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Full Waveform Inversion for Seismic Velocity and

Anelastic Losses in Heterogeneous Structures

by Aysegul Askan*, Volkan Akcelik, Jacobo Bielak, and Omar Ghattas

Abstract We present a least-squares optimization method for solving the nonlinear

full waveform inverse problem of determining the crustal velocity and intrinsic at-

tenuation properties of sedimentary valleys in earthquake-prone regions. Given a

known earthquake source and a set of seismograms generated by the source, the in-

verse problem is to reconstruct the anelastic properties of a heterogeneous medium

with possibly discontinuous wave velocities. The inverse problem is formulated as a

constrained optimization problem, where the constraints are the partial and ordinary

differential equations governing the anelastic wave propagation from the source to the

receivers in the time domain. This leads to a variational formulation in terms of the

material model plus the state variables and their adjoints. We employ a wave propaga-

tion model in which the intrinsic energy-dissipating nature of the soil medium is mod-

eled by a set of standard linear solids. The least-squares optimization approach to

inverse wave propagation presents the well-known difficulties of ill posedness and

multiple minima. To overcome ill posedness, we include a total variation regulariza-

tion functional in the objective function, which annihilates highly oscillatory material

property components while preserving discontinuities in the medium. To treat multi-

ple minima, we use a multilevel algorithm that solves a sequence of subproblems on

increasingly finer grids with increasingly higher frequency source components to re-

main within the basin of attraction of the global minimum. We illustrate the metho-

dology with high-resolution inversions for two-dimensional sedimentary models of

the San Fernando Valley, under SH-wave excitation. We perform inversions for both

the seismic velocity and the intrinsic attenuation using synthetic waveforms at the

observer locations as pseudoobserved data.

Introduction

Seismic waveform inversion has become a major topic

of interest in earthquake seismology and in geotechnical en-

gineering due to the need for developing accurate earth mod-

els and for gaining a better understanding of subsurface

structures for engineering applications. In its general form,

given observed seismological data, seismic waveform inver-

sion aims to recover the source parameters or the material

properties of the crustal model, or both.

Modern inversion methodologies in seismology date

back to the pioneering work of Backus and Gilbert (1967,

1970) on the determination of global structure from free os-

cillations of the Earth. In engineering, the emphasis has been

on near-surface characterization, starting in the 1950s and

1960s with simple experimental and interpretive methods

(Jones, 1958). Later, Stokoe and coworkers developed the

spectral analysis of surface waves (SASW) method for ima-

ging shear-wave velocity, an inversion-based methodology

for flat-layered deposits that makes use of the dispersion

curve for the fundamental Rayleigh mode (Stokoe et al.,

1994). This work has been developed further by others (Gu-

cunski and Woods, 1992; Rix et al., 2000; Guzina and Lu,

2002). In earthquake seismology, the interest varies from

whole Earth inversion (Jordan and Anderson, 1974; Lerner-

Lam and Jordan, 1983; Ishii et al., 2002) to imaging in local

basins, ranging from determining just the boundary shape of

the basin structure (Aoi, 2002) to tomography images of the

Earth’s crust in seismic-prone regions (Chen, 2005; Tromp

et al., 2005; Zhao et al., 2005). Recently, Chen, Zhao, and

Jordan (2007) performed full three-dimensional tomography

for the crustal structure of the Los Angeles region using a

real data set. In a subsequent article, Chen, Jordan, and Zhao

(2007) compared the computational efficiency of two dif-

ferent formulations of the structural inverse problem: the

scattering-integral and adjoint-wave-field methods. Lately,

Tape et al. (2007) presented a finite frequency tomography

technique based on adjoint methods.
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In exploration geophysics, seismic imaging has been in

use for over 20 yr, where inversion proceeds mainly from

travel-time (Baig et al., 2003; Sheng and Schuster, 2003;

Montelli et al., 2004) or full waveform (Pratt, 1999) ap-

proaches, either in the time domain (Tarantola, 1984) or

in the frequency domain (Pratt and Worthington, 1990; Liao

and McMechan, 1996).

With few exceptions (Tarantola, 1988; Rix et al., 2000;

Hicks and Pratt, 2001), seismic inversion is generally con-

fined to the seismic velocities, using models for which the

intrinsic attenuation is not taken into consideration. This

approach relies on data sets that consist primarily of mea-

surements made on direct body waves that are relatively in-

sensitive to the anelastic attenuation of the material (Chen,

2005). On the other hand, anelastic attenuation can signifi-

cantly affect earthquake ground motion in many cases, espe-

cially if surface wave effects are important relative to the

body waves. For instance, Olsen et al. (2003) found it neces-

sary to assign values of Q as low as 10 in the near-surface

low-velocity sediments in the Los Angeles basin in order for

synthetic seismograms of their simulation of the 1994 North-

ridge earthquake to match observations. This underscores the

importance of characterizing the intrinsic attenuation of the

crust, especially of the low-velocity surficial sediments, in

addition to the seismic velocities.

In this article, we present a nonlinear least-squares ad-

joint full waveform inversion method that is capable of es-

timating discontinuous distributions of shear-wave velocity

and intrinsic attenuation in large heterogeneous earthquake-

excited basins. For simplicity, we present the problem in the

context of two-dimensional sedimentary valleys subjected

to SH-wave excitation and provide an illustration for the

San Fernando Valley. The components of the method in-

clude a full-anelastic waveform-based output least-squares

objective, a total variation regularization, a finite-element

parametrization of the anelastic moduli (as well as displace-

ment and adjoint displacement fields), a multilevel grid/

frequency continuation, an adjoint-based gradient and Hes-

sian computation, an inexact matrix-free (Gauss)–Newton–

Krylov minimization, a limited memory quasi-Newton pre-

conditioning, a backtracking line search globalization, and a

distributed memory parallel implementation.

Anelasticity and Memory Variables

In order to represent the anelastic losses in the crust, in

this section we first consider a mechanical damping model

for uniform, massless, linear anelastic fibers and review a

common approach for reducing the stress-strain relationship

to differential form through the introduction of internal aux-

iliary variables. We then discuss a procedure for expressing

the parameters that enter into the governing differential equa-

tions for the auxiliary, or memory, variables in terms of the

quality factor,Q. In the next section we discuss how to select

Q such that it and the wave velocity will represent approxi-

mately the nonlinear behavior of the constitutive material

under strong-motion excitation. The application to a conti-

nuum is presented subsequently.

