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Full-waveform inversion imaging of the human brain
Lluís Guasch 1✉, Oscar Calderón Agudo 1, Meng-Xing Tang2, Parashkev Nachev3 and Michael Warner1

Magnetic resonance imaging and X-ray computed tomography provide the two principal methods available for imaging the brain
at high spatial resolution, but these methods are not easily portable and cannot be applied safely to all patients. Ultrasound
imaging is portable and universally safe, but existing modalities cannot image usefully inside the adult human skull. We use in silico
simulations to demonstrate that full-waveform inversion, a computational technique originally developed in geophysics, is able to
generate accurate three-dimensional images of the brain with sub-millimetre resolution. This approach overcomes the familiar
problems of conventional ultrasound neuroimaging by using the following: transcranial ultrasound that is not obscured by strong
reflections from the skull, low frequencies that are readily transmitted with good signal-to-noise ratio, an accurate wave equation
that properly accounts for the physics of wave propagation, and adaptive waveform inversion that is able to create an accurate
model of the skull that then compensates properly for wavefront distortion. Laboratory ultrasound data, using ex vivo human skulls
and in vivo transcranial signals, demonstrate that our computational experiments mimic the penetration and signal-to-noise ratios
expected in clinical applications. This form of non-invasive neuroimaging has the potential for the rapid diagnosis of stroke and
head trauma, and for the provision of routine monitoring of a wide range of neurological conditions.
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INTRODUCTION
No universally applicable means of imaging the living human
brain at high anatomical resolution exists. The modality with the
best spatial resolution and tissue contrast, magnetic resonance
imaging (MRI), is contraindicated where the presence of magnetic
foreign bodies cannot be excluded, and is impractical with
claustrophobic, uncooperative, or severely obese patients. Its
nearest rival, X-ray computed tomography (CT), involves exposure
to harmful ionising radiation. Both require large, expensive,
immobile, high-power instruments that are near-impossible to
deploy outside specialised environments. The clinical conse-
quences of this are high symptom-to-image times, long inter-
scan intervals during serial imaging, and constraints on the range
of patients that can be imaged successfully.
Pre-eminent among the many neurological disorders, where

patient outcomes are degraded by these restrictions, is stroke: the
second most common cause of death worldwide, and the
dominant cause of acquired adult neurological disability1. Treat-
ment decisions are here critically guided by neuroimaging, ideally
performed immediately after symptom onset. Delays of the order
of minutes have substantial impact on outcomes, yet the necessity
to treat patients only after transport to hospital routinely
introduces delays of an hour or more2. Accelerating the treatment
of stroke by enabling neuroimaging and treatment to be
performed at the point of first contact would thus have large
population-level impacts on survival and disability. Analogous
arguments can be made for improved rapid medical imaging in
head trauma, and in routine intraoperative, post-operative, and
preventative neurological monitoring, with the potential to impact
large numbers of patients worldwide.
We provide in silico proof-of-principle, supported by ex vivo and

in vivo laboratory measurements, that the combination of
transmitted transcranial ultrasound tomography with a computa-
tionally intensive technique originally developed to image the
interior of the Earth, can address these clinical needs by providing

portable three-dimensional (3D) quantitative imaging that is less-
expensive, faster, and more easily applicable than MRI, and that is
safer and has better soft-tissue contrast than CT. This approach
results in a three-dimensional, sub-millimetre-resolution, quanti-
tative model of acoustic wave speed within the brain and
surrounding tissue, which is capable of distinguishing most of the
structures and pathologies to which MRI is sensitive. The
combined findings of our in silico and laboratory experiments
demonstrate that recording transcranial ultrasound data are
feasible, recorded signal-to-noise levels are high, and the data
contain information that is sufficient both to build an accurate
model of the skull and to reconstruct brain properties. To achieve
this, we use two closely related techniques: adaptive waveform
inversion (AWI)3 to build an accurate skull model, and FWI4 to
extract brain properties at high resolution.
Conventional medical ultrasound is fast, safe, portable, and

cheap, but is unable to image the adult human brain at high
resolution within the skull; the main reasons for this are well
understood5–8:

1. In both conventional pulse-echo B-mode sonography9 and
time-of-flight ultrasound CT10, high frequencies are
required in order to obtain high spatial resolution.
Scattering and anelastic losses occur within the skull and
the brain, and these increase with frequency. At the
frequencies used by conventional ultrasound modalities,
these signal losses prevent successful imaging of intracra-
nial soft tissue.

