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Full-Wave Three-Dimensional Microwave Imaging
With a Regularized Gauss–Newton Method—

Theory and Experiment
Jürgen De Zaeytijd, Ann Franchois, Senior Member, IEEE, Christelle Eyraud, and Jean-Michel Geffrin

Abstract—A reconstruction algorithm is detailed for three-
dimensional full-vectorial microwave imaging based on Newton-
type optimization. The goal is to reconstruct the three-dimensional
complex permittivity of a scatterer in a homogeneous back-
ground from a number of time-harmonic scattered field mea-
surements. The algorithm combines a modified Gauss–Newton
optimization method with a computationally efficient forward
solver, based on the fast Fourier transform method and the
marching-on-in-source-position extrapolation procedure. A regu-
larized cost function is proposed by applying a multiplicative-ad-
ditive regularization to the least squares datafit. This approach
mitigates the effect of measurement noise on the reconstruction
and effectively deals with the non-linearity of the optimization
problem. It is furthermore shown that the modified Gauss–Newton
method converges much faster than the Broyden–Fletcher–Gold-
farb–Shanno quasi-Newton method. Promising quantitative
reconstructions from both simulated and experimental data are
presented. The latter data are bi-static polarimetric free-space
measurements provided by Institut Fresnel, Marseille, France.

Index Terms—Electromagnetic scattering, inverse problems,
microwave imaging, optimization methods.

I. INTRODUCTION

T
HE emerging techniques for full-wave three-dimensional

(3-D) non-linear inversion of Maxwell’s equations may

contribute to major improvements in imaging performance

from the microwave to the optical ranges and create new appli-

cations in fields as non-destructive testing, biomedical imaging

and security. During the last two decades quantitative imaging

techniques in the microwave region—providing reconstruc-

tions of electromagnetic material parameters as permittivity

and conductivity—were mainly developed for two-dimensional

(2-D), mostly transverse magnetic (TM)-polarized configura-

tions [1]–[9]. In this 2-D scalar but non linearized—no Born

approximation—framework various iterative reconstruction al-

gorithms for different application-specific configurations [10],
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[11] as well as some experimental issues have been investigated

[12]–[14]. Together with the advent of efficient numerical

approaches and more powerful PCs, this is facilitating the

full-wave 3-D quantitative inversion of strongly contrasted

and/or inhomogeneous objects. A computationally demanding

implementation of the Newton–Kantorovich algorithm was

applied to a very simple 3-D configuration by Joachimowicz et

al. [2] in 1991. More recently Bulyshev et al. [15] developed a

3-D microwave tomography approach in a scalar approximation

and Abubakar et al. [16] presented full-vectorial 3-D inversion

results using a multiplicative regularized contrast source inver-

sion method, in both cases for biomedical applications. Other

recent work regarding 3-D inversion is reported in [17], where

full 3-D inversion is investigated on breast tissue, in [18], where

the authors extend their recently developed 2-D multiscaling

strategy to the 3-D case, in [19], where quantitative imaging is

used for optical diffraction tomography and in [20], where 3-D

quantitative inversion is performed in the time domain. In this

paper we present a full-wave 3-D complex permittivity recon-

struction algorithm for inhomogeneous lossy dielectric objects

in a homogeneous background. Reconstructions are discussed

for some simple 3-D homogeneous and inhomogeneous lossy

dielectric objects with simulated data and for a dielectric cube

with experimental data, collected from the bi-static polarimetric

free-space measurement setup of Institut Fresnel, Marseille,

France [21]. The data are different components of the scattered

field vector in points surrounding the object, resulting from

successive dipole illuminations with different polarizations and

different source positions at a fixed frequency.

Since quantitative imaging involves the numerical solution of

a non-linear inverse scattering problem, an iterative reconstruc-

tion algorithm is mandatory. The performance strongly depends

on proper choices for a cost-function, a regularization strategy

and an optimization scheme. In the 2-D case most authors em-

ploy a least squares error cost-function, which measures the dis-

tance between the measured field data and the scattered field

computed via a numerical model, possibly augmented with a

regularization term that accounts for a-priori information on

the object. Since the scattered field depends on two types of

unknowns, the complex permittivity and the total field inside

the object, which are related by a domain integral equation con-

straint, two approaches for defining the cost-function have been

reported. In the first, “conventional,” approach, the total field

unknown is eliminated by substitution, such that the cost-func-

tion only depends on the complex permittivity. This approach

involves the solution of a full forward problem in each itera-

0018-926X/$25.00 © 2007 IEEE
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Fig. 1. The 3-D measurement configuration.

tion of the optimization. Various Newton-type schemes [1], [2],

[5], [8], [11] and a few global optimization techniques [3], [7]

have been applied here. In the second, “modified gradient,” ap-

proach [4], [6], [9], the integral equation constraint is added as

a second term to the cost-function, which then is optimized for

both types of unknowns independently, using a conjugate-gra-

dient optimization scheme. The main advantage of this approach

is that no forward problem solutions are needed, but the number

of optimization variables and iterations usually is much larger

than with the conventional approach.

