The
particular mathematical expressions of Ê and Ĥ depend on a
number of choices in the quantization approach used, with a
few relevant options discussed in detail in [23]. We will discuss
a simple form for these operators relevant to this work shortly.

Finally, we have for the interaction Hamiltonian that

ĤI = −
∫∫∫

Ê · ∂−1
t ĴT dr, (4)

which describes the coupling between the two systems in
terms of Ê and a transmon current density operator ĴT . The
transmon current density operator is

ĴT = −2ed(r)∂tn̂, (5)

where e is the electron charge. We use the somewhat awkward
notation of ∂−1

t ĴT in (4) for consistency with [23], where it
was more convenient to use this form in deriving equations
of motion. We will simplify the expressions later to keep the
notation more compact in this work. Beyond this detail, in
(5), d is a vector characterizing the line integration path that
would define the voltage seen by the Josephson junction in
the transmon qubit. Physically, we can see that this operator
considers the changes in the number of Cooper pairs that
have tunneled through the Josephson junction. This naturally
produces a current, making the designation of this operator as
a current density physically intuitive.

The purpose of the definitions in (5) is to have the volume
integration in (4) reduce to the evaluation of the voltage due
to Ê at the location of the transmon. The exact form of d will
depend on the particular transmon geometry considered and
how it is modeled. By selecting our definitions in this way,
it can be shown that after adopting standard transmission line
and lumped element circuit approximations this field-based
Hamiltonian reduces to the typical Hamiltonian used to study
transmon systems in the literature [23].
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III. FORMULATION

With the necessary background in place, we may now
formulate how to compute the SER of a transmon qubit using
full-wave methods. We begin in Section III-A by showing how
the results from the field-based description of the system can
be used to express the SER of the transmon qubit in terms
of the dyadic Green’s function of the electromagnetic system.
Following this, we discuss in Section III-B how standard full-
wave methods can be used to efficiently compute the effect
of the dyadic Green’s function needed in the evaluation of the
SER of the transmon.

A. QED of Spontaneous Emission for the Transmon Qubit

In the weak-coupling regime of cavity QED, the transition
rate between two states of a quantum system can be analyzed
using a relatively simple time-dependent perturbation theory
analysis [26]. The result, often referred to as Fermi’s golden
rule, can be used to compute the SER of a qubit by selecting
appropriate initial and final states of the system to compute
the transition rate between. Although this result is only ap-
plicable to the “weak-coupling” regime of cavity QED, this
is the relevant experimental regime for many current quantum
technologies.

Considering this, Fermi’s golden rule gives the SER at
frequency ω0 between an initial state |i〉 and a final state |f〉
as

γ(f,i)(ω0) =
2π

~2
|〈f |ĤI |i〉|2 δ(ωfi − ω0), (6)

where ĤI is the interaction Hamiltonian between the qubit and
the electromagnetic field and ωfi is the frequency associated
with the energy difference between states |i〉 and |f〉 [24]. To
evaluate |〈f |ĤI |i〉|2 in a computationally convenient manner,
it is necessary to provide a more explicit expression for Ê
in the interaction Hamiltonian given in (4). As we will see
shortly, an efficient computational process can be developed
by first considering a mode decomposition representation of
Ê. This then allows for the evaluation of |〈f |ĤI |i〉|2 to be
related to the dyadic Green’s function of the electromagnetic
system the qubit is embedded in [24], which can be computed
efficiently using computational electromagnetics methods.

The particular mathematical description of Ê depends on
the quantization process used. Here, we follow a simple mode
decomposition approach discussed in detail in [23]. We con-
sider our electromagnetic system to contain inhomogeneous,
lossless, and non-dispersive dielectric and perfectly conducting
regions only. We further consider the quantization of the
electromagnetic field within a macroscopic QED framework
[27]. The key aspect of this is that a microscopic description
of a lossless, non-dispersive dielectric medium is not needed.
Instead, macroscopic permittivities and permeabilities may be
used directly in the quantum description of the electromagnetic
fields in the same way they are used for a classical description.

