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FULL WAVEFORM INVERSION AND THE TRUNCATED NEWTON

METHOD

L. MÉTIVIER∗, R. BROSSIER∗ , J. VIRIEUX∗ , AND S. OPERTO†

Abstract. Full Waveform Inversion (FWI) is a powerful method for reconstructing subsurface
parameters from local measurements of the seismic wavefield. This method consists in minimizing a
distance between predicted and recorded data. The predicted data is computed as the solution of a
wave propagation problem. Conventional numerical methods for the resolution of FWI problems are
gradient-based methods, such as the preconditioned steepest-descent, or more recently the l-BFGS
quasi-Newton algorithm. In this study, we investigate the interest of applying a truncated Newton
method to FWI. The inverse Hessian operator plays a crucial role in the parameter reconstruction.
The truncated Newton method allows one to better account for this operator. This method is based
on the computation of the Newton descent direction by solving the corresponding linear system
through an iterative procedure such as the conjugate gradient method. The large-scale nature of FWI
problems requires however to carefully implement this method to avoid prohibitive computational
costs. First, this requires to work in a matrix-free formalism, and the capability of computing
efficiently Hessian-vector products. To this purpose, we propose general second-order adjoint state
formulas. Second, special attention must be payed to define the stopping criterion for the inner
linear iterations associated with the computation of the Newton descent direction. We propose
several possibilities and establish a theoretical link between the Steihaug-Toint method, based on
trust-regions, and the Eisenstat stopping criterion, designed for method globalized by linesearch. We
investigate the application of the truncated Newton method to two test cases: the first is a standard
test case in seismic imaging based on the Marmousi II model. The second one is inspired by a near-
surface imaging problem for the reconstruction of high velocity structures. In the latter case, we
demonstrate that the presence of large amplitude multi-scattered waves prevents standard methods
from converging while the truncated Newton method provides more reliable results.

Key words. Seismic imaging, Full Waveform Inversion, numerical optimization, large-scale
inverse problems
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1. Introduction. Many imaging methods have been developed during the last
century to delineate the Earth structure at various scales. Most of these methods
rely on the interpretation of seismic waves. These waves travel inside the Earth and
collect information about the subsurface properties. Extracting this information from
a locally recorded wavefield is a difficult inverse problem.

1.1. Conventional methods. A standard method to recover quantitative in-
formation on the Earth subsurface is based on travel-time tomography. From the
measurement of the distance between the sources and the receivers, and the recording
of wave first-arrival times, an estimation of the wave velocity field can be computed.
This method is known as first arrival travel-time tomography (FATT) [50]. The spatial
resolution of the estimation provided by this method is however limited. In addition
it requires large offset acquisition systems to record waves that propagate deeply in
the Earth1.

A two-step workflow has been designed for reflection wave arrivals [35] to im-
prove the resolution of images of the subsurface. The first step consists in estimating
a smooth background wave velocity distribution through the reflection travel time
tomography method, based on the exploitation of the travel-times of the reflected
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1In the geophysicists vocabulary, an offset is the horizontal distance between a source and a

receiver.
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waves. The second step is known as the migration step, and is based on the concept
of exploding surfaces introduced by Claerbout [14, 15]. Using the background wave
velocity, a map of the subsurface reflectivity can be derived by amplitude stack of
the seismic data. Refocusing the energy of the recorded waves is achieved at the
subsurface main discontinuities.

The standard method thus consists in a two-step workflow.
• First, estimate a smooth background wave velocity field from reflection to-

mography
• Second, “migrate” the reflected wavefield using the estimated wave velocity

field built at the previous step to refocus the energy of the recorded waves to
the main subsurface reflectors.

This method has proven useful in numerous cases, for which the subsurface ge-
ometry keeps simple. However, the efficiency of this method relies on a sufficiently
accurate estimation of the background wave velocity field. In presence of complex
structures such as salt domes, subbasalt targets, thrustbelts, and foothills, the quality
of the velocity estimation provided by the reflection tomography method is degraded.
In this case, the migration method is unable to focus correctly the energy of the
seismic waves, which results in a poor image of the subsurface.

Moreover, this two-step workflow only gives access to the geometrical structure of
the subsurface. However, a quantitative high resolution estimation of the subsurface
physical parameters such as the bulk and shear wave velocities, or the density, is
far more useful, as smaller scale information such as petrophysical attributes can be
inferred from such an information.

The Full Waveform Inversion (FWI) method has been designed to overcome these
difficulties [34, 68].

1.2. The FWI method. The FWI method consists in improving iteratively a
given initial subsurface model. This iterative optimization relies on the modeling of
seismic waves through the forward problem, which offers the possibility of accounting
simultaneously for waves amplitude and travel-times.

In this study, we use the following frequency-domain formulation:

S(p(x), ω)u(x, ω) = ϕ(x, ω), (1.1)

where
• x ∈ R

l (l = 1, 2, 3) is the space variable;
• p(x) ∈ M ⊂

(

L2(Rl)
)m

denotes the subsurface parameters;
• ω ∈ C is the frequency;
• u(x, ω) ∈ W ⊂

(

L2(Cl+1
)

is the complex-valued seismic wavefield;
• ϕ(x, ω) is a source term;
• S(p(x), ω) is a partial differential operator related to the wave equation (from

the acoustic case to the visco-elastic anisotropic dynamics).
Note that m ∈ N denotes the number of parameter classes that are considered. For
the sake of simplicity, we assume that the wavefield has only one component. The
extension of our results to a multi-component wavefield is straightforward.

The FWI method consists in minimizing over the parameter space a distance
between the data predicted by the forward problem and the recorded data. We
formulate it as the minimization problem

min
p

f(p) =
1

2

Ns
∑

s=1

Nω
∑

q=1

‖Rs (us(p, ωq) − ds(ωq)) ‖
2, (1.2)
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where

• Ns is the number of sources;
• Nω is the number of frequencies;
• us(p, ωq) is the solution of the forward problem (1.1) for the source term

ϕs(x, ωq), the parameters p(x) and the frequency ωq;
• Rs is a mapping of the wavefield to the receiver locations;
• ds(ωq) is the data set associated to the source ϕs(x, ωq) and the frequency

ωq.

The definition of the distance between the data is related to the definition of
the norm in the data space. This is actually a crucial issue for FWI. For numerical
convenience, the L2 norm is, however, often chosen. More general Lp norm could be
also selected [69]. The L1 norm is, for instance, a good choice when high-amplitude
noise (outliers) corrupts the data [11]. An emphasis on the interpretation of the
phases rather than of the amplitudes can also be obtained by using appropriate mis-
fit functions: see for instance the time-frequency misfit used in waveform inversion
for a seismology application [20] or the phase-only misfit function [2] for a seismic
exploration application.

The formalism of the FWI method has been introduced by Lailly [33] and Taran-
tola [68], based on a time domain discretization of the wave equation. Its first appli-
cation to 2D synthetic data in the acoustic approximation was performed by Gauthier
et al. [25]. Later on, a hierarchical frequency domain approach has been introduced
by Pratt for cross-hole tomography [59, 57]. During the past ten years, the simultane-
ous advances in acquisition systems (development of wide-azimuth seismic surveys for
instance which allows to record larger offset data) and high performance computing
facilities have made possible the successful application of FWI to realistic 2D and 3D
cases in the acoustic approximation (see for instance [54, 60], or [43, 44] for the 2D
acoustic impedance reconstruction from well seismic data), as well as in the elastic
approximation [11].

Because its formalism is fairly generic and does not rely on particular scale-
dependent assumptions, FWI can be used in various environments and for various
targets, for instance

• at the laboratory scale [9, 10];
• at the near-surface scale (500 m depth) in application to localization of water

resources [16];
• at the exploration scale (10 km depth) in application to localization of oil and

gas, storage or reservoir monitoring [24, 29, 51, 55];
• at the lithospheric scale (100 km depth), in application to fault slip recon-

struction and earthquake interpretation [8, 7, 52, 21]

Imaging at very shallow near-surface scale (1 m depth) are also currently investigated
[62]. The reconstruction of deep Earth structure at the global scale (10000 km scale)
could also be considered.

The advantages of FWI over standard methods can be summarized as follows:

• the method provides a dramatic improvement of the spatial resolution of the
estimation 1

• quantitative images of the subsurface are computed whereas the migration

1A theoretical limit for the resolution in the best case has been established by Wu and Toksoz
[71] to λ/2 where λ is the local wavelength. The possibility of reaching this bound mainly depends
on the acquisition system geometry. A method for computing more realistic resolution measurements
is proposed by Fichtner [23].
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step in the standard workflow only provides qualitative structures;
• the formalism allows to consider a wide variety of imaging problems, and also

multi-parameter estimation.
FWI has, however, a significant drawback. The problem (1.2) is a large-scale ill-posed
and strongly nonlinear minimization problem. Indeed, the forward problem is linear
with respect to the wavefield but nonlinear with respect to the subsurface parameters.
As this problem is solved using local optimization methods, the starting model which
is used should therefore be accurate enough to converge to the global minimum. If not,
only a local minimum is found. In the context of wave velocity estimation by FWI, this
phenomenon is interpreted physically as the cycle skipping problem: the kinematic
information contained in the starting model is not valid and the recorded data is
accounted for up to one or several phases. Numerous methods are designed to mitigate
this difficulty. It is possible, for instance, to use a hierarchical interpretation of the
data, from low frequency to high frequency in the frequency domain, or from short
time windows to large time windows in the time domain. Changes in the definition
of the misfit function can also be performed, as already mentioned, to increase the
importance of phase matching rather than amplitude matching [20]. Indeed, this
also lessens the nonlinearity of the problem. FWI can thus be seen as a two-step
workflow, the first one consisting in computing an accurate enough starting model
using for instance tomography methods. For an overview of FWI and its numerous
applications, the reader is referred to the survey of Virieux and Operto [70].