In this paper, the “conventional” approach is adopted and

implemented with a fast forward solver and an efficient op-

timization scheme. The forward solver uses the FFT-method

[22] to speed up the iterative solution of the multiview scat-

tering problems and a “marching-on-in-angle” method [8] for

an optimal choice of the initial estimates. Together with the

fact that a high accuracy of the forward problem solution is

not needed when the data are noisy, this approach may well

be competitive in terms of computation time with the above

mentioned “modified gradient” method, possibly depending on

the transmitter/receiver configuration. As for the optimization,

a cost-function with an additive-multiplicative regularization is

proposed and minimized with a modified Gauss–Newton algo-

rithm. This technique results in a rapid convergence and appears

to outperform the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

quasi-Newton method [23]. The reconstruction results on both

simulated and measured data are very promising.

In Section II, the 3-D inverse problem is formulated and the

measurement configuration is defined. An efficient full-vec-

torial 3-D forward solution is described in Section III. In

Section IV, a cost-function with additive-multiplicative regu-

larization is proposed and a modified Gauss–Newton algorithm

is presented. Some remarks on convergence and regularizing

properties are made, without pursuing mathematical rigor.

Finally, reconstructions from simulated and experimental data

are presented in Section V.

II. PROBLEM FORMULATION

A 3-D inhomogeneous, possibly lossy, dielectric object with

arbitrary shape and complex permittivity ,

where denotes the position and is a unit

vector in the -direction, is sitting in a homogeneous medium

with given complex permittivity , see Fig. 1. All materials are

non-magnetic and have the permeability of free space . We

define a bounded domain that completely includes the object

and we propose to reconstruct or, equivalently, the complex

permittivity contrast

(1)

everywhere within . Therefore, successive multiview illumi-

nations with known time-harmonic incident fields are ap-

plied and the corresponding scattered fields are measured

in points that belong to an observation domain outside .

The time dependence , with the angular frequency, is im-

plicitly assumed.

We employ a contrast-source integral equation formulation,

in which the scattered field is radiated by a contrast current

density in the medium

(2)

which is zero everywhere outside the source volume and

where is the total field. The vector con-

trast-source integral equation for the total field in an arbitrary

point can be written as [24], [22]

(3)

where is the 3 3 identity matrix and is the

propagation constant of the background medium. with sup-

port is the source current density for and

(4)

is the scalar Green’s function of homogeneous space, which

satisfies

(5)

As usual, the non-linear inverse scattering problem is described

by two equations: a domain integral equation

(6)

for belonging to , and an observation equation

(7)

which relates the scattered field in the observation points to the

unknown contrast sources. Note that (7) is non-linear in since

depends on by (6). In (6), the expression of the scattered

field in terms of vector and scalar potentials and is

employed to facilitate the numerical solution of the 3-D vec-

torial forward problem [25]. The tensor in (7) is the dyadic

Green’s function of homogeneous space, such that the field gen-

erated by an elementary dipole oriented along a unit vector

with current density

(8)

in homogeneous space is given by .
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Fig. 2. Definitions for the grids of the inverse and the direct problem.

For the numerical reconstruction, it is necessary to parame-

terize the unknown permittivity in . Therefore the domain

is contained in a uniform grid with cubic cells with

side . The shape of this parameter grid can be chosen ar-

bitrarily provided , but in this paper it is a cuboid with

cells in the -, -, and -directions, re-

spectively (Fig. 2). The gridpoints then are denoted by

. The permittivity is approximated with

a piecewise constant function that has one value in each cell

(9)

where is a 3-D pulse function that assumes the value 1

inside cell and is zero elsewhere. The unknown co-

efficients in (9) represent relative complex permittivity

values. They are collected in a -dimensional complex per-

mittivity vector

(10)

where stands for transpose. The triplet is replaced

with a single index , whenever this is more convenient.

Let us denote the measured scattered field by . In this

paper the non-linear data (7) is solved for the complex permit-

tivity vector subject to the domain equation (6), in an iterative

manner using Newton-type optimization methods. This is done

by minimizing a cost-function, which includes a measure for the

distance between the data and the model and

which we discuss in more detail in Section IV. A full forward

problem (6) and (7) is solved for each iterate and update di-

rections are computed from the derivatives of the scattered field.

The derivation of a closed-form expression for the derivative of

the scattered field is straightforward. To simplify the notations

we introduce an operator that acts on a vector function

with support

(11)

Using this operator notation, we write the total field (3) in an

arbitrary point as

(12)

Fig. 3. Notations concerning spherical coordinates.