To keep the notation simple, we will only consider quan-
tizing the electromagnetic field for a discrete spectrum of
modes. This implies that our analysis is to be considered in
a closed region, such as within a perfectly conducting cavity

[23]. Although this is not truly the case for practical devices,
the final result of this derivation in terms of the dyadic Green’s
function is still applicable to open region problems. We will
discuss this point in more detail at the end of this section.

Now, within a closed system, we can use a separation of
variables argument to write the classical electric field as

E(r, t) =
∑
k

√
ωk

2ε0

(
qk(t) + q∗k(t)

)
Ek(r), (7)

where ωk is the eigenvalue of the kth mode. We can insert
this representation into the wave equation,

∇×∇×E(r, t) + µε(r)∂2
tE(r, t) = 0, (8)

to find two separated equations for each mode, given by

∂2
t qk(t) = −ω2

kqk(t), (9)

∇×∇×Ek(r)− µε(r)ω2
kEk(r) = 0. (10)

We further require that for the eigenvalue problem given by
(10) the modes be orthonormal such that∫∫∫

εr(r)E∗k1
(r) ·Ek2

(r)dr = δk1,k2
, (11)

where δk1,k2
is the Kronecker delta function. A similar mode

expansion also holds for the magnetic field [23].

These modal expansions can be substituted into the free field
Hamiltonian given in (3) to find that each mode behaves like an
uncoupled harmonic oscillator, or equivalently like uncoupled
LC resonant circuits. As a result, a canonical quantization pro-
cess can be performed and bosonic annihilation and creation
operators can be introduced for each mode, denoted as âk and
â†k, respectively [23], [28]. The final result is that we can write
the electromagnetic field operator Ê as

Ê(r, t) =
∑
k

√
~ωk

2ε0

(
âk(t) + â†k(t)

)
Ek(r). (12)

As mentioned previously, this expression is valid for closed
regions with “standing wave” modes. Expressions for more
general situations can be found in [23].

We may now substitute (12) into the interaction Hamiltonian
given in (4) to get

ĤI =
∑
k

2e

√
~ωk

2ε0

(
âk + â†k

)
n̂

∫∫∫
Ek(r) · d(r) dr, (13)

after expanding all definitions for the various operators out
explicitly. Next, we can express n̂ in terms of eigenstates |j〉
of the free transmon Hamiltonian (2) using the resolution of
the identity operator [29]. This gives

n̂ =
∑
j

〈j|n̂|j + 1〉
[
|j〉〈j + 1|+ H.c.

]
, (14)

where we have also used the result that n̂ only couples nearest-
neighbor eigenstates in the transmon operating regime and that
〈j|n̂|j + 1〉 = 〈j + 1|n̂|j〉 [21]. Substituting this into (13) and
applying the rotating wave approximation (which is valid in
the operating regimes where Fermi’s golden rule is applicable),
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yields

ĤI =
∑
k,j

2e〈j|n̂|j + 1〉
√

~ωk

2ε0

∫∫∫
Ek(r) · d(r) dr

×
[
â†k|j〉〈j + 1|+ H.c.

]
. (15)

To proceed, we now need to specify the states which we
want to compute the SER between. As an initial state, we
consider the transmon to be in some excited state and the
electromagnetic system to be in its vacuum state. This joint
state is denoted as |j+1, {0}〉. The final states that we compute
the transition rate to then have the transmon in its next lowest
state and all single photon states that are resonant with the
energy difference between |j〉 and |j + 1〉 (i.e., the photon
states have frequency equal to ω0 = (Ej+1 − Ej)/~, where
Ej is the energy associated with state |j〉). These joint states
are denoted as |j, {1k}〉.