1.3. Numerical resolution. Nonlinear minimization problems are usually solved
using Newton-based methods. The Newton method consists in building a sequence
pk from an initial guess p0, using the recurrence

pk+1 = pk + γk∆pk, (1.3)

where γk is a scalar parameter associated with a globalization method (linesearch or
trust-region) and the increment ∆pk satisfies

H(pk)∆pk = −∇f(pk), (1.4)

where the Hessian operator ∇2f(pk) is denoted by H(pk)
However, in the large-scale context1 of problem (1.2), the explicit construction of

the Hessian operator or of its inverse is beyond the present-day computational capa-
bility. As a consequence, quasi-Newton methods, or more generally preconditioned
gradient-based method are rather used. The inverse Hessian H(pk)−1 is thus approx-
imated by a matrix Qk, and the computation of the descent direction ∆pk by the
formula (1.4) is replaced by

∆pk = −Qk∇f(pk). (1.5)

The simplest choice for Qk is the identity matrix, which corresponds to the steepest-
descent method. This method is known to converge globally, but possibly very slowly.
A better choice for Qk is the l-BFGS approximation, proposed by Nocedal [12]. This
method approximates the influence of the inverse Hessian H(pk)−1 by finite differences
of l previous values of the gradient

∇f(pk−l+1), . . . ,∇f(pk). (1.6)

1For standard FWI applications, the number of reconstructed parameters can go from 10 thou-
sand to 1 million in 2D, and from 10 million to 10 billion in 3D.
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The l-BFGS method has proven very useful in numerous large-scale applications.
For geophysicists, the computation of the descent direction ∆pk using the Newton

formula (1.4) amounts to filter the gradient by the inverse Hessian operator to produce
a better update of the estimate pk at each iteration of the minimization loop. Pratt et
al. [58] provide an accurate analysis of the importance of accounting for the Hessian
operator in the inversion process. From the definition of f(p), the Hessian operator
H(p) can be written as

H(p) = B(p) + C(p), (1.7)

where























B(p) = R

(

Ns
∑

s=1

Nω
∑

q=1

J†
s (p, ωq)R

†
sRsJs(p, ωq)

)

,

C(p) = R

(

Ns
∑

s=1

Nω
∑

q=1

R†
s (Rsus(p, ωq) − ds) ∂ppus(p, ωq)

)

.

(1.8)

In this expression, Js(p, ωq) = ∂pus(p, ωq) is the Jacobian matrix of the wavefield
us(p, ωq), ∂ppus(p, ωq) is the second-order derivatives of the wavefield us(p, ω), the
symbol † denotes the conjugate transpose operator, and R denotes the real part
operator. The matrix B(p) is known as the Gauss-Newton approximation of the
Hessian operator when the expression C(p) is neglected.

Consider the simple case Ns = 1, Nω = 1. Assuming the system is discretized,
denoting by pi the discretized parameters, Nr the total number of receivers, and xr

their locations, a coefficient ik of the matrix B(p) is

B(p)ik = R

(

Nr
∑

r=1

∂pi
u(xr, ω)∂pk

u(xr, ω)

)

, (1.9)

The expression (1.9) shows that Bik is the zero-lag correlation of the first deriva-
tives of the wavefield u(p) recorded at the receivers locations, with respect to the
couple of parameters (pi, pk). As a consequence, Bik decreases with the distance
which separates the parameters pi and pk and reaches its maximum for the autocor-
relation of the two derivated wavefields (i = k). In the high-frequency approximation,
the zero-lag correlation of the derivatives of the wavefield with respect to two differ-
ent parameters would be zero and B(p) would be diagonal. However, the frequency
content of the seismic data is limited and the matrix B(p) is banded. In addition ,
the amplitudes of the first-order derivatives wavefields ∂pi

u and ∂pk
u decrease for pa-

rameters which have less influence on the wavefield. Therefore, filtering the gradient
∇f(p) with the matrix B(p)−1 acts as a refocusing filter. The amplitude of poorly
illuminated parameters is compensated in the model update given by the opposite of
the gradient of the misfit function.

In the same way, in discrete form, a coefficient ik of C(p) is given by

C(p)ik = R

(

Nr
∑

r=1

(u(xr, ω) − d(xr, ω)) ∂pipk
u(xr, ω)

)

. (1.10)

The expression (1.10) shows that Cik is the zero-lag correlation of the differences
between the predicted and the recorded data at the receivers (also named residuals)
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and the second-order derivatives of the wavefield recorded at the receivers, with re-
spect to the parameters pi and pk. This second-order wavefield is also called double
scattered wavefield: it represents a recorded signal that has been scattered twice, at
the locations of the parameter pi and pk. In certain configurations, for instance in the
presence of high-amplitude velocity contrasts, the amplitude of the double scattered
wavefield (and more generally of the multi-scattered wavefield) is not negligible. This
double scattered wavefield generates strong artifacts on the gradient ∇f(pk) for the
optimization procedure, which only accounts for single scattered waves. Therefore,
applying the matrix C−1

ik to the gradient allows to compensate the artifacts generated
by double scattered waves for the inversion. Let us remind that multiple scattering is
included in the forward modeling.

1.4. The truncated Newton method. The analysis carried out by Pratt et
al. [58], which we have summarized, underlines the crucial importance of the Hessian
operator in the resolution of the FWI problem (1.2), and naturally raises the following
question: is it possible to better account for the action of the inverse Hessian operator?
This question is at the heart of this study. One possible way to better account
for the Hessian influence is solving the problem (1.2) with the truncated Newton
method. Contrary to quasi-Newton algorithms, this method is not based upon an
approximation of the inverse Hessian operator. Instead, the descent direction ∆pk is
computed as the solution of (1.4) using the conjugate gradient algorithm [64]. A global
survey on the truncated Newton method has been proposed by Nash [47]. This method
is designed for large-scale nonlinear minimization problem. In terms of computational
efficiency and convergence speed, some comparisons between the l-BFGS method and
the truncated Newton method have been proposed [63]. The performances of the two
algorithms are comparable, depending on the test cases. None of the two methods
outperform the other1. Nonetheless, in the FWI context, given the importance of the
Hessian operator, the truncated Newton method may provide better results than the
l-BFGS method.

The study we propose aims at giving some answers to this question. In Section
2, we discuss how the truncated Newton method can be implemented at a reasonable
computation cost, with the purpose of being competitive with the l-BFGS method.
Second-order adjoint formulas yield an efficient algorithm for the computation of Hes-
sian vector products. A matrix-free implementation of the truncated Newton method
is thus possible. In Section 3, we give some details about this implementation, with
a particular emphasis on the conjugate gradient stopping criterion for the resolution
of the linear system (1.4). In Section 4, we present two synthetic FWI applications.
The first one is the standard benchmark test MARMOUSI II. The second one is a
test case related to the imaging of highly contrasted structures in the near-surface.
For both of these test cases, we compare the efficiency of the l-BFGS algorithm and
the truncated Newton method. A conclusion and some perspectives are given in the
last section.

2. The adjoint state method. The l-BFGS method only requires the capabil-
ity of computing the gradient of the misfit function f(p). Using the notations that

1A mixed algorithm has even been proposed by Nocedal [46] so as to combine the advantages of
the two methods. The idea is to alternate between sequences of l-BFGS iterations and sequences of
truncated Newton iterations. The l-BFGS approximation computed during the l-BFGS iterations is
used to precondition the linear system (1.4) during the truncated Newton iterations.
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have been introduced, ∇f(p) ∈ M is expressed as

∇f(p) = R

(

Ns
∑

s=1

Nω
∑

q=1

J†
s (p, ωq)R

†
s (Rsus(p, ωq) − ds(ωq))

)

. (2.1)

As for the computation of the Hessian operator, the size of the considered applications
prevents from directly evaluating and storing the Jacobian matrices Js(p, ω).

The truncated Newton method requires the computation of the gradient ∇f(p)
but also the resolution of the linear system (1.4). This can be achieved without
forming explicitly the Hessian operator using a matrix-free iterative solver, such as the
conjugate gradient. Nonetheless, this requires the capability of computing Hessian-
vector products H(p)v for any v in the parameter space M.

In this section, we present how first-order and second-order adjoint state methods
yield efficient algorithms for computing the gradient of the misfit function and Hessian-
vector products. For the sake of clarity, we may suppose that Ns = 1 and Nω = 1,
and drop the corresponding index in this section. Formula for the general context are
straightforwardly derived from this particular case.

2.1. First-order adjoint state method and gradient computation. The
adjoint state method has been introduced in the late 60s by Lions, in the context of
optimal control theory [39]. In the 70s, this method has been applied to parameter
identification by Chavent [13], and to weather forecasting by Le Dimet and Talagrand
[37]. A survey of its use in seismic imaging has been proposed by Plessix [53]. We
briefly recall the principle of this method.