We also define a dyadic Green’s function of the inhomogeneous

medium , such that corresponds to the total

field in due to an elementary dipole (8) in in presence of the

scattering object. The total field (12) then also is given by

(13)

Taking the derivative of (7)—or equivalently of (12), since the

incident field does not depend on the permittivity—with

respect to the permittivity parameter yields

(14)

where we have used (1) and (9). It follows that sat-

isfies an equation as (12) with replaced with a current den-

sity in cell . Following (13), the derivative of the

scattered field thus can be written as

(15)

For the scalar 3-D inverse scattering problem it is shown in

[26] that a unique solution exists when the scattered far field is

known in all directions for plane wave illuminations from all

possible directions. In a real experiment the number of illumi-

nations and measurements is finite and uniqueness cannot easily

be established, but we assume that the problem of non-unique-

ness can be alleviated by employing sufficient data. We con-

sider a total number of antenna positions, denoted with

, for the transmitting and receiving antennas.

We choose a number of different polarizations and

define for each antenna position the polarization directions

. In a spherical measurement geometry,

for example, such as the polarimetric bistatic facility at Institut

Fresnel [21], the antenna positions typically lie on circles on a

spherical surface and the polarization directions coincide with

(Fig. 3). For the transmitter we choose an elementary

dipole (8) in oriented along , where is a subset of .

The total number of illuminations thus is given by the number

of transmitter positions times the number of polarizations

. The field is measured in receiver positions along the

polarization directions , where the subset - and possibly

—usually is different for each illumination . We collect the
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total amount of measured scattered field data in a vector

with dimension . This

vector contains the scattered field components

in points and polarized along resulting from -polarized

dipole excitations in . Similarly, the scattered field compo-

nents , which are computed for a given permit-

tivity vector , are collected in a -dimensional vector .

The derivatives of these components with respect to are ob-

tained from (15)

(16)

and since by reciprocity and since

(17)

it follows that

(18)

Consequently, the computation of the scattered field deriva-

tives requires the solution of a forward problem (6) for excita-

tions along all polarizations in all antenna (transmitting and

receiving) positions , whereas for the computation of the cost

function only the transmitting positions are involved. This

amounts to forward problems (6) for a given complex

permittivity vector . The total number of forward problems thus

easily grows large with a 3-D full-vectorial iterative imaging

technique. However, it also follows that for a measurement con-

figuration in which transmitters are actually used in all antenna

positions—this is often a preferred configuration— and

in (18) are already computed to evaluate the cost func-

tion, hence practically no extra effort is needed for the computa-

tion of the derivatives. This may be an advantage over the mod-

ified gradient approach, where increasing the number of trans-

mitters heavily increases the workload [16].

The dimension of a single forward problem often amounts to

over tens of thousands of unknowns. Therefore, efficients algo-

rithms are needed for economic use of memory and computation

time.

III. THE FORWARD PROBLEM

For the numerical solution of the forward problem (6)–(7) a

Galerkin method of moments is applied. We summarize here

the main ideas and refer to [25] for a detailed description of the

implementation. As in [22] vectorial rooftop functions are

used to test the domain equation (6) and to expand the elec-

tric flux density in this equation. These functions

are defined on a uniform cuboidal grid with

cubic cells with side , which is an integer subdi-

vision of the cell side of the parameter grid (Fig. 2).

The resulting -dimensional linear system is solved itera-

tively with the stabilized bi-conjugate gradient (BICGSTAB)

method [27]. Since the uniform discretization preserves the con-

volutional property of the integral equation, the matrix-vector

multiplications needed by the iterative solver can be accelarated

with the use of fast Fourier transforms [22], [29], [28]. The

resulting BICGSTAB-FFT method has a computational com-

plexity of , with P the number of iterations

needed to reach the desired accuracy, and the memory com-

plexity is .

In our inversion scheme the forward problem has to be solved

several times: for varying contrast parameter configurations and

with each of those for varying source positions and polariza-

tions. An adequate choice of the initial guess can accelerate the

iterative solution of the linear systems. Since in a practical mea-

surement setup the transmitter is usually moved to successive

positions in small steps, it is expected that the field varies ac-

cordingly in a smooth way. Let us formally write the discretized

forward problem for a transmitter in as

(19)

where the -dimensional vector contains the coefficients of

the discretized electric flux density and where contains the

weighted incident field. With the marching-on-in-source-posi-

tion technique [30], [8], the initial guess is an extrapolation

of solutions obtained for —typically 3—pre-

vious transmitter positions

(20)

The coefficients are chosen such that the error

is minimized, hence they are a solution of

(21)

IV. THE INVERSE PROBLEM

A. The Regularized Cost-Function

We propose the following cost-function with an additive-mul-

tiplicative regularization

(22)

where is the least-squares data error, is a regularizing

function, is a regularization parameter and is the complex

permittivity vector (10). The least-squares data error is defined

as

(23)

with a normalization constant and is the

norm. The least-squares data error (23) has been used as a

cost-function by many authors, but its minimum generally is not

well-defined due to the ill-posedness of the inverse problem.