Focusing on these states, we can substitute (15) into Fermi’s
golden rule given in (6) to get

γ(f,i)(ω0) =
πω0

~ε0
(
2e|〈j|n̂|j + 1〉|

)2
δ(ωk − ω0)

×
∑
k

∫∫
d(r) ·Ek(r)E∗k(r′) · d(r′) dr′dr, (16)

where the delta function has been rewritten to enforce that the
field modes are resonant with the frequency the SER is being
evaluated at. The form of the eigenmode expansion in (16) is
similar to that seen in the eigenmode expansions of a dyadic
Green’s function [24]. In fact, using standard mathematical
identities [24], it can be shown that

Im
{
G(r, r′, ω)

}
=
πc2

2ω

∑
k

Ek(r)E∗k(r′)δ(ω − ωk), (17)

where G(r, r′, ω) is the dyadic Green’s function for the
electromagnetic system. Using this in (16), we arrive at the
desired result for the SER as

γ(f,i)(ω0) =
2ω2

0

~ε0c2
(
2e|〈j|n̂|j + 1〉|

)2
×
∫∫

d(r) · Im
{
G(r, r′, ω0)

}
· d(r′) dr′dr. (18)

Typically, the SER of a quantum emitter is expressed in
terms of the local density of states that is proportional to
Im
{
G(r0, r0, ω0)

}
, where r0 is the location of the emitter

[24], [30], [31]. Our result in (18) that involves spatial integrals
over the dyadic Green’s function represents a generalization to
this result, which can be seen to be similar to other theories for
the SER of quantum emitters beyond the dipole approximation
[32]. We will discuss a simple way to compute the results of
the integrals in (18) in Section III-B.

Before moving on, it is necessary to comment on the
assumption that the analysis is performed in a closed region.
For most cases, the transmon qubits are closely coupled to
nearby transmission line geometries so that it is not difficult
to envision enclosing the entire device in a large box with
perfectly conducting or periodic boundary conditions without

significantly impacting the results. This leads to a discrete
mode spectrum for the electromagnetic fields. However, mod-
eling this large box in a full-wave tool is inconvenient and
can lead to spurious results if the transmon couples to some
of the cavity modes. To avoid these numerical artifacts, it
is preferred to use a simple radiation boundary condition
placed an appropriate distance away from the device in a full-
wave model. Although the derivation of (18) in this section
is not directly applicable to this case, (18) is still valid in
this scenario. We have verified this through various numerical
experiments, but do not show this for brevity.

A similar issue also arises for the use of microwave network
ports to terminate transmission line structures in a full-wave
model. In principle, this leads to a continuous mode spectrum
that is more difficult to work with from a theoretical perspec-
tive (see, e.g., [23]). However, so long as the dyadic Green’s
function used in (18) accounts for the presence of the ports,
(18) is still valid for this case. In this work, we use lumped
ports within a finite element method solver to act as resistive
terminations to the various transmission line structures in our
devices. As will be discussed in Section IV, this leads to
good qualitative agreement with experimental results and other
approximate theoretical models.

B. Full-Wave Computation

We now turn our attention to efficiently computing the
spatial integrals of the imaginary part of the dyadic Green’s
function needed in evaluating (18). It is of course possible
to use computational electromagnetics methods to compute
components of the dyadic Green’s function through the so-
lution of near-field scattering problems [30], [31], [33], [34].
However, doing this over a sequence of points defined by the
integration path d to numerically evaluate the spatial integrals
in (18) is inconvenient. Instead, we can use standard field and
transmission line theory results to find an alternative approach
that is much simpler to implement numerically.

To begin, we note that in the frequency domain the inho-
mogeneous wave equation for the classical electric field is

∇×∇×E(r, ω)− µ0ε(r)ω2E(r, ω) = iωµ0J(r, ω), (19)

where J is an impressed electric current source. We also have
that the Green’s function satisfies

∇×∇×G(r, r′, ω)− µ0ε(r)G(r, r′, ω) = Iδ(r− r′),
(20)

where I is the identity dyad. Using these two results, it is easy
to show that the Green’s function can be used to establish a
field-source relation as

E(r, ω) = iωµ0

∫
G(r, r′, ω) · J(r′, ω)dr′. (21)