The FWI problem can be formulated as the following constrained optimization
problem:

min
p

1

2
||Ru − d||2, subject to S(p)u = ϕ. (2.2)

The Lagrangian function associated with the problem (2.2) is

L(p, u, λ) =
1

2
||Ru − d||2 + R (S(p)u − ϕ, λ)W , (2.3)

where (., .)W is the scalar product in the wavefield space W and λ ∈ W is the adjoint
variable. Let u(p) denote the solution of the forward problem (1.1). Then

L(p, u(p), λ) = f(p). (2.4)

Therefore, we have

∂p(L(p, u(p), λ)) = ∇f(p), (2.5)

which yields

R(∂pS(p)u(p), λ) + ∂uL(p, u(p), λ)∂pu(p) = ∇f(p). (2.6)

We define the adjoint state λ(p) such that

∂uL(p, u(p), λ(p)) = 0, (2.7)

which is equivalent to

S(p)†λ = RT (d − Ru(p)). (2.8)
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We thus obtain the gradient formula

∇f(p) = R(∂pS(p)u(p), λ(p)). (2.9)

The adjoint state method for the computation of ∇f(p) thus consists in solving
sequentially the equations (1.1) and (2.8), then computing the gradient ∇f(p) using
the equation (2.9).

The overall computation cost of the operation is driven by the resolution of two
wave propagation problems: one associated with the forward problem (1.1), one asso-
ciated with the adjoint problem (2.8). The method does not require to form explicitly
the Jacobian matrix. This yields an efficient algorithm for the computation of the
gradient. We now investigate how this method can be extended to the computation of
Hessian-vector products, in the perspective of using the truncated Newton algorithm
for the resolution of the FWI problem (1.2).

2.2. Second-order adjoint state method.

2.2.1. Hessian vector product computation. The computation of Hessian-
vector products through second-order adjoint methods is a topic that has already been
investigated in the field of data assimilation and weather forecasting [36]. However, the
control variable in data assimilation is an initial condition for the system, whereas in
seismic imaging, the control variable is a coefficient of the Partial Differential Equation
(PDE) that describes the system. A formula for the computation of Hessian-vector
products have been given by Pratt [58] in the seismic imaging context, for the Gauss
Newton approximation in the discrete frequency domain. Fichtner [22] proposes more
general formulas for the computation of Hessian kernels. Epanomeritakis [18] gives
the formulas corresponding to the elastic case.

We propose here a general framework in the frequency domain for deriving these
formulas, with no assumption on the discretization and the kind of partial differential
equations that are used for the wave propagation description. The method can be
straightforwardly adapted to the time-domain formulation by adding proper initial
and final conditions, and boundary conditions. Based on the definition of a new
Lagrangian function, we derive an algorithm to compute, for given (v, p) ∈ M2, the
matrix-vector product H(p)v.

gv(p) = (∇f(p), v)M, (2.10)

where (., .)M denotes the scalar product on the parameter space M. By definition,
the gradient of the functional gv(p) is

∇gv(p) = H(p)v. (2.11)

Therefore, applying the adjoint state method to the functional gv(p) to compute
∇gv(p) gives the Hessian-vector product H(p)v. Recalling the definition of ∇f(p)
given in equation (2.1), gv(p) can be rewritten as

gv(p) = (R†(Ru(p) − d), J(p)v)W . (2.12)

Deriving the forward problem with respect to the parameters pj in the directions vj

yields

(

∂pj
S(p).vj

)

u + S(p)
(

∂pj
u.vj

)

= 0, j = 1, . . . , m. (2.13)



9

Summing on j gives

m
∑

j=1

(

∂pj
S(p).vj

)

u +
m
∑

j=1

S(p)
(

∂pj
u.vj

)

= 0, (2.14)

which is equivalent to

S(p)(J(p)v) = Φv(p, u), (2.15)

where

Φv(u) = −

m
∑

j=1

(∂pj
S(p).vj)u. (2.16)

The expression J(p)v ∈ W is denoted by αv(p) and is the solution of the forward
problem (1.1) for the source term Φv(p, u). Thus, we may consider the constrained
minimization problem

min
p

(R†(Ru − d), α)W , subject to S(p)u = ϕ, S(p)α = Φv. (2.17)

Introducing the adjoint variables (λ, µ) ∈ W2, the Lagrangian function associated
with this problem can be written as

Lv(p, u, α, λ, µ) = (R†(Ru−d), α)W+R(S(p)u−ϕ, µ)W+R(S(p)α−Φv, λ)W . (2.18)

Thus, for u(p) solution of (1.1) and αv(p) solution of (2.15), we have

Lv(p, u(p), αv(p), λ, µ) = gv(p), (2.19)

and

∂pLv(p, u(p), αv(p), λ, µ) = ∇gv(p). (2.20)

Therefore, we have

∇gv(p) = ∂uLv(p, u(p), αv(p), λ, µ)∂pu(p) + ∂αLv(p, u(p), αv(p), λ, µ)∂pα(p)+

R



(∂pS(p)u(p), µ)W + (∂pS(p)αv(p), λ)W +

m
∑

j=1

vj

((

∂pj
∂pS(p

)

u(p), λ
)





(2.21)
Define the adjoint states λ(p) and µ(p) such that

{

∂uLv(p, u(p), αv(p), λ(p), µ(p)) = 0

∂αLv(p, u(p), αv(p), λ(p), µ(p)) = 0,
(2.22)

which is equivalent to

S(p)†µ = −R†Rαv −

m
∑

j=1

(∂pj
S(p).vj)

†λ (2.23)

S(p)†λ = RT (d − Ru(p)). (2.24)
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We end up with the Hessian-vector product formula

H(p)v = R



(∂pS(p)u(p), µ(p))W + (∂pS(p)αv(p), λ(p))W +

m
∑

j=1

vj

((

∂pj
∂pS(p

)

u(p), λ(p)
)





(2.25)
Thererfore, for a given v ∈ M, and a given subsurface model p ∈ M, the computation
of the Hessian-vector product H(p)v requires to solve four wave propagation problems:
two forward problems for the computation of u(p) and αv(p), two adjoint problems
for the computation of λ(p) and µ(p). During the process, the Hessian matrix H(p)
is never computed explicitly. Note the identity between the adjoint state λ(p) derived
here and the one which is derived for the computation of the misfit gradient through
the first-order adjoint state formula.

2.2.2. The Gauss-Newton approximation. In the context of the Gauss-
Newton approximation, for given (p, v) ∈ M2, we aim at computing the matrix vector
product

B(p)v = J(p)†RT RJ(p)v. (2.26)

The second-order part C(p) of the Hessian operator is neglected. We consider the
constrained minimization problem

min
p

gw(p) = (u(p), w)W subject to S(p)u = ϕ, (2.27)

for an arbitrary w ∈ W. Note that

∇gw(p) = J(p)†w. (2.28)

The Lagrangian function associated with this problem is

Lw(p, u, ν) = (u, w) + R(S(p)u − ϕ, ν), (2.29)

where ν ∈ W is a new adjoint variable. Following the first-order adjoint state method,
we have

∇gw(p) = R(∂pS(p)u(p), ν(p)), (2.30)

where

∂uLw(p, u(p), ν(p)) = 0, (2.31)

which is equivalent to

S(p)T ν = −w. (2.32)

The formula (2.30) gives J†(p)w for any w ∈ M. Replacing w by RT RJ(p)v in
equation (2.32) thus yields the formula for the computation of B(p)v. Define ξ(p) ∈ W
such that

S(p)T ξ = −RT Rαv(p), (2.33)

where αv(p) is defined by (2.15), we have

B(p)v = R
(

∂pS(p)u(p), ξ(p)
)

. (2.34)
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As a consequence, for a given v ∈ M and a given subsurface model p ∈ M,
the computation of the matrix-vector product B(p)v amounts to solving three wave
propagation problems: two forward problems for the computation of u(p) and αv(p)
and one adjoint problem for the computation of ξ(p). Note that

• the computation of ξ(p) amounts to setting λ(p) to 0 in the equation (2.23);
• the computation of B(p)v amounts to setting λ(p) to 0 in the equation (2.25).

In view of these results, it could appear that the Gauss-Newton approximation
requires less computational efforts, as only one adjoint problem has to be solved
instead of two in the exact Newton case. Nonetheless, in the context of the truncated
Newton method, the two methods are equivalent in terms of computation cost, as it is
demonstrated in the next paragraph.

2.3. Computation cost. Consider the resolution of the linear system (1.4) for
the computation of the descent direction ∆pk. The right hand side in (1.4) is the
opposite misfit gradient −∇f(p). In the matrix free context we consider, the gradient
is computed using the first-order adjoint state method, which requires to compute the
incident wavefield u(p) (resolution of one forward problem) and the adjoint wavefield
λ(p) (resolution of one adjoint problem). The computation of H(p)v or B(p)v thus
only requires to solve two additional problems: one forward problem for the com-
putation of αv(p), and one adjoint problem, either for the computation of µ(p) for
H(p)v or ξ(p) for B(p)v. Even if the computation of λ(p) is not required for the
computation of B(p)v, it is imposed by the computation of the right-hand side of the
linear system (1.4). The computation cost of the action of the Hessian operator or
its Gauss-Newton approximation on an arbitrary vector is thus the same in terms of
number of wave equations to be solved.