Consequently, a sufficiently coarse grid for the parameter-

ization (9) of is often chosen to reduce unwanted fluctua-

tions in the reconstruction when the data are noisy. In this paper
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we apply a regularization by adding to (23) a multiplicative reg-

ularization term , where is a small positive number

and is the positive function

(24)

with a normalization constant, which accounts for the di-

mensions of the object and the discretization cell. The optimiza-

tion in this paper will start from a constant relative permittivity

for all cells of and whenever the triplet in (24)

indicates a cell just outside , the corresponding value of

is also taken equal to . The function is a discrete version

of , hence it penalizes strong local fluctu-

ations in the permittivity. Note that this regularization resem-

bles the one used in [31], where the principle of total variation

is incorporated as a multiplicative regularization to a modified

gradient cost-function.

The cost-function is always larger than the data error ,

except when , i.e., at the solution in absence of mea-

surement noise. For exact data the regularized solution thus au-

tomatically coincides with the exact solution. Although in this

case regularization is not strictly necessary, the term

appears to have a positive effect on the convergence of the op-

timization algorithm, in terms of coping with the non-linearity.

When the data are noisy, the minimization of is stopped when

the data error reaches the noise level , i.e., .

The regularization then provides a smoothed solution, depen-

dent on the value of . This value is a compromise between the

desired amount of smoothing and the capability to reconstruct

strongly inhomogeneous objects. As observed from numerical

experiments with the multiplicative additive regularization, the

reconstruction is not very sensitive to the specific choice of ,

as long as it allows the data error to reach the noise level.

This condition is known as the discrepancy principle [32]. Usu-

ally we choose to , with the value

of at the true solution. An order of magnitude of can

be deduced from very general a priori information such as the

maximum size of the object (as used to choose a domain ) and

an upper limit for the permittivity (as used to choose a cell size

for the forward problem). A mathematical proof of the regular-

izing properties of the proposed method is not given, but some

further insight is provided in Section IV-D.

B. The Optimization: General

Newton’s method for local optimization approximates a non-

linear cost-function with a quadratic model based on the func-

tion’s first and second order derivatives (the gradient and the

Hessian matrix) at the current iterate and chooses the stationary

point (minimum) of this model as the next iterate. It has the

attractive fundamental property of super-linear convergence if

the initial guess is close enough to the solution [23]. However,

when starting further away from the solution, the Newton cor-

rection may lead to an increase in the cost function, if at its

stationary point the model is no longer a good approximation

to the function or if the Hessian matrix is not positive definite.

Furthermore, for large optimization problems the computation

of second order derivatives is usually very expensive. A variety

of Newton-type methods that try to deal with these issues are

described in the literature. In this paper we propose a modified

Gauss–Newton method and compare it to a BFGS quasi-Newton

method. Both methods are combined with a line search to en-

large the convergence domain.

Let us first give a few definitions. The cost-function

and the functions and are real functions of

complex variables . We define a gradient

(25)

and a Hessian matrix

(26)

with derivatives with respect to and its complex conjugate

, which are considered as independent variables, and with

. These definitions are equivalent with the use

of and as independent variables [33], and lead to simpli-

fied notations in the following. It is known for sums of squares

that the gradient and Hessian matrix take particular forms. For

the least-squares data error the gradient is

(27)

where is the Jacobian matrix containing the

first order derivatives of the scattered field components,

, and the Hessian matrix is

(28)

where is a matrix containing products of second

order derivatives of the scattered field with the data residus,

. For the regularizing

function we denote

(29)

with and

(30)

where is a real and constant matrix with

. Consequently, the gradient and Hessian

matrix of the regularized cost-function can be written as

(31)

and

(32)
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where is a complex symmetric matrix with

(33)

(34)

In an optimization scheme the complex permittivity vector is

iteratively updated as

(35)

where is the permittivity correction at iterate . The

Newton correction for in complex notation then is given by

(36)

This correction can then be used as a search direction along

which an approximate line search is performed with an algo-

rithm as described in [23]. In [23] it is also proven that an opti-

mization method that searches successively along different de-

scent paths using the aforementioned approximate line search

converges to a (local) minimizer provided that the search direc-

tions are uniformly bounded away from orthogonality with the

steepest descent direction. In this paper we always perform a

line search after determining an update direction.