To proceed, we assume that the impressed current density
can be defined so that it follows the needed line integration
path in (18). That is, J(r′) = −d(r′)It, where It is amplitude
of the impressed current and the negative sign is to simplify
the definitions of impedances later. Substituting this into (21)
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and taking the line integral with respect to path d(r), we get
that∫∫

d(r) ·G(r, r′, ω) · d(r′) dr′dr

=
i

ωµ0It

∫
d(r) ·E(r) dr. (22)

Recalling the definition of d given in Section II, we can see
that the integral on the right-hand side of (22) defines the
voltage seen by the Josephson junction within the transmon
qubit. Denoting this voltage as Vt(ω), we see that the right-
hand side of (22) is proportional to an impedance Zt(ω) =
Vt(ω)/It(ω). Considering this system as a one-port network,
we see that It is the current driven through the port and Vt is
the corresponding port voltage. Hence, we can recognize Zt

as the input impedance of this one-port network, denoted as
Zin [35].

Using this result in (22) and taking the imaginary part of
both sides, we find that∫∫

d(r) · Im
{
G(r, r′, ω)

}
· d(r′) dr′dr =

Re
{
Zin(ω)}
ωµ0

,

(23)

where we have noted that Im{iZin} = Re{Zin} to simplify
the notation. The input impedance seen by the Josephson
junction in the transmon can be computed easily using many
different computational electromagnetics methods, and hence,
leads to a much simpler procedure than directly evaluating
the dyadic Green’s function. With this, our final result for the
SER of a transmon qubit that can be easily computed using
full-wave tools is

γ(f,i)(ω0) =
2ω0

~µ0ε0c2
(
2e|〈j|n̂|j + 1〉|

)2
Re
{
Zin(ω0)}. (24)

This result highlights that the SER is heavily influenced by
the effective “loss” of the electromagnetic system from the
perspective of the qubit, which is measured by Re

{
Zin}. The

purely classical quantity Zin is very familiar to microwave
engineers, who have developed sophisticated techniques that
can be used to optimize it for the purposes of controlling the
SER of transmon qubits. We will consider a few simple exam-
ples of ways that Re

{
Zin} has been controlled in experiments

using classical microwave design techniques in Section IV.

IV. NUMERICAL RESULTS

In this section, we present the results from a number
of numerical examples to test the validity of the full-wave
formulation developed in this work. Unfortunately, the lack
of exact analytical solutions for realistic devices and the
incomplete design information available for experimentally
realized devices precludes performing quantitative validation
of our approach at this time. However, we can provide useful
qualitative validation by designing multiple devices similar to
those in the literature that exhibit significantly different SER
characteristics. In all cases, we find that our numerical models
provide correct trends and only differ from experimental
results by a factor of O(1) despite the numerous differences
in our model parameters compared to fabricated devices.

For ease of comparing our results to those available in the
literature, we plot the relaxation rate of the transmon qubit
rather than the SER. The correspondence is simply that the
relaxation rate is given by T1 = 1/γ(f,i). This simple equality
for the total T1 time only holds when no other relaxation
mechanisms are considered, as is done in this work. As further
cross-validation, we also compare our full-wave results to
simpler lumped element circuit or transmission line modeling
results where appropriate. In these cases, we compute the
T1 time using T1 = Cq/Re{Yeq}, where Cq is the qubit
capacitance and Yeq is the equivalent admittance of the entire
circuit as seen by the qubit [17]. We hand tune a small number
of parameters in these simpler models to achieve a good fit
with our full-wave results.

Before discussing the different models studied in this work,
we first comment on the evaluation of the matrix elements
of the charge operator |〈j|n̂|j + 1〉| that is needed in (24).
This may be evaluated exactly using the methods discussed in
[21]. Here, we opt to use the simpler asymptotic result for the
transmon that

|〈j|n̂|j + 1〉| ≈
√
j + 1

2

(
EJ

8EC

)1/4

, (25)

where EJ is the Josephson energy, EC = e2/2CΣ, and CΣ is
the total capacitance to ground seen by the Josephson junction
[21].