2. The contrast in wave speed between the skull and soft
tissues, and between the skull and air-and-fluid-filled
cavities within it, produces significant refraction, diffraction,
and reverberation of ultrasound energy, as it is transmitted
through the skull. This significantly distorts and complicates
the consequent wavefront, leading to strong aberrations in
both phase and amplitude, and to significant spatial and
directional variation in the waveform of the transmitted
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pulse. It is not currently possible to correct these effects
with sufficient accuracy using conventional modalities.

3. In pulse-echo sonography, back-scattered reflections are
used to generate the image. The bones of the skull differ
significantly in wave speed and density from those of
surrounding soft tissue. Consequently, the skull generates
strong reflections and multiple scattering, and these high-
amplitude signals overlie, interfere with and obscure the
much-weaker reflections produced by the small impedance
contrasts that occur within soft tissue in the brain, leading
to low signal and high source-generated noise in intracra-
nial pulse-echo images.

4. Time-of-flight tomography uses a short-wavelength approx-
imation, basing its analysis on the simplified physics of ray
theory in which the effects of transmission through a
heterogeneous medium are represented by a simple
change in travel time. For a finite wavelength, wave
transmitted through a medium that is heterogeneous on
many scales, such delay times are only sensitive to the
properties of the medium averaged over the dimensions of
the first Fresnel zone11. Consequently, time-of-flight tomo-
graphy is unable to resolve structure below this scale, and
so lacks acceptable resolution at the low frequencies that
can be recorded using transcranial ultrasound.

One possible way around these problems is to use natural
openings in the skull as acoustic windows, but this approach
severely reduces illumination7; it is typically limited to neonates
through an open fontanelle12. In principle, it is also possible to
remove, or thin, portions of the skull in order to record
conventional high-frequency pulse-echo B-mode reflection
images without strong bone reflections, absorption, or distortion.
This method has produced promising results in rodents, generat-
ing functional ultrasound images that can capture transient
changes in blood volume related to brain activity13,14, but this
invasive approach has obvious limitations in clinical practice.
In this paper, we present the neurological application of full-

waveform inversion (FWI)4, an imaging method first applied
widely in geophysics15. FWI is a computationally intensive
technique that has been developed to a high level of sophistica-
tion by the petroleum industry to image hydrocarbon reservoirs
within the Earth16,17. The spatial resolution that can be obtained
using this technique is much finer than that of time-of-flight
tomography. FWI achieves this improved resolution through a

combination of characteristics18, of which the most important is
that it uses a more-complete description of the physics of wave
propagation in heterogeneous media that takes proper account of
the finite wavelength of transmitted waves. This description, which
involves the full numerical solution of the wave equation, is able to
model accurately the effects of sub-Fresnel zone heterogeneity
and multiple scattering on the wavefield. FWI combines this more-
accurate description of the physics with an appropriate non-linear
inversion scheme, and a suitable data acquisition geometry, so that
it is able to recover fine-scale heterogeneity throughout the model.
Adaptive waveform inversion (AWI)3,19 is a modification of FWI that
is better able to begin from a poor starting model; here we use it as
a preconditioner for FWI so that inversion can begin successfully
without any a priori information about the skull.
Figure 1 outlines the geometry of the method. Low-frequency

ultrasound data are recorded at all available azimuths by
surrounding the head with ultrasound transducers in three
dimensions. Each transducer is activated separately in turn as a
source of ultrasound energy, and the signals that it generates are
recorded by every other transducer. Allowing for reverberations to
die away after each activation, it takes ~2 seconds in total to
acquire a full data set for all 1024 sources each recorded on 1024
receivers. FWI uses predominantly transcranial transmitted energy
recorded on the side of the head opposite to the source
transducer, but it also extracts information from all other parts
of the recorded wavefield including reflections, diffractions,
multiple scattering, and guided waves that arrive at any angle at
any of the transducers. Unlike conventional ultrasound imaging,
FWI does not use focused transducers, focusing arrays or any type
of beam forming, either in the experimental configuration or in
the computer subsequently
The paper is organised as follows: we explore our proposed