C. The Gauss–Newton Method Applied to the Least Squares

Data Error

A widely used alternative for the Newton method in case of

sums of squares of non-linear functions, such as the data error

, is the Gauss–Newton method. It consists of linearizing the

function in (23) around the current iterate as

(37)

From (37), by identifying and by

solving the resulting system in the least squares sense, the

Gauss–Newton correction for is given by

(38)

Equation (38) is obtained as well from the Newton correction for

by neglecting the matrix in the Hessian matrix (28). No

second order derivatives of the scattered fields thus are needed.

Also, the hermitian matrix is at least positive semi-definite,

hence the update direction (38) is never uphill. However, the

linearization (37) may be too bad an approximation far from the

solution and the condition number of typically is large due

to the small singular values of . This numerical rank deficiency

can prevent convergence, because update-directions can become

almost orthogonal to the steepest descent vector. In [5] the con-

vergence of the Gauss–Newton method was improved with a

Levenberg-Marquardt trust-region approach, which ensures a

positive definite and better conditioned approximate Hessian

matrix.

D. The Modified Gauss–Newton Method Applied to the

Regularized Cost-Function

In this paper we focus on the regularized cost-function .

Applying the Newton formula (36) to this cost-function yields

(the index is omitted in the following)

(39)

Using (33) and (34) and introducing the linearization (37), we

obtain

(40)

The optimization is started from a constant initial permittivity,

i.e., . This permittivity vector is the min-

imizer of and yields zero for . Consequently, the second

and third terms in the right hand side of (40) are zero in the first

iteration (and may remain small in a few subsequent iterations).

The data residu eventually becomes

small due to the minimization, such that all terms except the

first one in the right hand side of (40) become negligible. Given

this behavior at the beginning and end of the optimization, we

choose to keep only the first and the last terms. This yields the

modified Gauss–Newton correction

(41)

with .

The matrix in (41) is always positive definite for

, since is positive definite. The presence of thus

ensures a descent direction. Since the optimization is stopped

when reaches the noise level and with the reasonable

assumption that is bounded by in the region of in-

terest, a lower bound exists for

. Therefore, the update directions will be uniformly bounded

away from orthogonality with the steepest descent vector along

the optimization path and convergence to the stopping criterion

or to a local minimum above this threshold can be established

[23]. Furthermore, the more the data error is reduced, the more

(41) approximates the Newton correction and super-linear con-

vergence may be expected towards the end of the optimization.

As for the regularizing properties of this method, some re-

marks can be made by observing that the update (41) is the so-

lution to the following regularized linear least squares problem:

(42)

where is the Cholesky factor of . The second term in

(42) can be interpreted as a generalized Tikhonov regularization

term [34]. It is minimized when , hence also

when , since .
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This term thus tries to reduce , or fluctuations in the per-

mittivity , which seems to be more appropriate than smoothing

the correction , as was done by several authors with regular

Tikhonov regularization, e.g., [1], [2], [5]. The regularization

parameter in (42) is proportional to the data error —see

[2] for a similar strategy in case of regular Tikhonov regulariza-

tion—hence the regularization term has a larger influence in the

beginning of the minimization, which is beneficial for coping

with the non-linearity.

E. The BFGS Quasi-Newton Method Applied to the

Regularized Cost-Function

The quasi-Newton method consists in approximating the Hes-

sian matrix in the Newton correction (36) with a matrix that does

not involve the explicit computation of second order derivatives.

In each iteration this approximated Hessian matrix is updated

based on the change in the gradient with respect to the previous

iteration. In this paper we apply the BFGS update formula for

the inverse Hessian matrix

(43)

where and where is a symmetric

matrix for which , which means that the updates

are descent directions. For the first iteration we

choose equal to the identity matrix. It is expected that after

a sufficient number of iterations the matrices become close

approximations to [23]. Since (43) directly approximates

the inverse Hessian matrix, only one matrix-vector multiplica-

tion is needed to compute the quasi-Newton correction

. This could be an advantage over the Gauss–Newton

method, where the solution of a linear system of order [see

(38) and (41)], even if this is done iteratively, can increase the

computation time substantially. Unfortunately, we observed a

much slower rate of convergence with this BFGS quasi-Newton

implementation than with the modified Gauss–Newton imple-

mentation. This will be illustrated in the next section.

V. RECONSTRUCTIONS FROM SIMULATED AND

EXPERIMENTAL DATA

In this section the performance of the full-wave 3-D modi-

fied Gauss–Newton reconstruction algorithm with line search is

investigated for three test cases: (A) a heterogeneous lossy di-

electric cube and simulated data, (B) a homogeneous dielectric

sphere and exactly simulated data and (C) a homogeneous di-

electric cube and experimental data. We study different antenna

configurations, the effect of noise on the data and we make a

comparison with the BFGS quasi-Newton algorithm with line

search. All computations are performed on a computer with a 2

GHz Dual Core AMD Opteron processor and 8 Gbytes of RAM.