For all results presented in this work, we estimate CΣ from
the imaginary part of the input impedance at the location of the
Josephson junction. We then use the approximate asymptotic
result that the operating frequency of the transmon is given
by
√

8EJEC/h to compute EJ [21]. This approximately
accounts for the variation in the matrix element of the charge
operator as a function of frequency in the computation of
the SER. However, this does at times require varying EJ

over unrealistically large ranges compared to what is possible
physically to compare to results available in the literature.
Since EJ only enters the final computation with a square root
dependence, this has a relatively weak effect on the overall
results, and so we do not comment on this further.

A. Waveguide QED Single Photon Source
The first device that we will consider is a waveguide QED

style single photon source that was originally presented in [12].
This device consists of a transmon that is capacitively coupled
to two CPW lines as shown in Fig. 1. The weakly coupled
line is the control line, from which classical microwave drive
pulses can be applied to the transmon to control its state. This
microwave drive is designed to raise the transmon with high
probability into its first excited state. The transmon is then
allowed to freely evolve in time until it spontaneously emits
the excitation. This excitation is preferentially emitted into
the second line that the transmon is more strongly coupled to,
which is denoted as the emission line in Fig. 1.

For this device, the CPW signal trace width is 10 µm and
the gap width between the signal trace and ground plane is 5.8
µm. This leads to a characteristic impedance of 50 Ω and an
εeff = 6.34 for a thick silicon substrate. To simplify the full-
wave model, we approximate the conductors as being infinitely
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Fig. 1: Waveguide QED style single photon source geometry.

thin and replace the typically thick substrate (usually ~0.5 mm
[36]) with a homogeneous background relative permittivity
equal to εeff .

Since there are no resonators involved in this device, the
frequency dependence of the SER is expected to follow the
simple characteristics of radiation into a continuum. From a
lumped element circuit modeling perspective, this would lead
to a SER of

γ ≈ ω2Z0

C2
g

Cq
, (26)

where Cg is the capacitance between the transmon to the
emission line and Cq is the qubit capacitance [17]. To arrive
at this simplified result, the presence of the control line has
been ignored in the circuit model and we have used that
(ωCgZ0)2 � 1 to simplify the equivalent admittance of
the circuit from the perspective of the qubit. Due to the
simplicity of this device, this approximate result is expected
to characterize the performance well.

We perform the comparison between the results of (26) and
the full-wave analysis of the device in Fig. 2, where it is
clearly seen that excellent agreement is achieved. Note that
because our full-wave analysis only gives easy access to the
total capacitance to ground (CΣ), we numerically tune the
ratio between Cg and Cq in (26) with the constraint that
CΣ = Cg + Cq to maximize the agreement with the full-
wave results. This allows us to verify the agreement in trends
between the full-wave and approximate results as a function
of frequency, but is obviously a limitation to the predictive
power of (26) without being augmented by other numerical
analysis to compute Cg and Cq directly.

B. Cavity QED Single Photon Source

The next device that we will study is a cavity QED style
single photon source that was originally presented in [11]. Our
version of this device is shown in Fig. 3. This device consists
of a transmon qubit capacitively coupled to a half-wavelength
coplanar waveguide (CPW) resonator with resonance fre-
quency of ~5 GHz. The resonator is asymmetrically coupled
to two transmission lines through interdigital capacitors shown
in Figs. 3(b) and 3(c). A simple transmission line model of this
device from the perspective of the transmon qubit is shown in
Fig. 4. The circuit parameters are selected to maximize the

Fig. 2: Predictions of the waveguide QED style single photon
source T1 time. Full-wave model results are shown with solid lines
and lumped element model results are shown with dashed lines.

agreement between the transmission line model and the full-
wave results, which are discussed in more detail shortly.

The single photon source is operated by applying a classical
microwave drive pulse to the “input” line that is coupled to the
resonator through the smaller interdigital capacitor to the left
of the device. After raising the transmon to its first excited
state, the transmon is then allowed to freely evolve in time
until it spontaneously emits the excitation predominantly into
the CPW resonator due to the tight coupling with the transmon.
The photon then leaks out of the resonator predominantly into
the “output” line that is coupled to the resonator through the
larger interdigital capacitor.