Suppose a mass m is attached to one end of a uniform,

massless, linear anelastic fiber of unstretched length L and is

subjected to an axial force f�t�. The fiber is fixed at the other
end, has a cross-sectional area A, has uniform axial stress

σ�t� throughout its length and cross section, and has axial

strain ϵ�t� � u�t�=L, where u�t� is the (small) displacement

of the mass, at each instant t. The equation of motion of the

mass then is

mL
d2ϵ

dt2
� �σA� f: (1)

The simplest constitutive model for the fiber is Hooke’s law,

σ � Eϵ, but this is not dissipative, that is, it does not have an

internal damping (or attenuation) mechanism. Thus, we con-

sider dissipative models of the following form. Let ϵt denote

the strain history at time t, ϵt�τ� � ϵ�t � τ�. We then assume

there is a linear functional F such that

σ�t� � �ϵt�: (2)

Biot (1958) proposed a simple mechanism made up ofN

Maxwell elements with a single spring element, all in paral-

lel, as shown in Figure 1a to represent this functional. He also

suggested a suitable singular distribution factor for the

springs in the Maxwell elements asN →∞. The Biot model

can be equivalently represented as a set of standard linear

solids (SLSs) in parallel, as shown in Figure 1b. Caughey

(1962) showed that, if N →∞, the resulting hysteresis loss

per cycle under sinusoidal steady-state excitation then takes

the form of an inverse tangent function of ω=α, in which ω is

the angular excitation frequency and α � φ=c is the angular

relaxation frequency. This is tantamount to having a quality

factor, Q, that becomes nearly independent of frequency for

even small ω, provided α is small.

In the limit, as N →∞, the functional F for the Biot

model can be expressed as that for a viscoelastic model with

a singular kernel (Bielak and MacCamy, 1989):

F �ϵt� � kϵ�t� �
Z

∞

0

g�τ��ϵ�t� � ϵ�t � τ��dτ ; (3)

in which k �
P

N
i�1

ki is the effective constant of the sin-

gle spring element in Biot’s model in Figure 1b and

g�τ� � τ�1e�ατ .
From (1), (2), and (3) it is clear, due to the correspon-

dence principle of viscoelasticity, that in order to solve for ϵ

in the frequency domain it suffices to consider an elastic ma-

terial for which the effective elastic properties are frequency

dependent. In the time domain, the problem is more challen-

ging, as the stress at a given instant depends on the complete

history of the strain, and (1) becomes an integrodifferential

equation. A number of approaches have been proposed for

incorporating viscoelastic constitutive relations such as (3)

into the time-domain solution framework, without having

to evaluate the convolution integral. Originally, Day and
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Minster (1984) proposed expanding the Laplace-transformed

viscoelastic modulus into a rational function using Padé ap-

proximations, thus giving rise to a set of ordinary differential

equations (ODEs) in terms of internal memory variables, in

addition to the original state variables. Similar results have

been obtained by Emmerich and Korn (1987) by forming a

rational function based on a rheological model of the Max-

well body. Liu et al. (1976) used relaxation mechanisms

to model the viscoelastic stress-strain relationship, while

Carcione et al. (1988) introduced memory variables as solu-

tions to the ODEs that represent the motion of the relaxation

mechanism; Robertsson et al. (1994) and Blanch et al.

(1995) used SLSs as relaxation mechanisms. Moczo et al.

(2006) have recently shown the equivalence of most of these

approaches.

We consider directly the Biot SLS rheological model

shown in Figure 1b. Let ϵ be the common strain experienced

by all of the springs with stiffness kj, and let ψj be the strain

of each spring with stiffness φj; cj is the dashpot constant of

the jth damping element. With this notation, the stress σ can

be expressed as

σ �
�

X

N

j�1

kj

�

ϵ�
X

N

j�1

φjψj: (4)

In addition, for the stress to be the same in the spring and the

dashpot of each Maxwell element, ϵ and ψj are related by

∂ψj

∂t
� αjψj � ϵ; j � 1; 2;…; N; (5)

where αj � φj=cj is the angular relaxation frequency of the

jth SLS, with corresponding relaxation time 2π=αj.

To eliminate ψj, we take Fourier transforms of both (4)

and (5), solve for �ψj from (5), and substitute into the Fourier-

transformed equation of (4) to obtain

�σ�ω� � �F�ω��ϵ�ω�; (6)

where

�F�ω� �
X

N

j�1

kj

�

ηjαjωi� α2
j � ω2�1� ηj�

α2
j � ω2

�

: (7)

In these equations, an overbar denotes Fourier trans-

form, and ηj � φj=kj is the relative stiffness of the two

springs in each SLS.

We use (7) and the definition of Q�1, in terms of the

complex relaxation modulus

Q�1�ω� � Im � �F�ω��
Re � �F�ω��

; (8)

to obtain a formula for Q�1�ω� in terms of the parameters ηj
and αj:

Q�1�ω� �
P

N
j�1

ηjαjω=�α2
j � ω2�

1�
P

N
j�1

ηjω
2=�α2

j � ω2� : (9)

For future use, it is convenient to relate the mechanical

properties αj and ηj of the rheological model to the quality

factor Q through approximate, simple, predictive frequency-

independent relationships. To this effect, we minimize the

integral of the difference squared between a target Q�1

and the value computed from (9) with respect to αj and

ηj as follows:

min
αj;ηj

1

2

Z

ωmax

ωmin

�Q�1�ω;αj; ηj� �Q�1
target�2dω:

The minimization is performed over a frequency range

of interest, from 0.1 to 1.0 Hz. The goal is to find αj and ηj
that correspond to a frequency-independentQ�1. For a single
SLS and a Q�1

target of 0.1, we found Q�1�ω� as shown in Fig-

ure 2. This figure also shows the corresponding results of the

least-squares minimization for two SLSs. Clearly, the addi-

tion of a second SLS results in a significant improvement

in approximating a frequency-independent Q�1. However,
an additional SLS requires the introduction of a second mem-

ory function ψ2. Each memory function requires additional

storage of half that required for the displacements, using

standard second-order accurate time discretization. This is

because the differential equation (1) that governs the evolu-

tion of ϵ is second order in time, whereas the corresponding

equations (5) for ψj are only first order. For a second-order

approximation in time, using central differences, (1) requires

Figure 1. (a) Biot’s linear hysteretic damping model; (b) SLS

rheological model.
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that two values of ϵ, at t and t �Δt, be stored in order to

calculate ϵ at t�Δt. By contrast, using the step-by-step nu-

merical solution procedure in Day (1998), only the value of

ψj at t need be stored to obtain its value at t�Δt. This

means that using two memory variables in our forward wave

propagation problem would double the required computer

memory with respect to that for the corresponding problem

without dissipation. On the other hand, the additional com-

puter time needed to handle the memory variables is small, as

no spatial derivatives are involved in the calculation of ψj,

because the governing equations (5) for these variables are

uncoupled spatially. In order to limit the number of memory

variables per state variable to only one per node, Day (1998),

Day and Bradley (2001), and Graves and Day (2003) have

devised a highly efficient coarse graining method without

sacrificing accuracy in representing Q�1
target.