As a consequence, the resolution of (1.4) with a matrix free conjugate gradient
algorithm requires to solve 2 + 2×Niter wave equations where Niter is the number of
conjugate gradient iterations that have to be performed, whether in the Gauss-Newton
approximation or in the exact Newton context.

In the next section, we investigate how the truncated Newton method can be
efficiently implemented in the FWI context.

3. The truncated Newton method.

3.1. Sketch of the algorithm. We first present the sketch of the truncated
Newton method using first-order and second-order adjoint state formulas, in the ex-
act Newton framework, based on the computation of the descent direction by the
conjugate gradient algorithm.

The algorithm 1 is composed of two nested loops. We refer to the outer loop as
the nonlinear iteration loop, and to the inner loop as the linear iteration loop. The
inner loop is devoted to the resolution of the linear system (1.4) using the conjugate
gradient algorithm. The solution of this system is the descent direction ∆p, which is
used to update the current parameter model p.

In his survey, Nash [47] gives two important conditions for the truncated Newton
method to be efficient, expressed as:

• each iteration of the conjugate gradient should be performed efficiently;
• the iteration number performed in the internal loop should be reduced as

much possible.
The adjoint state method presented in the previous section ensures that the first
condition is satisfied. The main question is thus the definition of an adequate stopping
criterion to prevent over-solving while ensuring good convergence properties.
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Data: p0, ǫ, ϕ
Result: argmin

p
f(p)

p = p0;
while f(p) > ǫ do

solve S(p)u = ϕ;
solve S(p)†λ = (d − u);
compute ∇f(p);
set ∆p = 0, r = ∇f(p), x = −r;
while convergence criterion is not met do

solve S(p)αv = Φv(p, u);
solve S(p)†µ + R†Rαv +

∑m
j=1(∂pj

S(p).vj)
†λ = 0;

compute H(p)x;
β1 = (H(p)x, x);
β2 = ‖r‖2;
∆p = ∆p + (β1/β2)x;
r = r + (β1/β2)H(p)x;
x = −r +

(

‖r‖2/β2

)

x;

end

compute γ (globalization method);
p = p + γ∆p;

end

Algorithm 1: Truncated Newton method algorithm

One could think naively that the solution of the linear system (1.4) should be
computed as accurately as possible, to provide a descent direction that generates the
most important decrease of the cost function. However this is not true. Let us recall
the principle of the Newton method. The computation of the descent direction ∆pk

at each nonlinear iteration amounts to minimizing the quadratic function qk(∆pk)
defined by

qk(∆pk) = f(pk) + (∇f(pk), ∆pk) +
1

2
(H(pk)∆pk, ∆pk) (3.1)

If this approximation is accurate, there is interest in computing a precise solution
to the problem (1.4). Conversely, when this quadratic approximation is inexact,
computing an exact solution of the system (1.4) amounts to the exploration of an
unwanted zone. A measurement of the accuracy of the local quadratic approximation
of the misfit function f(p) can thus provide an appropriate stopping criterion. The
way this is accounted for depends on the globalization method which is chosen.

3.2. The globalization method. The Newton algorithm is proven to be only
locally convergent. A scaling of the descent direction ∆pk is therefore necessary to
render the method globally convergent, in other words to ensure that the method
converges to a local minimum whatever is the starting point p0. Two families of
methods exist for the computation of this scaling. The choice of the globalization
strategy is important, as it conditions the discussion on the stopping criterion.

3.2.1. The linesearch method. The simplest globalization strategy is known
as the linesearch procedure. The exact linesearch method consists in solving exactly
the sub-problem

min
γ

f(pk + γ∆pk). (3.2)
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However this method is never implemented, because of its expensive computation
cost. In addition, as it has been mentioned when considering the required accuracy for
solving the linear system (1.4), there is no interest in solving exactly the sub-problem
(3.2). Both the quadratic approximation qk(∆pk) and the solution of the linear system
(1.4) are potentially inaccurate. Instead, a coefficient γ enforcing the two Wolfe
conditions is computed (see for instance [6] or [49]). These two conditions require
that the model update γ∆pk is not too small and provides a sufficient decrease of the
misfit function f(p). Satisfying these two conditions ensures the global convergence.

3.2.2. The trust-region method. An alternative to the linesearch procedure is
the trust region globalization method. Instead of computing first the descent direction
and then a proper scaling coefficient, the scaling of the descent direction is computed
implicitly by minimizing the quadratic function qk(∆pk) within a trust region of radius
rk ∈ R+

∗ . At each nonlinear iteration, the following constrained quadratic problem is
solved

min
∆pk

qk(∆pk) subject to ‖pk + ∆pk‖ < rk. (3.3)

The role of the radius rk is to reflect the accuracy of the local quadratic approximation
qk(∆pk). It is updated at each nonlinear iteration by comparison between the decrease
provided by the selected model update ∆pk predicted by the quadratic form qk(∆pk)
and the actual decrease observed by evaluating the misfit function f(p). The following
quantity ρ is computed

ρ =
f(p) − qk(∆pk)

f(p) − f(p + ∆pk)
. (3.4)

At each iteration k, the radius rk is reduced until ρ becomes larger than a threshold
β1 > 0. If in addition ρ is larger than a second threshold β2 > β1, the radius rk is
enlarged.

Note that the optimal solution of the system (3.3) satisfies

(H(pk) + βI)∆pk = −∇f(pk), (3.5)

for some β ≥ 0, where H(pk) + βI is symmetric definite positive [48]. Different
methods are proposed to solve this sub-problem (see Moré [31] or the dogleg method
[56]). For large-scale inverse problem, Steihaug demonstrates that an approximate
solution of the sub-problem (3.3) can be found using the conjugate gradient method
[67]. This amounts to construct a sequence ∆pi

k converging to the solution of (3.3).
One important property is that the sequence of the norm of the iterates is an increasing
sequence:

‖∆pi+1
k ‖ > ‖∆pi

k‖. (3.6)

Therefore, provided the initial iterate satisfies ∆p0
k = 0, a natural stopping criterion

for the resolution of (1.4) through the conjugate gradient method can be derived: the
inner iterations stop whenever

‖pk + ∆pi
k‖ > rk. (3.7)

This yields an efficient way to account for the accuracy of the quadratic approximation
qk(∆pk) in the inner iterations.
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We have first implemented the truncated Newton method using this framework.
However, we have been faced to the following difficulty: the first iterate ∆p1

k satisfies
systematically

‖pk + ∆p1
k‖ > rk, (3.8)

which yields a premature ending of the conjugate gradient algorithm. Therefore, the
computed descent direction is the steepest-descent direction −∇f(pk), and the re-
sulting method is equivalent to the steepest-descent algorithm globalized by the trust
region method. This is due to the strong nonlinearity of the misfit function, as men-
tioned by Le Toint et al [28]. In this article, Le Toint et al propose a sophistication
of the initial Steihaug-Toint algorithm using the Lanczos algorithm to mitigate this
difficulty. The approach that is developed is however more complex, and requires
substantial additive computational efforts. Moreover, the numerical results that are
presented do not emphasize significant improvements compared to the original Stei-
haug algorithm.

Therefore, we have turned to the definition of stopping criterion for the conjugate
gradient method accounting for the accuracy of the quadratic approximation qk(d) in
the context of linesearch globalization methods.

3.3. Stopping criterion for linesearch globalization methods. Eisenstat
[17] proposes three stopping criteria related to the accuracy of the local quadratic ap-
proximation. For each of these criteria, a convergence proof of the truncated Newton
method is provided. These criteria take the following form: the linear iterations are
stopped whenever

‖H(pk)∆pk + ∇f(pk)‖ ≤ ηk‖∇f(pk)‖. (3.9)

In the expression (3.9), the quantity ηk is defined as the forcing term. The amplitude
of ηk controls the required accuracy on the resolution of the system (1.4). The three
different stopping criteria proposed by Eisenstat are associated with three possible
definitions of ηk.















































ηk,1 =
‖∇f(pk) −∇f(xp−1) − γk−1H(pk−1)∆pk−1‖

‖∇f(pk−1)‖

ηk,2 =
|‖∇f(pk)‖ − ‖∇f(xp−1) + γk−1H(pk−1)∆pk−1‖|

‖∇f(pk−1)‖

ηk,3 = a1

(

|‖∇f(pk)‖

‖∇f(pk−1)‖

)a2

, a1 ∈ [0, 1], a2 ∈ [1, 2].

(3.10)

The two first forcing terms ηk,1 and ηk,2 compare the values of the misfit gradient
∇f(pk) with its first-order Taylor expansion given by

∇f(pk) ≃ ∇f(pk−1) + γk−1H(pk−1)∆pk−1 + o(‖dk−1)‖ (3.11)

Therefore the expressions ηk,1 and ηk,2 are related to the quality of the quadratic
approximation qk(∆pk): they decrease when the accuracy of the approximation in-
creases, and increase when the accuracy of the approximation decreases. They repre-
sent an alternative to the measurement of the accuracy of qk(∆pk) by the quantity ρ
given at equation (3.4) within the trust-region context, which is based on a second-
order expansion of the misfit function.
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The third forcing term ηk,3 is not directly related to the accuracy of the quadratic
approximation qk(∆pk). However, a convergence proof is also given for the choice of
this forcing term in [17]. In practice, with appropriate choices of a1 and a2, this
forcing term can result in less over-solving than the two first ones.