In our model, the CPW has a signal trace width of 10 µm
and a gap width of 3.75 µm throughout all of the device except
near the output line. At the output line, a signal trace width
of 85.5 µm and a gap width of 32 µm are used. We assume
a silicon substrate and compute the effective permittivity of
the lines to be εeff ≈ 6.325 and the characteristic impedance
of the lines to be 44 Ω. As with the model discussed in
Section IV-A, we simplify our full-wave model by replacing
the thick substrate with a homogeneous background medium
with relative permittivity equal to εeff and treat all conductors
as being infinitely thin.

The total length of the transmon qubit is 0.288 mm, which
is relatively small compared to the wavelength (~23.86 mm
at 5 GHz). As a result, a simple “point coupling” approach is
often used in developing transmission line and lumped element
theoretical models. This approximation can lead to unrealisti-
cally fast variations in the computed T1, particularly when the
transmon is located near a voltage null in the resonator. To
illustrate this, we vary the position of the transmon qubit in
our model through three positions. The first is shown in Fig.
3(a), which is termed the “input qubit” configuration due to the
proximity of the qubit to the input transmission line. The two
other transmon locations are shown in Fig. 5, which consist
of placing the transmon at the middle of the resonator (termed
“middle qubit” configuration) and near the output line (termed
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Fig. 3: (a) Cavity QED style single photon source geometry. (b)
Zoomed in view of the input coupling capacitance, (c) the output
coupling capacitance, and (d) the transmon qubit. Airbridges are
placed around locations that are asymmetric to minimize the
generation of parasitic modes.

Fig. 4: Simplified transmission line model for the cavity QED
single photon source shown in Fig. 3. The input and output
coupling capacitances are represented by C1 and C2, respectively.
The resistive terminations R1 and R2 represent the input and
output ports the device would be connected to. Other parameters
include the coupling capacitance between the transmon and the
CPW resonator Cg and the qubit capacitance Cq . Non-bold lines in
the schematic represent connections with zero electrical length.

“output qubit” configuration). The middle qubit configuration
should place the center of the transmon qubit near a voltage
null at the first resonant frequency of the CPW resonator.

The results from our full-wave model for all three transmon
configurations are shown in Fig. 6. Due to the complexity
of the device, a lumped element circuit model would lead to
significantly incorrect results [17]. Hence, we instead use a
transmission line model like that proposed in [17] to compare
to our full-wave results in Fig. 6. We note that the transmission
line model parameters are only tuned once, making the only
change in the model for the different qubit configurations
the location of the qubit. We see that both models do a

Fig. 5: Additional configurations of the cavity QED style single
photon source shown in Fig. 3(a): (a) middle qubit configuration
and (b) output qubit configuration. Every other feature besides the
transmon location is identical to the input qubit configuration
shown in Fig. 3.

good job at predicting how the asymmetry of the interdigital
capacitors leads to significantly different trends in the T1 time
for the input and output qubit configurations. These trends
also qualitatively agree very well with the experimental results
presented in [17].

We also see in Fig. 6 that the middle qubit configuration
leads to a complex variation of the T1 time near the first
resonance frequency of the CPW resonator. Comparing to
the transmission line model, we see that the full-wave results
provide a more realistic prediction of how quickly the results
can vary as a function of frequency due to the finite spatial
extent of the transmon qubit. Accurately understanding the
rapid variation of these parameters as a function of frequency
has important implications on device design, and can also
play an important role in the control dynamics of the qubit
[37]. As a result, not “over-predicting” the speed of frequency
variations can be necessary to make realistic qubit performance
predictions.