Here, our main objective is to present an optimization

method for inverting for both the seismic velocity and

Q�1. To simplify the presentation and the calculations, we

will consider a single SLS. Further, we will seek simple ex-

pressions for approximating η and α as functions ofQ�1. For
this purpose, we minimize the least-squares difference be-

tween Q�1�ω;α; η� and Q�1
target, from 0.1 to 1.0 Hz and for

values of Q�1
target ranging from 0.005 to 0.4. Through a curve

fit based on the results of these minimizations, we obtained

approximate linear relationships as follows:

η�Q�1� � 3:447Q�1 � 0:041; (10a)

α�Q�1� � 3:529Q�1 � 2:543: (10b)

We will use these values of η and α in our applications.

A more accurate approximation for η and α could be found

by introducing higher degree polynomials inQ�1. Also, add-
ing a second or more memory variables for increased accu-

racy introduces no additional conceptual complexity, as the

only independent dissipation variable in our model is Q�1.

A Model for Relating the Quality Factor to

the Shear-Wave Velocity

In general, there is no explicit physical relationship be-

tween Q and the shear-wave velocity VS. In practice, how-

ever, one expects them to be strongly correlated. Thus, as a

first step in our study, we will restrict Q to be a prescribed

function of VS, as done by Olsen et al. (2003).

Anelastic attenuation, here represented by Q, is rela-

tively difficult to estimate in soil media, particularly in soft

sedimentary layers for which ground motion is strongly af-

fected by the amount of damping. Common techniques with-

in current engineering practice for recovering the shear-wave

velocity and damping ratio profiles include surface wave

tests (e.g., Rix et al., 2000; Lai et al., 2002). These techni-

ques use experimental phase velocity dispersion curves and

experimental attenuation curves for inversions of the velocity

and damping ratio profiles. In addition, there are extensive

borehole data that can provide information on the variations

of Q related to the variations in the soil properties. In par-

ticular, there are studies relating the quality factor to

shear-wave velocity (Wiggens et al., 1978). However, most

existing studies are based on frequencies higher than our

frequency range of interest.

In the present study, we wish to use a simple yet phy-

sically validated relationship between the wave velocity and

Q. It is well known that shear modulus and material damping

are nonlinear functions of strain (Seed and Idriss, 1970). At

very small strain levels, shear-wave velocity VS is directly

related to the small-strain shear modulus μmax through

μmax � ρV2

S; (11)

where ρ is the mass density of soil.

At moderate to higher strain levels, the secant shear

modulus μ is used frequently in engineering to represent

the average soil stiffness. The ratio μ=μmax is called the dy-

namic modulus reduction ratio. On the other hand, the damp-

ing ratio, ζ (roughly, 2Q�1 at resonance) at extremely low

strain levels is a constant value and is referred to as the

small-strain damping ratio, ζmin. At higher strain levels,

due to the nonlinearity in the stress-strain relationship, the

damping ratio increases with increasing strain amplitude.

Many empirical studies have been conducted to charac-

terize the factors that influence the ratio μ=μmax and ζ of soils

(Richart et al., 1970; Seed and Idriss, 1970; Vucetic and

Dobry, 1991; Ishibashi and Zhang, 1993; Vucetic et al.,

1998; Stokoe et al., 2004). The most important factors that

influence the dynamic behavior of soil properties are found

to be the shear strain γ, the effective confining stress σ0, and
the plasticity index PI. There are several databases in North

America providing test data on these variables. Based on sta-

tistical analyses of these existing databases, Zhang et al.

(2005) derived predictive equations for the shear modulus

reduction ratio and the damping ratio. Although the data-

bases used in the analyses are from South Carolina, North

Carolina, and Alabama soils, we concluded that the derived

Figure 2. Q�1 for one and two SLS mechanisms versus the cor-
responding Q�1

target.
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relationships are valid for regions with various similar soft

soil conditions.

Following the hyperbolic models suggested earlier (e.g.,

Hardin and Drnevich, 1972; Pyke, 1993; Stokoe et al., 1999)

for the shear modulus reduction ratio and the strain level,

Zhang et al. (2005) expressed μ=μmax as

μ

μmax

� 1

�1� �γ=γr�κ�
; (12)

where γr is a reference strain defined as the value of strain

where the μ=μmax ratio ceases to be flat or, as defined by

other authors, γr � τmax=Gmax. Here, κ is a curve-fitting

parameter that depends on the plasticity index, PI, of the

soil as

κ � 0:0021PI � 0:834: (13)

A common approach for modeling the damping ratio is

to relate it to the strain level. Zhang et al. (2005) expressed

the damping ratio ζ in percent in terms of a polynomial func-

tion of the modulus reduction ratio μ=μmax and a minimum

damping ratio ζmin as follows:

ζ � ζmin � 10:6�μ=μmax�2 � 31:6�μ=μmax� � 21:0: (14)

Equation (14) is different from those of previous quad-

ratic models (Ishibashi and Zhang, 1993) through the addi-

tion of ζmin, which makes the damping measure ζ � ζmin

independent of cyclic frequency. In addition, (14) suggests

that ζ is equal to ζmin when μ � μmax at small strains. When

the value of μ=μmax is close to zero at very large strains, the

maximum predicted ζ � ζmin value is 21%.

Using the preceding model, we develop a simple proce-

dure for relating Q to VS as follows: To derive a physical

relationship between the Q and shear-wave velocity relation-

ship, we apply (14) in our forward wave propagation simula-

tions using a cross section of the San Fernando Valley and a

prescribed kinematic source, to be described in a later sec-

tion. We start with a target shear modulus profile defined by

μmax from the Southern California Earthquake Center (SCEC)

Los Angeles basin velocity model (Magistrale et al., 2000)

and ζmin � 1%. We then solve the forward wave propagation

problem and record the corresponding strain values. We de-

fine a nominal strain at each point in space as 60% of the

maximum value of the entire shear strain history at that node

(Kramer, 1996). Depending on the nominal strain levels, we

reduce the shear modulus through (12) with γr � 2 × 10
�5

and a low plasticity level, PI � 10%. Using (14), we obtain

a new ζ and repeat the cycle of forward runs until the strain

levels remain unchanged.

In order to establish a relationship between Q and VS,

we plot Q versus VS at a large number of points within the

two-dimensional sedimentary valley, for the final iteration of

shear modulus reduction cycles, as shown in Figure 3, and

obtain a curve of the following form to fit the data:

Q � a arctan

�

VS

VSref

�

: (15)

Here VSref
is the shear-wave velocity value where the Q ver-

sus VS relationship ceases to be linear, VSref
� 1000 m=sec

in the present model, and we find a � 25:5 with a least-

squares best fit. The plot of Q from (15) for these values

of a and VSref
is also shown in Figure 3. This is the model

that we will use for our forward and inverse solutions.