The Eisenstat approach is thus an interesting alternative to the Steihaug algo-
rithm, which yields an efficient truncated Newton method that can be applied to the
strongly nonlinear FWI problem, provided additional safeguards are implemented to
complement the Eisenstat stopping criterion.

3.4. Additional safeguards. The choice of the forcing term and the definition
of the associated stopping criterion for the linear iteration must be complemented
with an appropriate strategy to deal with the detection of negative curvatures. Indeed,
while the Gauss-Newton approximation of the Hessian B(p) is symmetric positive, the
second-order part C(p) makes the full Hessian operator H(p) symmetric indefinite.
Therefore, during the resolution of the linear system (1.4) with the conjugate gradient
algorithm, the probability of encountering a curvature associated with a negative
eigenvalue of the operator H(p) is not negligible. In this case, the linear iterations are
stopped and the last value of the descent direction ∆pk which is computed is returned.
If this negative curvature is met at the very first linear iteration, the steepest-descent
direction is returned.

Besides, we also implement the “safeguards” proposed by Eisenstat [17]. Far
from the solution, it is useless to impose a too restrictive forcing term. Therefore a
modification of the forcing term is introduced, based on the estimation of the conver-
gence rate. For the two first forcing terms ηk,1, ηk,2 this additional step consists in
the following:

If η
(1+

√
5)/2

k−1,j > 0.1, then ηk,j = max{ηk,j , η
(1+

√
5)/2

k−1,j }, j = 1, 2. (3.12)

For the third forcing term, the “safeguard” step consists in

If γηα
k−1,3 > 0.1, then ηk,i = max{ηk,i, γηα

k−1,3}. (3.13)

Finally, we implement the last forcing condition:

If ηk,j > 1, then ηk,j = 0.9, j = 1, . . . , 3. (3.14)

3.5. Preconditioning. Finally, from a computational point of view, the per-
formance of the truncated Newton algorithm can be improved by the use of pre-
conditioners for the resolution of the inner linear systems (1.4). This requires the
computation of an approximation of H(p)−1 in a matrix free form. The use of stan-
dard preconditioners such as the Incomplete LU [38] or the incomplete Choleski [3] is
thus impracticable.

One possibility is the use of an l-BFGS approximation of the Hessian operator.
This approximation can be updated at each outer nonlinear iteration. Starting from
the identity matrix, scaled by an appropriate factor, an l-BFGS approximation Qk is
built, and the linear system (3.2) is replaced by

QkH(pk)∆pk = −Qk∇f(pk). (3.15)

If only one iteration of the conjugate gradient is performed, then the descent direction
∆pk satisfies

∆pk = −Qk∇f(pk), (3.16)
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that is to say ∆pk is the standard l-BFGS descent direction. In this case, the truncated
Newton method can be seen as a generalization of the l-BFGS method.

Another possibility, proposed by Nocedal [45], is the computation of an l-BFGS
approximation of the Hessian operator at each nonlinear iteration during the resolu-
tion of the system (1.4). Starting from the identity matrix, scaled by an appropriate
factor, an approximation Mk is built and updated at each conjugate gradient itera-
tion. This approximation is then used to precondition the system (1.4) at the iteration
k + 1. As it has been mentioned, the resolution of the system (1.4) by the conjugate
gradient amounts to the minimization of the quadratic form qk(d). From its definition
(3.1), qk(d) satisfies

∇2qk(d) = H(pk), ∇qk(d) = H(pk)d + ∇f(pk). (3.17)

The quantity ∇qk(d) corresponds to the residuals of the linear system (1.4). Therefore,
an approximation of H(pk) can be computed through the conjugate gradient iterations
using the successive values of the residuals.

3.6. Final algorithms. We propose the two followings algorithms, correspond-
ing respectively to outer and inner l-BFGS preconditionings, which summarize the
discussion on an efficient implementation of the truncated Newton method for FWI.
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Data: p0, ǫ, ϕ
Result: argmin

p
f(p)

p = p0;
η = 0.9;
Q = I;
while f(p) > ǫ do

solve S(p)u = ϕ;
solve S(p)†λ = (d − u);
compute ∇f(p);
set ∆p = 0;
set r = ∇f(p);
set y = Q∇f(p);
set x = −r;
while ‖H(x)p + ∇f(p)‖ > η‖∇f(p)‖ do

solve S(p)αv = Φv(p, u);
solve S(p)†µ + R†Rαv +

∑m
j=1(∂pj

S(p).vj)
†λ = 0;

compute H(p)x;
β1 = (H(p)x, x);
if β1 ≤ 0 then

stop the inner iterations;
else

β2 = (r, y);
∆p = ∆p + (β1/β2)x;
r = r + (β1/β2) H(p)x;
y = Qr;
x = −r + ((r, y)/β2)x;

end

end

compute γ (linesearch);
p = p + γ∆p;
update η with the chosen Eisenstat forcing term formula ;
update Q with the l-BFGS formula base on the gradient value ∇f(p);

end

Algorithm 2: Outer l-BFGS preconditioned truncated Newton algorithm

Note that the preconditioned conjugate gradient version is now proposed in the
inner loop, in comparison with the algorithm 1 where no preconditioning is applied.
The forcing term η is computed through one of the three Eisenstat formula. An
additional stopping criterion is added if a negative curvature is detected (β1 ≤ 0).
The computation of the l-BFGS approximation Q, or the scaling factor γ are not
specified so as to keep the things simple. A very efficient way of computing the
matrix-vector product Qr and storing the matrix Q in a sparse form is proposed in
[48].
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Data: p0, ǫ, ϕ
Result: argmin

p
f(p)

p = p0;
η = 0.9;
Q1 = I;
while f(p) > ǫ do

solve S(p)u = ϕ;
solve S(p)†λ = (d − u);
compute ∇f(p);
set ∆p = 0;
set r = ∇f(p) ;
set y = Q1∇f(p);
set x = −r;
set Q2 = I;
while ‖H(x)p + ∇f(p)‖ > η‖∇f(p)‖ do

solve S(p)αv = Φv(p, u);
solve S(p)†µ + R†Rαv +

∑m
j=1(∂pj

S(p).vj)
†λ = 0;

compute H(p)x;
β1 = (H(p)x, x);
if β1 ≤ 0 then

stop the inner iterations;
else

β2 = (r, y);
∆p = ∆p + (β1/β2)x;
r = r + (β1/β2) H(p)x;
y = Q1r;
x = −r + ((r, y)/β2)x;
update Q2 with the l-BFGS formula based on the residual values r;

end

end

compute γ (linesearch) ;
p = p + γ∆p;
update η with the chosen Eisenstat forcing term formula ;
switch preconditioners for the next nonlinear iteration: Q1 = Q2;

end

Algorithm 3: Inner l-BFGS preconditioned truncated Newton algorithm

4. Numerical results. We begin this section with the presentation of the con-
text in which we perform the different tests on the truncated Newton method. Two
test cases are presented. The first is standard in the seismic imaging community, and
is based on the MARMOUSI II pressure wave velocity model [41]. We use it as a
benchmark to calibrate the truncated Newton method, in particular for the choice of
the forcing term that control the stopping criterion for the inner linear iterations. An
analysis of the convergence of this method with respect to the forcing term is pre-
sented. A comparison of its overall performance with the standard steepest-descent
algorithm and the l-BFGS method is also given. The second test case involves a
near-surface imaging of concrete structure presenting high velocity contrasts. This
test case exhibits an important complexity in the recorded data sets, generated by
the presence of high amplitude multiple reflections. As suggested by the analysis of
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the role of the inverse Hessian operator by Pratt [58], using the truncated Newton
method in this case allows to account more accurately for this operator and improves
the estimation of the subsurface parameters, compared to standard methods.

4.1. Context. The numerical tests we present are performed in the 2D frequency
domain, using an acoustic modeling of the wave propagation. The density is assumed
to be constant, and the subsurface is described by the pressure wave velocity vp. In
this context, the forward problem (1.1) associated with a given circular frequency ω
is equivalent to the Helmholtz equation

ω2u + v2
p∆u = ϕ (4.1)

The equation (4.1) is discretized with a fourth-order finite difference scheme with
a compact stencil [30]. Perfectly Matched Layers (PML) [4, 42] are used to avoid
fictitious reflections on the boundaries of the computation domain. The resolution of
(4.1) reduces to the resolution of a sparse linear system. This is performed through
a parallel LU factorization using the MUMPS algorithm [1]. In addition, the LU
factorization of the stiffness matrix associated with the discretization of (4.1) is reused
to solve the adjoint problems. This interesting feature is one of the reason for working
in the frequency domain: provided the LU factorization of the stiffness matrix system
can be stored, this approach largely reduces the computational costs, compared to the
time domain approach. This is especially important when the number of data-sets is
large: the same LU factorization is used to solve the forward and adjoint problems
associated with each data-set.