The signal-to-noise ratio (SNR) is defined as

(44)

where is the variance of the Gaussian white noise, which is

calculated as

(45)

Here, is the discrete relative permittivity distribution which,

within the applied discretization, yields the closest approxima-

tion to the true relative permittivity distribution. To quantify the

quality of a reconstruction, we define the reconstruction error

as

(46)

In all of the following, the “number of iterations” of a recon-

struction refers to the number of updates of the Hessian matrix

(or search direction). The total number of forward problems is

larger due to the line search iterations.

A. A Heterogeneous Lossy Dielectric Cube: Reconstructions

From Simulated Data

We consider a lossless dielectric cube in air, hence ,

with side and permittivity , which contains a

smaller, lossy cube with side and permittivity

. The origin of the reference system coincides with the

center of the larger cube and the center of the smaller cube

has coordinates . For the inver-

sion domain we choose a cube with side , that is centered

on the origin. Fig. 4 shows the relative complex permittivity

along the three orthogonal cross sections of . We perform re-

constructions for two antenna configurations: one yielding many

and one yielding few data. In the first, “many data,” configura-

tion, shown in Fig. 5(a), there are 12 antenna positions regularly

spaced on each of 6 meridional circles with radii .

In each position, a transmitter is oriented along two polariza-

tions, the - and -polarizations, and for each illumination the

scattered field is measured along these two polarizations on re-

ceivers in all positions. In the second, “few data”, configuration,

shown in Fig. 5(b), only 3 circles and only the -polarization

are used. This results in data for

the first and data for the second configuration. In

this paragraph, these data are simulated using the same forward

solver as the one employed in the reconstruction algorithm, and

the discretization grids for the inverse and forward problems co-

incide. This allows us to test the convergence behavior in ideal

conditions. We choose ,

hence the number of reconstruction variables is and

the number of field-unknowns in the forward problem is

. With the “few data” configuration the number of data thus

is barely larger than the number of unknowns, . More-

over, there is some redundancy in the data due to reciprocity, so

the “few data” configuration is actually underdetermined. The

“many data” configuration is well over-determined, .

For all reconstructions in this paragraph, the regularization pa-

rameter is chosen such that and the initial guess

is air .

Fig. 6 shows the reconstruction error and the regular-

ized cost function as a function of the number of iterations.
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Fig. 4. The exact relative permittivity along orthogonal cross-sections of the
heterogeneous lossy dielectric cube. (a) Real part and (b) imaginary part.

Let us first discuss the reconstructions from noise-free data. The

threshold for the forward iterative solver BICGSTAB is set to a

relative accuracy of , both for the computation of the sim-

ulated data and for the reconstructions. The reconstruction iter-

ations are stopped when the cost function is very small,

. It can be seen on Fig. 6(b) that the cost function rapidly

decreases when applying the modified Gauss–Newton method,

for both the “many data” (plain line) and “few data” (dashed

line) configurations. However, Fig. 6(a) shows that the recon-

struction error decreases more slowly for the “few data” config-

uration. After as few as 11 iterations, the “many data” config-

uration yields an almost exact reconstruction of

both the real and imaginary parts of the complex permittivity.

This is illustrated with images along the orthogonal cross sec-

tions in Fig. 7(a) and (b). With the “few data” configuration the

images and profile show small artefacts, see Fig. 7(c) and (d)

and the profiles along the -axis in Fig. 8, respectively.

Fig. 5. The antenna configurations for the heterogeneous lossy dielectric cube.
(a) Configuration 1 and (b) configuration 2.

Let us now consider data with 30 dB additive Gaussian noise,

which corresponds to a realistic SNR, as will be seen in the

following paragraphs. The threshold for the forward iterative

solver BICGSTAB is now increased to , since it would be

a waste of effort to solve the forward problem to an accuracy

beyond the SNR. With the modified Gauss–Newton method, the

reconstruction error decreases and then starts to increase

again at a certain point, as shown by the plain and dashed curves

with crosses in Fig. 6. This happens when the data error (or

least-squares cost function) reaches the noise level, i.e.,

. The regularized cost function hardly decreases from

this point on and the tiny reductions are accompanied by an

increase in the regularizing function , which explains the rise

in . This behavior is often called “semi-convergence.” In the

presence of noise on the data, we thus conclude that the stopping

criteria should be based on the least squares cost function and
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Fig. 6. The reconstruction error (a) and the regularized cost function (b) versus
the number of iterations for the reconstructions of the heterogeneous lossy di-
electric cube, for the “many data” (Conf. 1) and “few data” (Conf. 2) antenna
configurations, with the modified Gauss–Newton (GN) and the BFGS quasi-
Newton (BFGS) methods using exact or noisy (SNR = 30 dB) data.

the SNR. In the examples presented here, the reconstructions

thus are achieved after 3 iterations only. From the images and

profile in Figs. 7(e)–(h) and 8, respectively, it appears that the

noise does degrade the reconstructions, but the boundaries of the

outer and inner cubes are still well reconstructed and valuable

quantitative information on both the real and imaginary parts

of the complex permittivity can still be retrieved. Note again

that in Fig. 6 the cost-functions of both antenna configurations

coincide, and that the reconstruction error behaves better for the

“many data” than for the “few data” configuration.