methodology using in silico simulations, and present in vivo and
ex vivo laboratory results that support our assumptions. We begin
by demonstrating the improvement in resolution provided by FWI
in even the simplest case when the model is two-dimensional and
the skull has been removed. We follow this by exploring what FWI
is able to achieve in ideal circumstances for the intact adult
human head in three dimensions; this result demonstrates the
resolution and tissue contrast potentially achievable in a clinical
setting. We follow this by demonstrating that a combination of
AWI and FWI can begin from the simplest of starting models, and
we demonstrate the importance of full 3D data acquisition and

(a) (b) (c)

(d)

Fig. 1 Experimental geometry. a Three-dimensional array of transducers used for data generation and subsequent inversion. Each transducer
acts as both a source and a receiver. The red ellipse shows the location of the two-dimensional array used to generate the data for Fig. 2 and 4.
b A snapshot in time of the wavefield generated by a source transducer located at the position indicated by the small yellow circle, computed
via numerical solution of the 3D acoustic wave equation. The wavefield is dominated by strong reflections from the skull, and by intracranial
transmitted energy travelling across the brain; Supplementary Video 1 shows the full wavefield propagating in time. c Prototype helmet
containing 1024 transducers held rigidly in a 3D-printed framework. In the prototype device, the framework is customised to provide an
accurate fit to an individual subject, and filled with water. In portable clinical devices, the sensors move radially, and contact the patient via
sonographic gel. d Close up of sensor connections in the prototype.
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inversion. We present laboratory results, using direct observations
of in vivo and ex vivo transcranial ultrasound, to demonstrate that
good signal penetration and high signal-to-noise levels are readily
achievable. We provide an example of the clinical relevance of our
approach by demonstrating the accurate recovery of an
intracranial haemorrhage, and discuss clinical applications to
stroke and other pathologies. We conclude with an outline of our
methodology and algorithms. In Supplementary Information, we
discuss how our idealised in silico simulations and conclusions are
likely to compare with those obtainable from real-world in vivo
observations involving anelastic absorption and noise; we review
spatial resolution in pulse-echo, time-of-flight tomography, and
FWI methodologies; and we explore some of the practicalities and
speed of implementation in likely clinical settings.

RESULTS
Resolution with the skull removed
Ray-based time-of-flight tomography and wave equation-based
FWI both represent forms of transmission tomography. Figure 2
demonstrates the difference between these two techniques using
a simple two-dimensional model of the naked brain without the
complicating effects of the skull. Using the model from Fig. 2a, and
solving a numerical wave equation, a synthetic data set was
generated for transducers located around the brain. Using the
homogeneous starting model shown in Fig. 2b, this data set was
inverted using both time-of-flight tomography and FWI, to recover
the models shown in Fig. 2c, d. Time-of-flight tomography seeks to
find the best-fitting model by using geometric ray theory to
predict delay times for every source-receiver pair in the data set,
whereas FWI seeks to solve the same problem by using the wave
equation to predict the detailed variation of acoustic pressure with
time recoded at every receiver for every source.
For this numerical experiment, the wavelength in soft tissue of

the dominant frequency in the insonifying pulse was ~3.75 mm,
the shortest wavelength was ~1.75 mm, and the minimum
diameter of the Fresnel zone for signals that travelled across the
model was > 20mm. For conventional pulse-echo B-mode
sonography, spatial resolution depends upon several factors20,
but when imaging through relatively homogeneous soft tissues
with an appropriate transducer configuration and a short pulse
length of two cycles, the typical resolution is of the order of the
insonifying wavelength at the dominant frequency, or ~3.75 mm
in the present context. For wave equation-based transmission
tomographic methods, such as FWI, the achievable resolution is of
the order of half the wavelength of the highest available
frequency16,21, or ~0.88 mm in the present context. For FWI,

neither the pulse duration nor beam width directly affect spatial
resolution.
In contrast, well-established theory11 and numerical experi-