Forward Viscoelastic Wave Propagation Problem

As discussed earlier, we will describe the methodology

for the viscoelastic seismic wave propagation problem in two

dimensions only with a single generalized SLS to represent

the anelastic behavior of the constitutive material. The exten-

sion to multiple SLSs is immediate, along the lines of (4) and

(5). Because we wish to invert for material properties within

a portion of the Earth, we require appropriately positioned

absorbing boundaries to account for the truncated exterior.

For simplicity, we use dashpot absorbing boundaries applied

on the truncation surface. Thus, the problem is defined over a

finite domain Ω with boundary Γ; Γ consists of a horizontal

free surface ΓFS and the truncation boundary ΓAB on which a

simple absorbing boundary condition is imposed to limit the

occurrence of spurious reflections from the outgoing waves.

The system is initially at rest.

The corresponding governing partial differential equa-

tions (PDEs) and ODEs, boundary conditions, and initial con-

ditions are given by

ρ
∂2u

∂t2
�∇ · �μ∇�u� ηv�� � f�x; t� in Ω × �0; T�; (16a)

∂v

∂t
� αv � ∂u

∂t
in Ω × �0; T�; (16b)

μ∇�u� ηv� · n � 0 on ΓFS × �0; T�; (16c)

μ∇�u� ηv� · n � ������

ρμ
p ∂u

∂t
on ΓAB × �0; T�; (16d)

u � ∂u

∂t
� 0; v � 0 in Ω at t � 0: (16e)

In these equations, u�x; t� is the antiplane displacement field,

v�x; t� is the corresponding memory variable, ρ�x� is the

density, μ�x� is the elastic shear modulus, α�x� is the relaxa-
tion frequency, η�x� is the spring constant of the rheological

model, f�x; t� is the body force vector representing the earth-
quake source, and �0; T� is the time interval of interest. Equa-

tions (16a) and (16b) are the governing equations of the

viscoelastic model; (16c) enforces the traction-free condition

on the free surface; (16d) is the absorbing boundary condi-

tion to limit spurious wave reflections from the truncated

boundary surfaces; and (16e) is the initial condition.
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Inverse Viscoelastic Wave Propagation Problem

The inverse problem we consider is to determine the dis-

tribution of the seismic shear-wave velocity VS and the qual-

ity factor Q that characterize an earth model within a region

of interest, based on the observed displacement seismograms

u��t� at a finite number of receivers corresponding to the

points xj in the domain. We consider a single event, for

which the source body force f is assumed to be known.

In addition, the density of the material is taken as known,

because its variability is typically much less pronounced than

that of the other system parameters. The parameters α and η

are expressed in terms ofQ�1 through (10). From now on we

refer to μ�x� and Q�1�x� as the material model and to u�x; t�
and v�x; t� as the state variables.

We formulate the inverse problem as a nonlinear least-

squares parameter estimation problem with PDE and ODE

constraints. We seek to find the material model that mini-

mizes, over the period t � 0 to T, the L2-norm difference

between the observed state and that predicted by the coupled

PDE–ODE model of viscoelastic antiplane wave propagation

at NR receiver locations. The optimization problem is

min
u;v;μ

1

2

X

NR

j�1

Z

T

0

Z

Ω

�u� � u�2δ�x � xj�dΩdt

� β

Z

Ω

�∇μ ·∇μ� ε�1=2dΩ; (17)

subject to (16).

The first term in the objective function is the misfit be-

tween observed and predicted states; the second term repre-

sents a regularization functional on the material field μ with

regularization parameter β; and the constraints are the equa-

tions corresponding to our forward initial-boundary value

problem for anelastic two-dimensional wave propagation.

In the most general case, the solution for the optimiza-

tion problem can be obtained by searching for the optimum

values of the state variables �u; v� and the inversion variables
�μ; Q�1� that satisfy the first and second optimality condi-

tions (Nocedal and Wright, 1999). We will initially suppose

that Q�1 is related to VS through (15), with a and VSref

assuming the values a � 25:5 and VSref
� 1000 m=sec ob-

tained earlier. The inverse problem is then reduced to finding

the single material field μ. For this reason, the objective

functional (17) includes a regularization term for only μ.

In the absence of regularization, the problem as formu-

lated in the preceding discussion is ill posed (Symes, 1990).

Discretization of the inverse problem leads to Hessian ma-

trices that are rank deficient and ill conditioned. Rank defi-

ciency and ill conditioning occur because of the insensitivity

of the objective functional to high-frequency material prop-

erty perturbations (which is due to the band-limited observa-

tions). We treat this rank deficiency with a regularization

function added to the least-squares waveform misfit func-

tion. Several regularization functionals are commonly used

(Vogel, 2002). The well-known Tikhonov regularization,

which employs the L2 norm of the gradient of the material

model, eliminates the null space of the Hessian operator by

penalizing oscillatory components of the inversion field μ.

Figure 3. Q versus VS relationship data from the last iteration (the pink curve is the best-fit curve given in equation 15).
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The regularization effect becomes more pronounced with lar-

ger values of the regularization parameter β. A successful

choice of β is essential because values that are too large over-

smooth the μ field while values that are too small leave the

Hessian matrix rank deficient. Tikhonov regularization

smooths the discontinuities in the material model μ and is

therefore not appropriate for material fields with sharp inter-

faces and other discontinuities. Consequently, in this work,

we use total variation (TV) regularization, which is the L1

norm of the gradient of the material model. It is particularly

effective in recovering the material interfaces because it

smooths only along the interfaces and not normal to them.

The addition of the small parameter ε in (17) makes the

TV regularization functional differentiable when ∇μ � 0,

and effectively adds a small amount of smoothing across

the interfaces.

We note that the waveform inversion problem presented

here is inherently nonlinear due to the strong nonlinear de-

pendence of waveform to wave velocity, and this nonlinear-

ity becomes worse as contrast in wave velocity increases. In

this work, we use regularization as a form of model condi-

tioning to reduce the nonlinearity. However, in the case of

inversions using actual observations, data conditioning in ad-

dition to model regularization could be required to achieve

convergence.

To derive the optimality conditions for the optimization

problem (17), we introduce the Lagrangian functional in

what follows. Our procedure follows closely that of Akcelik

et al. (2002, 2003). The Lagrangian functional L combines

the original regularized least-squares objective functional

with an inner product of the residual of the governing equa-

tions with Lagrange multipliers λ and ϕ (also known as

adjoint or dual variables) to incorporate the PDE–ODE con-

straints, that is,

L�u; v;μ;λ;ϕ�

� 1

2

X

NR

j�1

Z

T

0

Z

Ω

�u� � u�2δ�x � xj�dΩdt

� β

Z

Ω

�∇μ · ∇μ� ε�1=2dΩ

�
Z

T

0

Z

Ω

λ

�

ρ
∂2u

∂t2
�∇ · �μ∇�u� ηv�� � f

�

dΩdt

�
Z

T

0

Z

ΓFS

λfμ∇�u� ηv� · ngdΓFSdt

�
Z

T

0

Z

ΓAB

λ

�

μ∇�u� ηv� · n � ������

ρμ
p ∂u

∂t

�

dΓABdt

�
Z

T

0

Z

Ω

ϕ

�

∂v

∂t
� αv � ∂u

∂t

�

dΩdt: (18)

Here, λ and ϕ are adjoint variables for the PDE and ODE con-

straints, respectively.