In the following two tests which are presented, based on this wave propagation
modeling, an estimation of the pressure wave velocity is computed using a FWI
scheme. For the two tests, the performances of the steepest-descent algorithm, the
l-BFGS method, and the truncated Newton algorithm (in the Gauss-Newton approx-
imation and in the exact Newton context) are presented. We implement our own
version of all these algorithms to propose an analysis that does not depend on im-
plementation details, In particular, we implement the same linesearch globalization
method for the three algorithms. This linesearch method satisfies the Wolfe condi-
tions [6, 48]. In addition, the computational efficiency of the inversion schemes is
compared in terms of the required number of forward problem resolutions. This gives
a better insight of the computational cost associated with the three methods than the
comparison of

• the number of nonlinear iterations: the truncated Newton method performs
significantly less nonlinear iterations, but each of these requires a far more
important computation effort;

• the overall computation time: the implementation of the two minimization
algorithms have not been optimized in the same way, and the computation
time depends on these implementation details.

Note that, in all experiments that follow, the memory parameter l for the l-BFGS
method, which corresponds to the number of gradient that are stored to compute
the approximation of the inverse Hessian, is set to l = 20. This rather large value
is chosen to produce a reasonably accurate l-BFGS approximation of the Hessian
operator. However, performing the same tests with l = 5 or l = 40 has led us to
the same conclusions. Note also that the l-BFGS approximations are built from the
identity matrix: no initial estimation of the inverse Hessian is provided.

4.2. The Marmousi II test case.
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4.2.1. Presentation. The first Marmousi model is a synthetic pressure wave
velocity model designed at IFPEN (Institut Français du Pétrole Energies Nouvelles) in
1988 and proposed as a benchmark for testing seismic imaging method. The geometry
of this model is based on a realistic profile. It was created to produce complex seismic
data requiring advanced processing techniques to obtain a correct earth image. In
2006, an upgrade to the so-called Marmousi II model is proposed [41]. The initial
model is enlarged, and associated shear wave velocity and density models are added
for elastic wave propagation modeling. In this study, we restrict ourselves to the
acoustic approximation, and we only use the Marmousi II pressure wave velocity
model, which is presented in figure 4.1. Note that the ratio between vertical and
horizontal distances is not respected to improve the readability of the model figures.

The Marmousi II model is 16 km wide and 3.5 km deep, with a 400 m deep water
layer at the top of the model. This layer is kept constant in the inversion scheme for
all the following experiments, which results in a reduction of the parameter space and
a stabilization of the problem: since these parameters are close from the sources and
the receivers, the wavefield is very sensitive to small variations of these parameters.

We use a discretization step of 25 m, which corresponds to approximately 105

pressure wave velocity discrete parameters. The PML size is set to 10 discretization
points on each side of the domain, hence we do not implement a free-surface condition.
We use a marine seismic experiment acquisition system composed of 144 sources and
660 receivers located at the top of the model (25 m depth) in the water layer. We
first compute 4 synthetic data-sets, for the frequencies: 3 Hz, 5 Hz, 8 Hz, 12 Hz. The
corresponding number of discrete data is approximately 380, 000. We use a smoothed
version of the exact Marmousi II model as initial guess (see fig. 4.1). This smoothing
is performed using the Seismic Unix smooth2 function, which performs a quadratic
interpolation of the model, with smoothing parameters r1 = r2 = 20. This model
could be for instance the result of a travel-time tomography of the data.

We invert simultaneously the 4 data-sets: the misfit function is computed as
the sum of the misfit between the predicted and recorded data. An incremental
strategy could be also used: this would consist in inverting each data-set one by one,
starting by the lowest frequency data, and using the inversion result of one data-set
as a starting model for inverting the next data-set. This incremental strategy can
be particularly useful in some cases to mitigate strong nonlinearities of the misfit
function [66]. However, in this particular case, we have not noticed any differences
between the simultaneous and the incremental approaches.

4.2.2. Convergence analysis of the truncated Newton method. We in-
vestigate the convergence properties of the truncated Newton method depending on
the choice of the forcing term. Four different methods are compared: the Newton
method, the Gauss-Newton approximation, the outer l-BFGS preconditioned Newton
method, and the outer l-BFGS Gauss-Newton method. The results yielded by the
inner l-BFGS preconditioning are not satisfactory: a systematic premature ending of
the algorithm is obtained, because of a linesearch failure (after 20 misfit function and
gradient evaluations, no proper scaling of the descent direction is found). This failure
indicates that the computed descent direction is not accurate enough. This probably
results because the number of conjugate gradient iterations performed in the inner
loop varies too rapidly for one nonlinear iteration to the other one for a useful l-BFGS
approximation to be computed (see figure 4.3). The nonlinearity of the misfit function
f(p) could also cause the l-BFGS approximation of H(pk)−1 computed in the inner
loop at iteration k to be far from the inverse hessian H(pk+1)

−1. Compared to the
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Fig. 4.1. The Marmousi II pressure wave velocity model (left), initial guess (right).

inner preconditioning, the outer preconditioning is far more robust.

Three different choices for the forcing terms are compared, following the propo-
sition of Eisenstat (3.10).

• Choice (a): ηk = ηk,1.
• Choice (b): ηk = ηk,2.
• Choice (c): ηk = ηk,3 with a1 = 0.95, a2 = 1.

In standard implementations, a strong additional convergence criterion is used for the
inner linear iterations to prevent from over-solving the inner problem: a maximum
number of linear iterations is set. In our implementation we deliberately set this limit
to a high level: the convergence is forced whenever the number of inner iterations
reaches Niter = 100, while values of 20 or 30 are usually found in the literature
[47]. Our objective is testing the importance of the definition of the forcing term: we
want to prevent the inner loop convergence to be driven by a maximum number of
authorized iterations instead of the forcing term.
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Newton Gauss-Newton Pr. Newton Pr. Gauss-Newton

Choice (a) 5.96 5.5 6.21 4.44

Choice (b) 4.25 8.75 4.44 5.73

Choice (c) 8.51 1. 4.92 3.79
Table 4.1

Average number of inner CG iterations per nonlinear iteration.

The stopping criterion for the outer nonlinear iterations consists in satisfying the
condition

f(p)/f(p0) < 10−3. (4.2)

The convergence curves associated with these methods and the choice of the
forcing term are presented in figure 4.2.

We show that the convergence is reached in each case, except for the forcing
term (c) and the Gauss-Newton method, and the forcing term (b) and the Newton
method. In these two cases, a local minimum of the misfit function is reached, and
the method is unable to minimize the misfit function any further. Conversely, the use
of the forcing term (a) yields the convergence for the four methods (Newton, Gauss-
Newton, and their preconditioned versions). In terms of convergence speed, the use of
the forcing term (a) provides a significant enhancement of the preconditoned Newton
method. For the Newton method, the choice of the forcing term (a) induces slightly
more computational efforts compared to the forcing term (c). For the Gauss-Newton
method and its preconditioned version, the different forcing terms give approximately
the same results, except for the forcing term (c) and the Gauss-Newton algorithm, the
use of which makes the minimization process to converge towards a local minimum.
This first analysis advocates for the choice of the forcing term (a), since it yields
convergence in each case, and provides satisfactory convergence speed compared to
the others.

We complement these tests with the analysis of the number of inner linear itera-
tions performed and the size of the step computed through the linesearch method at
each nonlinear iteration. These results are presented respectively in figures 4.3, and
4.4. The average number of linear iteration performed per nonlinear iteration is also
provided in table 4.1.

Figure 4.3 shows that that the forcing term (a) leads to the highest reduction of the
number of linear iterations by the number of nonlinear iterations for the Gauss-Newton
case and the preconditioned Newton case (Figure 4.3, rows 2 and 3). For the Gauss-
Newton case, the forcing term (c) only performs one linear iteration per nonlinear
iteration: this emphasizes the convergence failure of the method in this case. For the
Newton case (row 1) the forcing term (b) seems more adapted. For the preconditioned
Gauss-Newton case (row 4), the three forcing terms give approximately the same
results. The table 4.1 shows that the average number of inner linear iteration is more
stable for the forcing term (a), with respect to the optimization which is used. Finally,
the figure 4.4 emphasizes an interesting property of the forcing term (a): this choice
seems to provide a better stability in terms of the step-size computed through the
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linesearch procedure. This property is important regarding the computation cost of
computing this step-size through the linesearch procedure. A change in the steplength
is synonym of at least one additional computation of the gradient of the misfit function,
which amounts to an additional forward and adjoint problems.

From these tests, we thus conclude that the forcing term (a) is the best adapted
to our purpose. Since the best forcing term has been determined, we now compare
the performance of the truncated Newton method using this forcing term with the
steepest-descent method and the l-BFGS method.

4.2.3. Comparison with the gradient-based methods. We present in figure
4.5 the convergence curves obtained for the steepest-descent algorithm, the l-BFGS
algorithm, and the truncated Newton algorithm, either in the Gauss-Newton approx-
imation or using the exact Hessian operator. As expected, the steepest-descent algo-
rithm converges very slowly. It requires to solve more than ten thousand wave prop-
agation problems, whereas the truncated Newton method and the l-BFGS method
require to solve less than two thousand of these problems. This emphasizes the inter-
est of using Newton and quasi-Newton method for the FWI problem.