ments22 show that the maximum spatial resolution that can be
achieved, in the far field using ray-based time-of-flight tomogra-
phy, is of the order of the diameter of the first Fresnel zone. Thus,
we would expect that an FWI model would be ~ 20 times better
resolved in linear dimensions than the equivalent time-of-flight
model. Figure 2 illustrates this behaviour directly. Both methods
recover models that are accurate in their locally averaged
properties, but the time-of-flight model has only centimetre-
scale spatial resolution, whereas the FWI model has millimetre
resolution. Note that, in this simple example, the difference in
resolution between the two techniques is not related to the
presence of the skull, nor to differences in the optimisation
scheme—both methods used non-linear least-squares inversion
applied to the same input data. A more-detailed discussion of the
resolution achievable by pulse-echo sonography, time-of-flight
tomography, and FWI is provided within the Supplementary
Information.
In the absence of the skull, conventional high-frequency pulse-

echo sonography would of course be able to recover an accurate
and well-resolved image of the naked brain. However, if the skull
interposes, then pulse-echo fails entirely to image the brain inside
the skull because brain reflections are then significantly distorted,
absorbed, and scattered by the skull. Similarly, time-of-flight
tomography for the brain inside the intact human skull fails
because, at the low frequencies that can be transmitted across the
head with acceptable signal-to-noise ratios, spatial resolution is
insufficient. FWI does not suffer from either of these problems; it
properly accounts for the distorting effects of the skull, and it
achieves good spatial resolution even at the low frequencies that
can be recorded after transmission through the skull.

Three-dimensional full-waveform imaging through the skull
FWI has obvious advantages for brain imaging; it does though
have two complications of its own: the computational effort
required to extract the image from the data in three dimensions is
significant, and the method requires a reasonably good starting
model in order to proceed to the correct final model.
The former requirement has, until recently, limited the

applicability of medical FWI to problems that can be usefully
solved in two dimensions23, and the skull is not even approxi-
mately two-dimensional. The advent of large parallel multi-core
multi-node compute clusters, of on-demand parallel cloud
computing, and of large-memory graphics processing unit (GPU)
systems, coupled with improved FWI software and the use of pre-

Fig. 2 Inversion of data from a brain outside the skull. a A two-dimensional model of acoustic wave speed in the naked brain without the
skull. The red ellipse shows the transducer positions; the grey region is masked and held fixed during the inversions. b Homogeneous model
used to begin inversion. c Result of ultrasound computer tomography. The resultant model is accurate but has poor spatial resolution. d Result
of ultrasound full-waveform inversion. The resultant model is now both accurate and spatially well resolved.
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trained supervised deep-learning to accelerate the process, are
reducing the computational demands of this method; runtimes
and costs continue to reduce year-on-year.
The requirement for a good starting model is straightforward

for the soft tissue of the brain where a homogeneous starting
model is adequate. For the bones of the skull, however, additional
care is required. In this section, we assume that the skull model is
known a priori. In the following section, we demonstrate that AWI
is capable of building an accurate model of the skull entirely from
the ultrasound data without a priori knowledge, and that
following this with FWI then recovers a fully resolved model of
the brain.
Figure 3 shows transverse, sagittal, and coronal sections

through a three-dimensional target model of wave speed, a
starting model containing the true skull but otherwise homo-
geneous, and the model reconstructed using FWI applied to sub-
MHz ultrasound data generated by the target model. Supplemen-
tary Videos 2, 3, and 4 show the true, starting, and reconstructed
models in three dimensions. The colour scale shown in Fig. 3 is
designed to highlight heterogeneity within both soft and hard
tissues.
The bones of most of the upper cranium are multi-layered,

containing the inner and outer tables of denser cortical bone with
a high wave speed, surrounding the diploë, which is formed of
cancellous bone with lower density and wave speed. This
structure, together with the large contrast in properties between
the skull and its surrounding soft tissues, provides the principal
mechanism for transcranial signal attenuation, with anelastic
absorption and elastic mode-conversions playing a less-significant
role24–26; in the Supplementary Information, we examine explicitly
the significance of absorption and demonstrate its limited impact.
The model of the skull used in this study included all cavities,
foramina, and other structural complications that are present in
the adult human head, and that are capable of being captured on
the 500 μm grid that we used to represent the model.
The model recovered by FWI, Fig. 3g–i, is in good agreement