C. Purcell-Filtered Qubit

The final device that we analyze is a qubit with a Purcell
filter, similar to the device presented in [38]. Our version of
this device is shown in Fig. 7, with a simplified transmission
line model shown in Fig. 8. This device consists of a transmon
capacitively coupled to a CPW resonator in a manner similar
to the device discussed in Section IV-B. However, the output
CPW line that the CPW resonator is coupled to is loaded with
two quarter-wavelength open-circuited shunt stubs (where the
wavelength here corresponds to the operating frequency of
the qubit, not the CPW resonator). These stubs (also known
as Purcell filters in this context) have the effect of reducing
Re
{
Zin} by “shorting out” the output transmission lines at

the operating frequency of the qubit, thereby lowering the
SER. This helps break the link between the T1 time of the
qubit and the CPW resonator’s quality factor, which allows
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Fig. 6: Predictions of the cavity QED style single photon source T1

time for the three qubit locations. Full-wave model results are
shown with solid lines and transmission line model results are
shown with dashed lines.

Fig. 7: The Purcell-filtered qubit geometry. The input capacitor and
transmon are identical to those shown in Figs. 3(b) and 3(d),
respectively. The output capacitor has the same dimensions to that
shown in Fig. 3(c), but tapers back to the smaller CPW dimensions
used throughout the geometry.

the quality factor to be optimized somewhat independently
for other considerations related to qubit state readout [38].

Due to the lack of design information in [38], we largely
reuse the features from the device discussed in Section IV-B.
This includes using the same substrate and effective permittiv-
ity, as well as the dimensions of the CPW line, the transmon
qubit, and the interdigital coupling capacitors. However, we do
adjust the resonant frequencies of the various components to
be more in line with those presented in [38]. This leads to the
CPW resonator the transmon is capacitively coupled to having
a resonant frequency of 7.69 GHz and the quarter-wave shunt
stubs having resonant frequencies of 6.58 GHz.

The results from our full-wave and transmission line models
for this device are shown in Fig. 9, which demonstrates the
good agreement achievable between the two models once
the parameters of the transmission line model have been
optimized. For comparison, we also show the results of a
transmission line model without the quarter-wave shunt stubs.
This highlights the large increase in T1 time possible even
with a relatively simple filtering circuit. These results also
agree with the general trends seen in [38], although more
differences exist with experimental results due to other sources

Fig. 8: Simplified transmission line model for the Purcell-filtered
qubit shown in Fig. 7. Definitions of circuit parameters mirror those
in Fig. 4. For the model results shown in Fig. 9, Copen = 0.01 fF;
however, the model results are insensitive to this parameter so long
as it is not set to an unrealistically large value (e.g., 100 fF).

Fig. 9: Predictions of the Purell-filtered qubit T1 time. For
comparison, results from a transmission line model without the
Purcell filter are also shown to demonstrate the efficacy of this
simple filter at increasing the qubit T1 time.

of decoherence that limited the measured T1 time below that
expected from a purely electromagnetic analysis.

V. CONCLUSION

In this work, we have provided a simple methodology to
use the power of full-wave computational electromagnetics
tools to predict the SER of transmon qubits in complex
architectures. We validated our approach by comparing to
various approximate theoretical models that have shown good
agreement with experimental results for relatively simple
devices. We demonstrated that our full-wave models make
more realistic predictions for the variation of the SER as
a function of frequency when the transmon is located near
rapidly changing spatial fields (e.g., near voltage nulls) by
accurately incorporating the spatial extent of the transmon
qubit in the model.

Our full-wave approach can also easily capture non-ideal
effects, such as the production of parasitic modes, which can
be difficult to accurately incorporate into transmission line
or lumped element models. Similarly, our full-wave approach
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can be easily applied to more complicated devices where
developing a simplified lumped element or transmission line
model may be impractical. We expect these situations to
become increasingly prevalent as the packing density of qubits
and supporting control systems continues to rapidly increase
in the efforts to make more powerful quantum information
processing devices.

Future work can focus on extending these full-wave model-
ing approaches to other kinds of circuit QED qubits [3]. There
is also a need to more accurately account for other kinds of
decoherence in the overall operation of circuit QED systems.
Developing field-based approaches that can be reduced to
computations involving the classical dyadic Greens’ function
of the electromagnetic system is a promising approach to
incorporate these effects in the analysis of practical systems.
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