Fo gain some additional insight on the performances of the truncated Newton
method compared to the l-BFGS method, we also present in figure 4.5 the convergence
curves obtained for the l-BFGS algorithm, the Gauss-Newton method, the Newton
method, and the outer preconditioned versions of the two latter. We show that, for the
Marmousi case, the l-BFGS algorithm stays more efficient than the truncated Newton
method in terms of computational efficiency. The best results for the truncated New-
ton method are obtained by the preconditioned Gauss-Newton version. The effect
of the outer l-BFGS preconditioning is important: compare for instance the conver-
gence of the Newton method with its preconditioned version. These results indicate
that the l-BFGS approximation of the inverse Hessian operator is accurate enough
for the l-BFGS method to converge rapidly. Note, however, that, contrary to the
steepest-descent method, which converges slowly, the computational effort required
by the l-BFGS method and the truncated Newton method using the Gauss-Newton
approximation is of the same order.

The wave velocity model estimated with the l-BFGS method and its difference
with the exact model are presented in figure 4.6. From a very low resolution ap-
proximation of the solution, the FWI method provides a high resolution quantitative
estimation of the solution. The results obtained with the different inversion methods
are very similar, even for the steepest-descent method, as it can be seen in figure 4.7,
where the differences between the l-BFGS estimations and the estimations provided
by the other inversion schemes are presented.

From this experiment, we conclude that, compared to the steepest-descent, the
truncated Newton method requires approximately the same computation cost than
the l-BFGS method, which corroborates the results of Nash and Nocedal [63]. On
this particular test case, we also show that the Gauss-Newton approximation per-
forms better than the Newton approximation, the Newton method converging more
slowly. Preconditioning the two methods with an outer l-BFGS approximation effi-
ciently enhances the convergence speed. Finally, among all the inversion schemes we
have tested, the l-BFGS method seems to be the most efficient. Note, however, that
the performances of the truncated Newton method should be enhanced by a more ap-
propriate preconditioning of the inner linear system, or the use of a deflated conjugate
gradient algorithm [65] for instance.

In the next section, we investigate another test case inspired from a near-surface
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imaging application.

4.3. A near-surface imaging application. We consider the exact wave ve-
locity model presented in figure 4.8. This model is composed of a homogeneous
background and two superposed concrete structures. Detecting and correctly imag-
ing these two concrete foundations buried in the subsurface at few meters depth is a
challenge in seismic imaging. Note that the average scale is much shorter than for the
previous test case. The depth of investigation is limited to 3 m, the width of the ex-
act model is 15 m. The discretization step is 0.15 m, which amounts to 2121 discrete
subsurface parameters. As for the Marmousi test case, we add 10 points width PML
at all the boundaries. The short distance of propagation inside the model due to the
near-surface configuration makes difficult to discriminate between the different type
of waves recorded in the seismograms. The very high velocity contrast between the
background (300 m.s−1) and the concrete foundations (4000 m.s−1) generates high-
amplitude reflections. In addition, the close distance between the two structures is
responsible for important multiple scattering: this is the reason why we consider this
test case.

We first use a full acquisition system, that is to say using four lines of sources/receivers
on each side of the domain. In the second subsection, we investigate a more realistic
case, replacing the bottom sources/receivers line with a layer at 500 m.s−1.

4.3.1. Full acquisition case. We compute 9 data-sets, corresponding to the
frequencies: 100 Hz, 125 Hz, 150 Hz, 175 Hz, 200 Hz, 225 Hz, 250 Hz, 275 Hz, 300
Hz. As for the Marmousi test case, the 9 data-sets are inverted simultaneously. The
initial model is the homogeneous background model.

We show two time-domain data-sets computed with the exact wave velocity model
and with the initial homogeneous velocity model to get a better insight of the multiple
scattering (figure 4.9). These two data-sets are obtained using a source located at the
surface, between the two concrete structures, at x = 6.75 m. The signal emitted
by the source is a Ricker wavelet, centered on the frequency 150 Hz. We adopt the
following data representation: the horizontal axis corresponds to the receivers, the
vertical axis corresponds to the time from the source excitation. The amplitude of
the pressure wavefield recorded by each receiver corresponds to the intensity of the
black and white plots.

From figure 4.9, we show that the first-arrival waves are correctly predicted by
the initial homogeneous model. On the left figure, the signal after the first arrival
corresponds to the multiple reflections from the two concrete structures. This waves
are not predicted by the initial homogeneous model.

We compare the convergence of the steepest-descent algorithm and the l-BFGS
algorithm with the truncated Newton method on this test case. The corresponding
curves are presented in figure 4.10. As for the previous case, the misfit function values
are plotted as a function of the number of forward problem resolutions. From figure
4.10, we show that the steepest-descent, the l-BFGS algorithm and the Gauss-Newton
truncated method fail to converge. The convergence curves of the preconditioned
versions of the Gauss-Newton and exact Newton truncated methods are not presented,
because they also stop at the very first iterations. Only the exact Newton method,
without preconditioning, is able to converge.

The corresponding inversion results are presented in figure 4.11. The four results
are plotted with the same color scale. As indicated by the misfit function decrease,
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the two concrete structures are better reconstructed using the Newton method, even
if the wave velocity amplitude is underestimated (this value reaches 810 m.s−1, which
is still far from the real value which is 4000 m.s−1). The structures in themselves and
their edges appear more clearly.

Why does the Newton method outperform the l-BFGS method and the Gauss-
Newton method in this case? To answer to this question, we first compute the data
in the time domain associated with each of the estimated wave velocity model, as
previously done for the exact and initial model (Fig. 4.12). The residuals in the time
domain (difference between the predicted data and the data associated with the exact
model) are also presented in figure 4.13.

These figures demonstrate that the multi-scattered waves that appear between
the two concrete structures are only correctly interpreted by the full Newton method.

In addition we compute the Hessian matrix H(p) associated with the initial back-
ground model, and its Gauss-Newton approximation B(p). The dimension of the
problem is small enough for the computation of the Hessian to be tractable. The two
matrices are presented on the figure 4.14. We show that the second-order part C(p) of
the Hessian operator is far from being negligible: the two matrices H(p) and B(p) are
plotted with the same color scale, and the differences are important. This is an indi-
cation of the importance of the scattered wavefield and the presence of high amplitude
second-order derivatives of the wavefield with respect to the wave velocity parameters.
Besides, since the residuals Rus − ds do not decrease rapidly throughout the iterative
process (otherwise the misfit function would be rapidly small), the second-order part
of the Hessian operator C(p) stays non negligible along the minimization process.

This matrix C(p) may be responsible for the presence of negative eigenvalues in
the Hessian operator. We compute the 500 largest eigenvalues of each matrix using
the Lanczos algorithm [27] (we use the FORTRAN code Blzpack [40]). The result is
presented in figure 4.15. As expected, the Gauss-Newton matrix is symmetric posi-
tive, with numerous small eigenvalues associated with poorly illuminated parameters.
The initial full Hessian matrix presents numerous negative eigenvalues. The “strong”
indefiniteness of the Hessian can thus explain the poor performance of the l-BFGS
algorithm: the l-BFGS formula provides a symmetric positive definite approximation
of the inverse Hessian. Therefore, during the first iterations, this approximation is
probably inaccurate and prevents the l-BFGS algorithm from minimizing efficiently
the misfit function f(p). Since the amplitude of the residuals keeps large, the second-
order part C(p) remains important and the true Hessian matrix remains indefinite,
while the successive l-BFGS approximations are positive definite. This discrepancy
between the actual Hessian and its l-BFGS approximation is probably responsible for
the failure of the l-BFGS inversion scheme. The truncated Newton method under
the Gauss-Newton approximation faces the same difficulty: the Hessian operator is
approximated using a symmetric positive matrix, whereas the true Hessian matrix
has large negative eigenvalues. The use of the Gauss-Newton method is therefore
inappropriate in this case. Only the truncated Newton method using the full Hes-
sian can mitigate this difficulty. Finally, the inaccuracy of the l-BFGS approximation
of the inverse Hessian operator also explains why the preconditioned version of the
Newton and the Gauss-Newton truncated algorithm fails to converge: it degrades the
conditioning of the linear systems associated with the computation of the Newton
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descent direction
We test the method on a more realistic test case to pursue our investigation of

the robustness of the truncated Newton method.

4.3.2. A more realistic case. We consider in this section an acquisition system
without the bottom line of sources/receivers. We use a larger domain (30 m large and
3.75 m width), to compensate for this lack of illumination. We also insert a layer
of velocity 500 m.s−1 at the bottom of the true model. This layer is included in
the initial model p0. The corresponding exact model and initial model are presented
in figure (4.16). We keep the same discretization step (0.15 m), which amounts to
5025 discrete subsurface parameters. We use only three lines of sources/receivers on
the top and the lateral sides of the domain. We keep 9 data-sets, corresponding to
the previous frequencies: from 100 Hz to 300 Hz each 25 Hz. As in the previous
case, the 9 data-sets are inverted simultaneously. We also introduce a white noise on
each data-set, with different amplitudes, to investigate the robustness of the method.
The results corresponding to the steepest-descent, the l-BFGS inversion, the Gauss-
Newton inversion and the exact-Newton inversion are presented in figures 4.17, 4.18,
4.19.