The first order necessary condition for optimality states

that the first variation of the Lagrangian with respect to u, v,

μ, λ, and ϕ should vanish at the optimum:

8

>

>

>

<

>

>

>

:

δu
δv
δμ
δλ
δϕ

9

>

>

>

=

>

>

>

;

�u; v;μ;λ;ϕ� � 0: (19)

This set of equations is known as the Karush–Kuhn–Tucker

(KKT) conditions. We now give the strong form of the KKT

conditions. Variations of the Lagrangian with respect to λ

and ϕ yield the following two sets of equations, which

are referred to as state problems for u and v, respectively:

ρ
∂2u

∂t2
�∇ · μ∇�u� ηv� � f in Ω × �0; T�;

μ∇�u� ηv� · n � 0 in ΓFS × �0; T�;

μ∇�u� ηv� · n � ������

ρμ
p ∂u

∂t
in ΓAB × �0; T�;

u � ∂u

∂t
� 0 in Ω at t � 0; (20)

and

∂v

∂t
� αv � ∂u

∂t
� 0 in Ω × �0; T�;

v � 0 in Ω at t � 0: (21)

Thus, we recover the original constraint equations and

boundary conditions for the state variables. Next, taking var-

iations of the Lagrangian with respect to the state variables u

and v leads to adjoint problems for λ and ϕ, respectively:

ρ
∂2λ

∂t2
�∇ · μ∇λ � �

X

NR

j�1

�u� � u�δ�x � xj� in Ω × �0; T�;

μ∇λ · n � 0 on ΓFS × �0; T�;

μ∇λ · n � � ������

ρμ
p ∂λ

∂t
on ΓAB × �0; T�;

λ � ∂λ

∂t
� 0 in Ω at t � T; (22)

and

∂ϕ

∂t
� αϕ � �η∇ · μ∇λ in Ω × �0; T�;

ϕ � 0 in Ω at t � T: (23)

We note that the adjoint problem governing λ has a

similar form to the state equation for u; however, it is a term-

inal value problem and the source function is the misfit be-

tween the observed displacements and the corresponding

simulated values. There is a similar analogy between the

state equation for the displacement v and the adjoint equation

for ϕ. Equations 22 and 23 represent final value problems, in
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which the functions λ, ∂λ=∂t, and ϕ are known at t � T, and

the problem is to determine the adjoint variables λ and ϕ in

�0; T�. Notice that the terms
������

ρμ
p �∂λ=∂t� and αϕ have op-

posite signs to their counterparts in (20) and (21). At first

glance, it may appear that the solution for λ and ϕ could then

be unstable. To verify that this is not the case, it suffices to

introduce a change of variable t0 � t � T, which renders pro-

blems (22) and (23) into initial value problems with exactly

the same operations acting on λ and ϕ as those in (20) and

(21) for u and v. Only the right-hand sides are different, and

these do not affect the stability of the problem.

The final KKT condition is derived by taking the varia-

tion of the Lagrangian with respect to the shear modulus μ,

yielding the following equation for the material field μ:

� β∇ ·

�

∇μ

�∇μ ·∇μ� ε�1=2
�

�
Z

T

0

∇λ · ∇�u� η�μ�v�dt

�
Z

T

0

Dμη�μ�v∇ · �μ∇λ�dt

�
Z

T

0

ϕDϕα�μ�vdt � 0 in Ω;

∇μ · n � 0 on ΓFS;

∇μ

j∇μj · n � 1

2

Z

T

0

������

ρ

μ
λ

r

∂u

∂t
dt on ΓAB; (24)

where the operators Dμα�μ� and Dμη�μ� represent the first

derivatives of the functionals α�μ� and η�μ�, respectively,
with respect to μ.

Because the KKT system is a coupled nonlinear system

of equations, it must be solved with an iterative method. We

next discuss issues related to the design of the optimization

algorithm.

Optimization Method

A discussion of the issues faced in solving large-scale

optimization problems that are governed by PDEs can be

found in Akcelik et al. (2006). Here, we give a brief discus-

sion of the methods we use to solve the optimality system

(20) to (24). There are at least two main choices we face

in designing a suitable algorithm: (a) the solution technique

for computing the search direction and (b) the method

for finding the step length. In making these decisions, the

trade-off between resolution and computing time is of

the essence.

At each iteration, given an estimate of the solution, the

search direction can be computed using methods that utilize

the derivatives of the objective function. The simplest of such

gradient-based methods is the steepest descent (SD) method,

which is based on a linear model of the objective function

and uses the negative gradient as the search direction. This

method is simple to implement and requires little work per

iteration beyond computation of the gradient. But it often ex-

hibits slow convergence even for mildly ill-conditioned pro-

blems. Another common approach for computing the search

direction is the Newton’s method, which is based on a quad-

ratic model of the objective function. This method is locally

quadratically convergent and often takes just a few iterations

once it is close to a minimum. We use variants of Newton’s

method to determine the search direction in this work. For

solving the linear system of equations that arises at each

Newton iteration, we use the conjugate gradient (CG) method

as discussed in the next section.

Newton’s method is locally convergent and therefore re-

quires some form of globalization, such as a line search or

trust region methods. Trust region methods define a region

around the current estimate in which the model of the objec-

tive function is trusted. These methods estimate the step

length and the search direction simultaneously by minimiz-

ing the model over the trust region. Line search methods first

compute a direction of descent and then choose a step length

in that direction so that the objective function is decreased.

We use a backtracking line search technique in this work

and choose the step length to satisfy the Armijo condition

(Nocedal and Wright, 1999).

The Newton step for the solution of the KKT optimality

system (20) to (24) is given by the following indefinite linear

system of equations:

δ2uuL δ2uvL δ2uμL δ2uλL δ2uϕL

δ2vuL δ2vvL δ2vμL δ2vλL δ2vϕL

δ2μuL δ2μvL δ2μμL δ2μλL δ2μϕL

δ2λuL δ2λvL δ2λμL 0 0

δ2ϕuL δ2ϕvL δ2ϕμL 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

8

>

>

>

<

>

>

>

:

�u

�v

�μ
�λ
�ϕ

9

>

>

>

=

>

>

>

;

�

�

8

>

>

>

<

>

>

>

:

δuL

δvL

δμL

δλL

δϕL

9

>

>

>

=

>

>

>

;

: (25)

Here, the δ2L operator refers to the second variation of

the Lagrangian with respect to the indicated variables, the

overbars on the optimization variables indicate the Newton

direction in each of these variables, and the right-hand side is

the negative of the gradient of the Lagrangian. The coeffi-

cient matrix of this system is known as the KKT matrix.