Fig. 6 also shows a result obtained with the BFGS quasi-

Newton algorithm, for exact data and the “few data” configura-

tion. Each iteration here corresponds to a Hessian update. The

algorithm converges very slowly in comparison with the modi-

fied Gauss–Newton method: after 100 iterations the reconstruc-

tion error is still 10% and the cost function is reduced to

only. Such behavior was noticed in all our inversions with the

BFGS-method, as well as in earlier 2-D work [11]. The advan-

tage of not having to solve a linear system to obtain an update

direction thus is completely annihilated by the large number of

iterations required to converge to the desired accuracy.

Fig. 7. Reconstructed relative permittivity corresponding to the curves in
Fig. 6. (a) Conf. 1, GN, no noise, real part, (b) Conf. 1, GN, no noise, imaginary
part, (c) Conf. 2, GN, no noise, real part, (d) Conf. 2, GN, no noise, imaginary
part, (e) Conf. 1, GN, noise, real part, (f) Conf. 1, GN, noise, imaginary part,
(h) Conf. 2, GN, noise, real part, (i) Conf. 2, GN, noise, imaginary part.

B. A Homogeneous Dielectric Sphere: Reconstructions From

Simulated Data

We now consider a lossless homogeneous dielectric sphere

in air with a radius and permittivity . The ori-

gins of the reference system and of the sphere coincide. For

the inversion domain we again choose a cube with side ,

that is centered on the origin. An antenna configuration iden-

tical to the “many data” configuration 1 from the previous para-

graph is used, except that the radius of the meridional circles

now is divided by a factor 2, . The total number of

scattered field data thus is again . These data are

now simulated using the full-vectorial analytic MIE solution,

thus avoiding “inverse crime.” We choose again the same dis-

cretization grids for the forward and inverse problems,
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Fig. 8. Profiles of the relative permittivity along the x-axis for the reconstruc-
tions of Fig. 7. (a) Real part and (b) imaginary part.

, hence the number of re-

construction variables is and the number of field-

unknowns in the forward problem is . This dis-

cretization is actually too fine in terms of the wavelength, as

usually is recommended for a forward solution,

but we did so to reduce the discretization noise introduced by

the spherical boundary. This discretization noise was estimated

by comparing the analytic and discretized scattered field solu-

tions, yielding a SNR of 27 dB. The threshold for the forward

iterative solver BICGSTAB thus is set to and the stopping

criterion for the modified Gauss–Newton optimization is chosen

as . The regularization parameter again satisfies

and the initial guess is air.

Fig. 9 shows the reconstructed images along the orthogonal

cross sections, obtained after as few as three iterations, com-

prising a total of six multiview forward problem solutions, in-

cluding the line search iterations. The shape, dimensions and

real part of the permittivity are well reconstructed and the imag-

inary part of the permittivity is small, as expected. This also ap-

pears from the profiles along the -axis in Fig. 10. The total

execution time for this rather large inverse problem was 1 h and

13 min, when using BICGSTAB iterations to solve (41) for the

update directions up to a precision of .

Fig. 9. Reconstructed relative permittivity after 3 iterations of a homogeneous
dielectric sphere (� = 2� ) with radius 0:25� from analytic data. The white
contour shows the boundaries of the actual sphere. (a) Real part and (b) imagi-
nary part.

C. A Homogeneous Cube: Reconstructions From Experimental

Data

We now present reconstruction results from experimental

data for a homogeneous polyethylene cube with permittivity

and side 8 cm, surrounded with air. The scattered

fields were measured in the bi-static polarimetric free-space

measurement facility of Institut Fresnel, Marseille, France, as

part of a first measurement campaign conducted on 3-D objects,

after the successful completion of an experimental data-base

for quasi-2-D objects [35]. We refer the reader to [21] for a

detailed description of the Fresnel measurement set-up. In this

paper, the available data are limited to measurements of the

-component of the scattered field along an arc of

a circle in the -plane with radius cm and centered

on the center of the cube. The -polarized transmitting antenna
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Fig. 10. Profiles of the relative permittivity along the x-axis for the reconstruc-
tion of Fig. 9.

Fig. 11. Source positions (a) and range of receiver positions in gray for the
source at ' = 0 (b) used to collect the experimental data.

also moves on this circle. Fig. 11(a) shows the five transmitter

positions, at angles for

and Fig. 11(b) shows the receiving arc for a transmitter at

. For a transmitter at , the receiver positions range

Fig. 12. Antenna configuration used for the inversion from experimental data.
The encircled antennas act as both emitter and receiver.

from to in steps of 1 degree, or

.