The results we obtain on this last test case confirm that the truncated Newton
method using the exact Hessian is preferable in this case than the l-BFGS method.
The results without noise show clearly that the concrete structures are better re-
constructed using the truncated Newton scheme, even if the contrasts are still far
from being completely recovered. In addition, introducing noise up to -9 dB does
not particularly degrade the results. The reflections from the bottom layer seem to
correctly compensate for the lack of illumination consecutive to the removal of the
fourth bottom line of sources/receivers. Once again, the better performance of the
truncated Newton method should be related to the presence of large negative eigen-
values in the initial Hessian operator. These negative eigenvalues originate from the
presence of a large amplitude multi-scattered wavefield. The l-BFGS method and the
Gauss-Newton approximation used in the truncated Newton framework are unable to
approximate the Hessian operator correctly, and therefore fail to converge.

5. Conclusion and perspectives. The FWI method is a very efficient tool for
the computation of quantitative estimations of the subsurface parameters through
the interpretation of the wave propagation. From a numerical point of view, the
method amounts to the resolution of a large-scale inverse problem, which requires
appropriate minimization algorithms. For a long time, gradient-based methods, such
as the steepest-descent algorithm or the nonlinear conjugate gradient algorithm, and
more recently the quasi-Newton method l-BFGS, have been used to solve this problem.
In this study, we investigate the possibility and the interest of using another class
of minimization algorithm: the truncated Newton method. Unlike gradient based
methods, the truncated Newton method aims at solving the linear system associated
with the computation of the Newton descent direction that is raised at each nonlinear
iteration of the minimization algorithm. However, given the large-scale nature of the
expected applications, the explicit computation of the Hessian operator is intractable.
Therefore this linear system has to be solved using a matrix-free iterative solver. This
requires the possibility of computing efficiently Hessian vector products.

This first requirement is fulfilled thanks to second-order adjoint state formulas.
Using control optimal theory and Lagrangian formulations, we show that the resolu-
tion of the linear system for the computation of the Newton descent direction amounts
to the resolution of 2 + 2×Niter wave propagation problems where Niter denotes the
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number of conjugate gradient iterations, either in the exact Newton context, or in the
Gauss-Newton approximation.

The second requirement for the efficient implementation of the truncated Newton
algorithm relies on an efficient stopping criterion of iteration for the inner conjugate
gradient algorithm. We show that this stopping criterion must be related to the
accuracy of the local quadratic approximation that is made at each nonlinear iteration
in the framework of Newton minimization methods. One possible way to account
for this accuracy is the use of the Eisenstat stopping criterion [17] and one of the
associated forcing term that he has proposed. In addition, an l-BFGS preconditioning
of the linear systems associated with the computation of the Newton descent direction
can be used to speed-up the convergence. Two algorithms are proposed, corresponding
to the computation of an l-BFGS approximation of the inverse Hessian operator during
the inner linear iteration or the outer nonlinear iterations.

The numerical tests we perform show that the choice of the forcing term is crucial.
Different performances can be obtained depending on this choice, which is illustrated
by the different results we obtain on the Marmousi II test case, using three different
forcing terms. On the basis of these results we select the forcing term that appears
to be the most reliable.

The comparison between the truncated Newton method and the l-BFGS method
on the Marmousi test case reveals the efficiency of the l-BFGS method. Among dif-
ferent versions of the truncated Newton method, the preconditioned Gauss-Newton
version provides the best performance in terms of computational efficiency. However,
the l-BFGS method still provides better results. This emphasizes that for the recon-
struction of reasonably complex subsurface structures, quasi-Newton methods shall
be preferred to more sophisticated method as the truncated Newton method.

However, a second test case, derived from a near-surface application for imaging
high velocity embedded bodies, emphasizes the limitations of the l-BFGS method.
In this case, the l-BFGS method is unable to converge, while the truncated Newton
method provides reliable results. The high amplitude multi-scattered wavefield gen-
erated by the structures makes the starting Hessian operator strongly indefinite. The
l-BFGS approximation of the Hessian is positive definite by construction: therefore,
in this case, this approximation is far from the true Hessian, and the descent direc-
tion that is computed is not accurate. As a consequence, the results provided by
the l-BFGS method and the truncated Newton method show that a very substantial
improvement of the solution can be obtained using the truncated Newton method.
This result is first obtained for a full acquisition system, then for a more realistic
configuration, where the bottom line of sources/receivers is removed, and has been
replaced by an identified layer. In this configuration the results still demonstrates the
interest of using the truncated Newton method instead of the l-BFGS method. In the
presence of a white noise on the data, the truncated Newton method still converges
while the l-BFGS method still fails.

Based on these preliminary results, our main challenge remains to demonstrate the
interest of the truncated Newton method for realistic applications. As a first step, the
method could be tested on the BP 2004 benchmark model [5]. This synthetic model,
partly inspired from the geology of the Mexico gulf, contains salt domes structures
just below the sea bottom. This configuration is responsible for important contrasts
in wave velocities between the water layer and the salt zones. This suggests that the
same kind of complex data sets as the one presented in our near-surface case study,
including high amplitude multiple reflected waves, may be generated in such a model.
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In addition, the effect of multi-scattered waves could be amplified by considering
multiple-contaminated data. Depending on the results obtained with this particular
subsurface configuration, a second step may consist in applying the truncated Newton
method to a 2D real data set, for instance the Valhall data set [61, 60, 26, 19]. The
results on the near-surface case study we have presented seem to exhibit a good
robustness of the truncated Newton method with respect to noise contamination of
the data. This is in accordance with the interpretation of the truncated Newton
method as an iterative regularization method (see Kaltenbacher [32]). However this
has to be confirmed on a more realistic test case such as the BP model. The application
of the method to real data such as the Valhall data also requires to adapt the method
for anisotropic forward modeling. This then opens the way to the application of the
method in a multi-parameter context, in which both P-wave velocity and anisotropic
parameters are simultaneously estimated. The use of the truncated Newton method
in this context is of particular interest since the inverse Hessian operator, additionally
to its already identified properties, should help to treat more efficiently the trade-off
between parameters. Since these trade-off are expressed by the off-diagonal blocks of
the Hessian operator, one can hope that accounting more precisely for this operator in
the inversion scheme should improve the accuracy of the multi-parameter estimations.
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formes d’ondes sismiques au génie civil et à la subsurface, thèse de doctorat, Université
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Fig. 4.2. Comparison of the convergence of the truncated Newton method depending on the
forcing term choice. From top to bottom : Newton method, Gauss-Newton method, outer l-BFGS
preconditioned Newton method, outer l-BFGS preconditioned Gauss-Newton method.
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Fig. 4.3. Number of inner CG iterations plotted against number of nonlinear iterations. Top
row to bottom row: Newton method, Gauss-Newton method, outer l-BFGS preconditioned Newton
method, outer l-BFGS preconditioned Gauss-Newton method. Left column: ηk = ηk,1. Middle
column: ηk = ηk,2. right column: ηk = ηk,3 with a1 = 0.95 and a2 = 1.
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Fig. 4.4. Size of the steplength αk plotted against number nonlinear iterations. Top row to
bottom row: Newton method, Gauss-Newton method, outer l-BFGS preconditioned Newton method,
outer l-BFGS preconditioned Gauss-Newton method. Left column: ηk = ηk,1. Middle column:
ηk = ηk,2. right column: ηk = ηk,3 with a = 0.95 and a2 = 1.



35

Fig. 4.5. Convergence curves for the Marmousi II test case. N: Newton, GN: Gauss-Newton,
LB: l-BFGS, ST: steepest-descent, Npr: outer preconditioned Newton, GNpr: outer preconditioned
Gauss-Newton.

Fig. 4.6. l-BFGS inversion results. Estimated model (left), difference with the exact model (right).
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Fig. 4.7. Difference between the l-BFGS estimated model and the other estimated models.
Newton (top left), Gauss-Newton (top right), outer preconditioned Newton (middle left), outer pre-
conditioned Gauss-Newton (middle right), steepest-descent (bottom)

Fig. 4.8. Exact pressure wave velocity model.
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Fig. 4.9. Dataset computed in the exact model (left), and in the initial homogeneous model
(right).

Fig. 4.10. Convergence curves. N: Newton, GN: Gauss-Newton, LB: l-BFGS, ST: Steepest-
descent.
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Fig. 4.11. Pressure wave velocity estimatison, steepest-descent (top left) l-BFGS (top right ),
Gauss-Newton (bottom left), Newton (bottom right)

Fig. 4.12. Dataset computed in the estimated models. Steepest-descent (top left), l-BFGS (top
right), Gauss-Newton (bottom left), Newton (bottom right)
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Fig. 4.13. Residuals associated with the estimated models. Steepest-descent (top left), l-BFGS
(top right), Gauss-Newton (bottom left), Newton (bottom right)

Fig. 4.14. Hessian matrix (left), Gauss-Newton approximation (right)
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Fig. 4.15. 500 largest eigenvalues of the Hessian operator (black) and its Gauss-Newton ap-
proximation (gray)

Fig. 4.16. Larger exact pressure wave velocity model (left) and its corresponding initial guess
(right)
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Fig. 4.17. Wave velocity estimations. Steepest-descent (top left), l-BFGS (top right) , Gauss-
Newton (bottom left), exact-Newton (bottom right).

Fig. 4.18. Wave velocity estimations with -3dB noisy data. Steepest-descent (top left), l-BFGS
(top right) , Gauss-Newton (bottom left), exact-Newton (bottom right).
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Fig. 4.19. Wave velocity estimations with -9dB noisy data. Steepest-descent (top left), l-BFGS
(top right) , Gauss-Newton (bottom left), exact-Newton (bottom right).