In a full space approach, one solves the preceding sys-

tem simultaneously for �u, �v, �μ, �λ, and �ϕ. This approach re-

quires solution of a large indefinite linear system discretized

over space-time, which is not feasible for a large-scale pro-

blem of the type we consider. On the other hand, the reduced

space utilizes a block elimination to reduce the system to one

that contains only the material field unknowns. Thus, it does

not require storage of the time-dependent variables and as-

sociated entries of the space-time matrix in (25). In addition,

the reduced Hessian is often better conditioned than the full

Hessian and is positive definite near a minimum. Conse-

quently, in this work we use the reduced space approach.

We first compute the Newton direction for the material

field, �μ, by solving the reduced version of the Newton equa-

Full Waveform Inversion for Seismic Velocity and Anelastic Losses in Heterogeneous Structures 1997



tions (25). We do this as follows: At each Newton iteration,

given a shear modulus estimate μ, we first solve for u and v

through state equations (20) and (21). With u and v known,

we solve for λ and ϕ through adjoint equations (22) and (23).

Knowing �u, �v, �λ, and �ϕ, we calculate the negative of the

reduced gradient gμ � �δμL. Then, in order to obtain the

reduced Newton system for �μ, we initially solve for �u and

�v from the last two rows of equation (25) (which are linear-

ized state equations). Then from the first two rows, which are

linearized adjoint equations, we solve for �λ and �ϕ. Finally,

we arrive at the reduced Newton system for �μ corresponding

to the middle row of the KKT matrix. This block elimination

is equivalent to

Wμ �μ � �gμ; (26)

where Wμ is the Schur complement of δ2μμL in the matrix of

(25) and is known as the reduced Hessian. We note that the

second-order optimality condition states that the reduced

Hessian is at least positive semidefinite at the solution,

and therefore the reduced Hessian is guaranteed to be posi-

tive only near a minimum. Because global convergence re-

quires a direction of descent of each Newton iteration, and

this can be achieved via a positive-definite approximation of

the reduced Hessian, we choose to make a Gauss–Newton

approximation, in which we ignore the terms that depend

on adjoint variables λ and ϕ in the KKT matrix. It can be

shown that this leads to a positive-definite reduced Hessian

approximation.

Because of storage and computational limitations, we

cannot factor the reduced Hessian matrix, or even construct

it, which is of the order of the degrees of freedom of the shear

modulus discretization. Instead, we solve the reduced New-

ton system for the search direction, �μ, with the conjugate

gradient method, which does not require the construction

of the reduced Hessian matrix but only its application to vec-

tors. Computing the matrix-vector product at each CG itera-

tion requires solution of the state and adjoint problems

(Askan, 2006).

The convergence of the CG algorithm is related to the

square root of the condition number of the reduced Hessian.

Clustering of the eigenvalue spectrum also leads to faster

convergence.

To address possible ill conditioning of the reduced Hes-

sian, we use a preconditioner in the form of a limited mem-

ory Broyden–Fletcher–Goldfarb–Shanno (BFGS) method,

which is generated using information from the CG iterations

(Morales and Nocedal, 2000). Using this preconditioner,

we typically obtain a reduction in the total number of CG

iterations of a factor of 8 relative to the unpreconditioned

iterations.

Finally, we terminate the CG iterations early to avoid

oversolving, in the style of an inexact Newton–CG method

(Eisenstat and Walker, 1996).

The performance of the line search method depends on

successful choices of the step length α as well as the search

direction �μk. Here, we use a backtracking line search, begin-

ning with unit step length and decreasing it until the objec-

tive function is reduced sufficiently according to the Armijo

condition (Nocedal and Wright, 1999).

The final difficulty to address is the presence of many

local minima. It is well known for inverse wave propagation

problems that multiple minima exist for the least-squares ob-

jective functional in the direction of the low wavenumber

components of the material field, and these local minima

have attraction basin diameters that shrink with increasing

frequency of propagating waves (Symes, 1990). Using this

observation, we employ a multilevel continuation technique,

in which we minimize the objective functional over a se-

quence of increasingly finer discretizations of the material

field. We begin by solving the inverse problem on a coarse

material grid and prolong the solution to the next finer grid,

continuing the refinement until the material grid matches the

wave propagation grid. The converged solution on each grid

is used as an initial guess for the next scale. In our experi-

ence, this multilevel grid continuation strategy keeps the se-

quence of minimizers within the basin of attraction of the

global minimum, provided the seismic source contains suf-

ficient low-frequency energy. This strategy is similar to that

employed by Bunks et al. (1995).

We note that it is possible to use multilevel inversion for

regularization purposes as well if one stops in the early stages

of the multilevel algorithm. However, the quality of inverted

result with this kind of regularization will not be as good as

the TV regularization that we use in our formulation. Thus,

we show in our results that the TV works effectively as

a regularization method, due to the discontinuous (rather,

piecewise constant) nature of wave velocity. The purpose

of the multilevel algorithm here is only to lead the optimizer

to the global minimum.

We have discretized the preceding continuous KKT sys-

tem in space with a standard Galerkin-type finite-element

scheme and a central differences scheme for temporal discre-

tization. We have implemented the described inversion strat-

egy using the parallel numerical library PETSC (Balay

et al., 2001).

In the next section, we demonstrate the performance of

our methodology through inversions for the shear-wave ve-

locity in a two-dimensional viscoelastic medium.

Example: Synthetic Two-dimensional Viscoelastic
Waveform Inversion

To illustrate the feasibility of the methodology described

in the preceding sections for finely parameterized models,

we apply the viscoelastic inversion algorithm to reconstruct

the target two-dimensional shear velocity and attenuation

profiles shown in Figure 4. The model under consideration

comprises a portion of a vertical cross section of the Los An-

geles basin. Figure 4a depicts the spatial distribution of the

shear-wave velocity derived from the SCEC seismic velocity

model (Magistrale et al., 2000), with an assigned minimum
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threshold velocity of 715 m=sec. The vertical line in the

model represents the trace of a causative strike-slip fault run-

ning perpendicular to the valley. The target velocity profile

has a significant contrast of 4.9 between the smallest and lar-

gest seismic velocities, with a corresponding contrast in the

shear modulus of 25.

In our numerical experiments, we use waveforms

synthesized from the target profile on the free surface as

pseudoobserved data. To model the source, we apply a uni-

form SH kinematic dislocation, with a triangular slip rate,

with a rise time t0 and total slip u0, as shown in Figure 5.