In earlier work [36] we found a good agreement be-

tween these measured data and simulations obtained with a

3-D-BICGSTAB-FFT solver for different frequencies. The

transmitter was modeled as an elementary dipole and a calibra-

tion factor for each frequency was derived from the comparison

of the simulated and measured incident fields in one point, i.e.,

in the receiver position opposite to the transmitter po-

sition . Also, a dB at 2 GHz and

dB at 4 GHz was determined by comparing the calibrated

measured and simulated scattered fields.

The limited data on a circle in one plane as described above

are not sufficient for a successful 3-D inversion. However, since

we know that the scatterer is a cube, we have exploited symme-

tries to extend the measurements by rotation with respect to the

origin to two additional circles in the - and -planes, and

for each of the circles to extend the illuminations to 16 trans-

mitter positions with . Of course the polarization of

the antennas is rotated together with the circles. Also, for every

transmitter position, we use only 43 receiver positions, with

. The resulting antenna configuration is shown in

Fig. 12, where , and

.

The inversion domain is a cube with side 15 cm and it

is discretized into cells with side cm, hence

. The number of reconstruction variables thus

is . Since the number of data

is only 2064, the problem is under-determined. Therefore data

at two different frequencies, at 2 and 4 GHz, are used. At 2

GHz the grid for the forward problem coincides with the per-

mittivity grid, , resulting in 10800 field un-

knowns, but at 4 GHz the grid for the forward problem is twice

as fine, with cm. This gives

field unknowns. The treshold of the BICGSTAB

iterative solver is set to , in agreement with the SNR of the

data. The initial estimate is again air.
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Fig. 13. Reconstructed relative permittivity of a polyethylene cube
(� = 2:4� ) with side 8 cm from experimental data at 2 GHz, after 3 it-
erations with �=N = 10 . The white contour shows the boundaries of the
actual polyethylene cube. (a) Real part and (b) imaginary part.

At 2 GHz the algorithm, now with , needed

3 iterations to reach the stopping criterion . At

this point the reconstruction error was and further

iterations yielded no improvements. Images along the orthog-

onal cross sections of the reconstructions at 2 GHz are given

in Fig. 13. The total execution time was about 10 minutes and

a total of six multiview forward problems was solved. Next,

this result was used as an initial estimate for a subsequent re-

construction at 4 GHz (Fig. 14), which took only 1 iteration to

reach a reconstruction error of and the stopping

criterion , which again proved to be sufficient

since further iterations did not reduce . This time, because

of the greater number of field unknowns, the execution time was

much longer: about 1 h and 50 min for three multiview forward

problems. Fig. 15 displays the evolution of the reconstruction

error along the complete reconstruction path and Fig. 16 shows

the relative permittivity profiles along the -axis. Although only

limited experimental data is used in this example, the modified

Gauss–Newton method yields a promising result. When more

Fig. 14. Reconstructed relative permittivity, starting from the result of Fig. 13,
after 1 iteration at 4 GHz and with �=N = 10 . The white contour shows
the boundaries of the actual polyethylene cube. (a) Real part and (b) imaginary
part.

Fig. 15. Evolution of the reconstruction error for the inversion, corresponding
to Figs. 13 and 14.

complete scattering data become available, the quality of the re-

constructions could even further improve.
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Fig. 16. Profiles of the relative permittivity along the x-axis for the reconstruc-
tions of a homogeneous dielectric cube from experimental data, at 2 GHz (a) and
4 GHz (b).

VI. CONCLUSION

The problem of 3-D complex permittivity reconstruction
from vectorial scattered field measurements was addressed as
a non-linear optimization problem. A multiplicative-additive
regularization was applied to the least-squares cost function, in
which only the permittivity was considered as the unknown. As a
consequence, a multiview forward scattering problem had to be
solved in each iteration of the optimization algorithm. This was
accomplished in a computationally efficient way by the combi-
nation of a stable iterative solver (BICGSTAB), a fast multipli-
cation scheme (the FFT-method) and an extrapolation procedure
to find good initial estimates (the marching-on-in-source-posi-
tion technique). The regularized cost function was minimized
using a modified Gauss–Newton approach with a line search.
This method appeared to converge much faster than the BFGS
quasi-Newton method. It was shown that the multiplicative-ad-
ditive regularization improved the conditioning of the linear
subproblems in the non-linear optimization, that it mitigated
the effect of noise on the reconstruction and that it dealt in a
more efficient way with the non-linearity of the inverse scat-
tering problem. Numerical examples on both simulated and
experimental data illustrated the effectiveness of the proposed
inversion method. Future work will focus on reducing the
computational cost of the algorithm, which remains the major
disadvantage of pixel-based quantitative inversion methods.
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