The model parameters, such as the overall dimensions, time-

step, number of receivers, and regularization parameter, are

listed in Table 1. We add 10% Gaussian random noise to the

synthetic seismograms at the receivers to represent errors in

the observations. The wave propagation simulations are per-

formed on a 64 × 64 grid. The material model is initially

taken to be homogeneous; that is, we assume nothing is

known about the target. Thus, the optimization grid starts

with a single finite element of constant value and becomes

uniformly finer at each stage of the multilevel process until it

matches the wave propagation grid.

Figure 4b shows the target distribution of Q throughout

the profile. These values, as well as those for the seismic ve-

locity in Figure 4a, were obtained iteratively using the

approximate procedure described earlier for taking into con-

sideration the nonlinear material behavior, starting with the

lossless SCEC velocity model as the initial guess.

Single-Variable Inversion for Shear-Wave Velocity

We initially perform only single-variable inversions,

that is, for the material field μ, using the relationship (15)

for the intrinsic attenuation. Figure 6 shows a sequence of

material fields found by solving the inverse problem on a

sequence of increasingly finer material grids. The shear

modulus μ is approximated as a piecewise bilinear function

on each regular grid, as are the state fields u and v on the

64 × 64 grid. This inversion was performed with 65 recei-

vers that were distributed uniformly with an even spacing

of 0.54 km on the free surface and with a grid capable of

resolving around 10 × 10 wavelengths in both the length

and depth directions. The high fidelity of the results is no-

teworthy: even fine features of the size of a fraction of a

wavelength are accurately resolved.

In Figure 7, we compare the inverted ground velocity

time history to the target ground velocity time history re-

corded at a receiver located 8.75 km from the left end of

the domain. We observe that even before the final stage

of the multilevel grid continuation, the corresponding seis-

mograms are close to the target waveform although the

shear-wave velocity recovery at those stages is still poor.

This is a manifestation of the ill posedness of the seismic

waveform inversion problem.

To assess the accuracy of the inverted waveforms at

nonreceiver locations, we solve again the same problem

but now using only 33 receivers from among the original

65, leaving out every other one. We examine the inverted

waveforms at 32 grid points on the surface, of which 16 cor-

respond to receivers and the other 16 to nonreceivers. We

then compare the inverted waveforms with the correspond-

ing target waveforms. The top portion of Figure 8 shows the

locations of select grid points and the lower portion the dis-

placement and velocity seismograms registered at the 32 grid

points. There is a very close match between the target and

inverted response at all grid points, including the nonreceiver

locations.

Table 2 displays the numerical performance of the inver-

sion algorithm in terms of the number of Gauss–Newton and

CG iterations for the consecutive stages of the multilevel al-

gorithm. The results show that the numbers of CG and

Gauss–Newton iterations do not increase with the grid size

beyond 8 × 8 grid, but actually decrease.

The intermediate inversion results in Figures 6 and 7 are

shown mainly to illustrate the convergence steps of our mul-

Figure 4. (a) Target shear-wave velocity profile; (b) target damping model.
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tilevel inversion method. The sequence of optimization pro-

blems is solved automatically starting from a homogeneous

initial guess, without intervention. It should be noted that

alternative procedures for material inversion and imaging

using full waveforms have been developed by others work-

ing in various fields of application, both in the time domain

(Tarantola, 1984; Shipp and Singh, 2002) and in the fre-

quency domain (Pratt, 1999; Sirgue and Pratt, 2004). An

important attribute of our approach is that, due to the precon-

ditioned Gauss–Newton-CG iterations, the number of itera-

tions required is independent of the problem size (in both

state and material fields) and is thus scalable to large

problems.

Simultaneous Inversion for Shear-Wave Velocity

and Intrinsic Attenuation

In the previous sections, we presented the solution tech-

nique and reported results of inversions performed for the

shear modulus, or equivalently, the seismic velocity. We pre-

scribed the viscoelastic parameters in terms of this single

material variable and treated them as known quantities

throughout the domain. In this section, we enlarge the set

of inversion parameters so that we perform inversion simul-

taneously for the velocity and a viscoelastic parameter. The

new inversion variable is the parameter a that enters into the

nonlinear relationship between Q and VS in (15). This para-

meter gives a direct measure of damping included in the

soil model.

The methodology and solution technique for the two-

variable optimization problem remain the same as before.

However, the reduced Newton system now includes informa-

tion due to the derivative of the Lagrangian with respect to

the new inversion variable in addition to the original one. In

this section, we present the modification in the solution tech-

nique and report results of inversions for the two variables.

Later we discuss the effects of the additional inversion vari-

able on the algorithmic and numerical performance of the

inversion algorithm.

Recall from the section “Inverse Viscoelastic Wave Pro-

pagation Problem” that the relationship betweenQ and VS in

our approach is given in a nonlinear form as follows:

Q � a arctan

�

VS

VSref

�

; (27)

Figure 5. Seismic source model.

Table 1
Source and Model Parameters

Domain size (km) 35 × 20

Grid dimensions (km) 0:54 × 0:31

Timestep Δt (sec) 0.06

Simulation time tD (sec) 30

Minimum velocity (m=sec) 715

Maximum velocity (m=sec) 3470

Number of receivers 65

Regularization parameter, β 0.001
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Figure 6. Inverted shear velocity profiles for the consecutive stages of the multilevel inversion algorithm (VS in m=sec). The last image
(bottom right-hand corner) shows the target profile.

Figure 7. Target versus inverted ground velocity time history for the consecutive stages of the multiscale inversion algorithm at a
location 8.75 km from the left end of the domain (target time history, blue line; inverted time history, red line).
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Figure 8. (a) Receiver and nonreceiver grid points on the surface shown only partially for clarity. (b) Target and inverted displace-
ment time histories. (c) Target and inverted velocity time histories (receiver, red curve; nonreceiver, green curve; inverted time histories,
blue curve).
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where the parameter a is found to be 25.5 for the shear strain

range exhibited by the basin soils. In the sections “Inverse

Viscoelastic Wave Propagation Problem” and “Example:

Synthetic Two-dimensional Viscoelastic Waveform Inver-

sion,” we constrained Q to satisfy (27) with a � 25:5 both

for the forward and inverse wave propagations. Here, in the

forward problem, Q is assigned the values obtained from

(27) with a � 25:5 as before, but in the inverse problem,

we release the parameter a by regarding it as an independent

inversion variable. Using results from this inversion, we are

able to compare the inverted values of Q with the corre-

sponding target values.

To avoid the challenge of inverting simultaneously for

both the velocity and the parameter a at every level, we in-

itially let the parameter a have its value fixed to the target

value a � 25:5 at the first seven stages of the multilevel

algorithm, where the only inversion variable is velocity.

We then incorporate a as an independent inversion variable

once we reach the finest optimization grid.

The solution technique is the same as for one-variable

inversion; however, the solution space increases with the

addition of the new variable. Including the parameter as

an inversion variable in the solution, the optimality condi-

tions and the Newton update for the new full space system

are as follows:
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Because α � α�Q� and η � η�Q�, where Q � Q�μ; a�,
the parameters α and η are functions of μ and a. Similar to

the one-variable case, after the block elimination, the final

reduced Gauss–Newton system can be written as

Wμμ Wμa

Waμ Waa

� ��

�μ

�a

�

� �
�

δμ
δa

�

: (30)

The step length is calculated using a backtracking line

search, as before, and both variables are updated using the

same step length α as follows:

μk�1 � μk � αk �μk; ak�1 � ak � αk �ak:

Next, we present results for the two-variable inversion

problem. We use the target shear-wave velocity profile

described in the previous section, 65 receivers, TV regular-

ization, and the multilevel technique. The value of atarget for

the forward problem is 25.5, and the initial guess for a is

taken to be 22.0. Concurrent inversion for a and μ yields

ainverted � 25:57, and the shear velocity profiles for the con-

secutive stages of the multilevel algorithm are depicted in

Figure 9. The inverted waveforms are compared to the target

waveforms at a receiver (located at x � 8:75 km) in Fig-

ure 10. As before, to study the effect of receiver density

on inversion results, we run the concurrent inversion pro-

blem with 33 receivers. Figure 11 shows the displacement

and velocity time histories at several grid points including

receivers and nonreceivers. There is a close match between

the target and inverted response at all grid points including

the nonreceiver locations as before.

Through the inversion of the viscoelastic parameter, we

recover a damping model. To see how well the inverted

damping model matches the target damping model; in Fig-

ure 12 we plot the inverted damping model through the

relationship

Qinverted � ainverted arctan

��VS�inverted
VSref

�

and compare it to Qtarget, calculated as

Qtarget � atarget arctan

��VS�target
VSref

�

:

Table 2
Number of CG and Gauss–Newton Iterations

for Consecutive Stages of the

Multilevel Algorithm

Grid CG Iterations (Gauss–Newton Iterations)

Homogeneous 59 (59)

1 × 1 41 (29)

2 × 2 58 (33)

4 × 4 151 (59)

8 × 8 385 (67)

16 × 16 262 (53)

32 × 32 213 (34)

64 × 64 196 (27)
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Figure 9. Inverted shear velocity profiles for the consecutive stages of the multiscale inversion algorithm (VS in m=sec).

Figure 10. Target versus inverted ground velocity time history for the consecutive stages of the multiscale inversion algorithm with
selected parameters for the two-variable inversion at a location 8.75 km from the left end of the domain (target time history, blue line; inverted
time history, red line).
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Figure 11. (a) Receiver and nonreceiver grid points on the surface. (b) and (c) Target and inverted displacement and velocity time
histories for the two-variable inversion (receiver, red curve; nonreceiver, green curve; inverted time histories, blue curve).
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By comparing Figures 6 and 9, we see that the new in-

version with a treated as an independent inversion variable

towards the end of the multilevel inversion process leads

eventually to the same inverted model for the velocity as

the original one, in which a is assigned to the target value

from the beginning. This is mainly due to the fact that we

incorporate the second inversion variable only after conver-

gence has been attained for the first one, though with an

initial guess for a that differs from the target value by

about 15%.

Table 3 compares the numerical performance of the two-

variable inversion algorithm with the one-variable case. We

note that β � 10
�3 in both cases. The numerical perfor-

mance of the algorithm until the finest grid is not affected.

In the last grid, the number of iterations increased by 20%.

This does not cause a substantial increase in the overall com-

puting time.

Summary

In this article, we presented an inverse wave propagation

algorithm to determine seismic velocity and intrinsic attenua-

tion of soil media. We formulated our inverse problem as

a least-squares minimization problem, constrained by the

forward viscoelastic wave propagation initial-boundary

value problem. To model the intrinsic attenuation effects,

we used a model consisting of SLSs. We initially related

the mechanical properties to the attenuation level,Q�1, using
the complex frequency-dependent relaxation modulus con-

cept. Subsequently, we derived predictive equations between

the mechanical properties of the SLS andQ�1 and linkedQ�1

to the shear-wave velocity through a semiempirical model.

To overcome the inherent challenges of inverse wave

propagation problems posed by ill conditioning and multiple

minima, we employed regularization and multilevel grid

continuation, respectively. To solve the large-scale nonlinear

optimization problem, we used a Gauss–Newton-CG solu-

tion technique, which does not require the Hessian matrix

explicitly. A key difference between other seismic inversion

approaches that use time-domain waveform misfits and ours

is that the former require that the initial guess be located in

the neighborhood of the global minimum. Our approach does

not impose this requirement. (Another important attribute

of our approach is that it is scalable, making it amenable

to parallel computation).

We used our inversion method to perform synthetic in-

versions for a two-dimensional seismic velocity profile of

a sedimentary basin model from the San Fernando Valley

under SH-wave excitations using a single SLS rheological

model. We initially performed inversions for the shear-wave

velocity taking intrinsic attenuation as a known quantity.

Then, permitting Q�1 to vary as another inversion variable,

we obtained inversion results for shear-wave velocity and in-

trinsic attenuation together. Overall, the results show that the

multilevel limited memory BFGS preconditioned Gauss–

Newton-CG method with TV regularization proves to be

effective for viscoelastic inversion.

Figure 12. Comparison of target and inverted Q models.

Table 3
Numerical Performance of the

Two-Variable Inversion

CG Iterations (Gauss–Newton Iterations)

Grid One-Variable Two-Variable

Homogeneous 59 (59) 59 (59)

1 × 1 41 (29) 41 (29)

2 × 2 58 (33) 58 (33)

4 × 4 151 (59) 151 (59)

8 × 8 385 (67) 385 (67)

16 × 16 262 (53) 262 (53)

32 × 32 213 (34) 213 (34)

64 × 64 196 (27) 232 (49)
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In summary, the main contributions of this work are as

follows:

1. This study is a successful attempt to invert simultaneous-

ly for elastic and viscoelastic properties in wave propa-

gation problems.

2. We have derived a realistic, nonlinear, semiempirical pre-

dictive relationship between Q and VS for the problem-

specific shear strain range. It is possible to derive similar

predictive relationships that could be used as material

property models for other forward or inverse wave pro-

pagation problems of interest.

3. Based on our results, it is possible to generate attenua-

tion models. This, in turn, will lead to more precise

damping models in next-generation ground-motion mod-

eling studies.

4. Using several numerical remedies, we have succeeded in

performing inversions with shear-wave velocity contrasts

up to five (VSmax
=VSmin

� 5). This issue is essential be-

cause in the case of real-data inversions, the contrast

in actual material property profiles can be very high.

5. Our technique remains to be validated, of course, with

actual observations. From the results of the idealized

investigations we presented, it appears that the proposed

large-scale methodology will provide a useful basis for

possible further real-data inversions in basins that exhibit

complex geotechnical and seismic features.
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