with the true model, Fig. 3a–c, for both extracranial and
intracranial soft tissues. Inside the skull, FWI is able to generate

an accurate and detailed image: grey and white matter match the
target tissue properties accurately, both in absolute wave speed
and in structure, with sufficient resolution to allow direct
identification of cortical folds. Deeper structures such as the
corpus callosum, the thalamus, the basal ganglia, and the
ventricular system are recovered well. Parts of the venous sinuses
have a thickness of 0.8 mm in the true model, as do larger vessels
within the brain, and these are recovered in the reconstructed
image, demonstrating that we are able to achieve sub-millimetre
resolution of the brain and its vascular system using only relatively
low frequencies lying below 1MHz. Parts of the cerebellum and
the pons lie inferior to the lowest transducer positions in our
numerical experiment, but it is still possible to extract sufficient
information from the data to image both bodies, although there is
a decrease in resolution as illumination is progressively lost in the
area close to the base of the skull.

Recovering the brain without an a priori model of the skull
FWI is a local optimisation algorithm that requires an initial model
that lies within the basin of attraction of the global solution15. The
variation in soft-tissue acoustic wave speed is ~ ± 7%, which has
values between ~1400ms−1 for fat and 1600ms−1 for muscle
tissue and cartilage27. At the frequencies that we use for FWI, such
relatively small perturbations are readily retrievable starting from a
homogeneous model having a wave speed similar to that of water
at ~1500ms−1, as demonstrated in Fig. 2. This is the reason why
FWI applied, for example, to breast imaging has been immediately
successful23,28. In contrast, the variation in wave speed for hard
tissue in the cranium is larger at ~ ±14%, with values between ~
2100ms−1 for cancellous bone and 2800ms−1 for cortical bone24–26;
the mandible and the vertebrae have even higher wave speeds of
~3500ms−127. These high values are far removed from that of
water. Consequently, recovery of the full model of the head,
including the bones of the skull, requires a more-sophisticated
approach; we show in this section that this can be provided by the
AWI algorithm3.
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Fig. 3 Models of acoustic wave speed. Transverse (left), sagittal (centre), and coronal (right) sections through the true (top), starting (middle),
and recovered (bottom) models. Both the wavefield modelling and waveform inversion are performed in three dimensions. The starting
model includes the true model of the skull, but is otherwise homogeneous.
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Figure 4b shows the failure of an attempt to recover a model of
the head using conventional FWI beginning from the purely
homogeneous starting model shown in Fig. 4a. This should be
compared with Fig. 3g, which shows the analogous result
obtained when the starting model contains an accurate model
of the skull. The reason for the failure of this attempt is that
conventional FWI will not converge to the correct global solution if
inversion begins from a model that is too far removed from the
true model. Specifically, for successful FWI, the data generated by
the starting model must not be shifted in time by more than half a
wave cycle at the lowest frequencies that are present in the data.
When that condition is not met, the data are “cycle skipped”, and
FWI will then typically fail.
AWI is a modification of FWI that is less sensitive to the quality

of the starting model, and it is able to move towards the true
model even when the data are cycle skipped. It does, however,
pay a price for this robustness, and the models that it is able to
produce on its own are not normally as well resolved as those that
can be produced by FWI. The solution then is to begin with
AWI from a simple homogeneous cycle-skipped model, then
switch to conventional FWI once AWI has moved the model
sufficiently far towards the true model that they are no longer
cycle skipped19.
Figure 4c shows the result of applying AWI, using the same data

and starting from the same homogeneous model as was used to
generate Fig. 4b. Now the attempt to recover a model of both the
skull and the brain has been reasonably successful, and no a priori
model of the skull has been assumed. The AWI model though is
not the final result. Figure 4d shows the results subsequently
obtained by conventional FWI beginning from a smoothed version
of the model previously recovered by AWI. The final model
recovered by this combination of methods is now accurate and
compares well to the model in Fig. 3g that was recovered using a
perfect model of the skull. AWI and FWI together then can fully
solve the problem of building a well-resolved accurate model of
skull and brain purely from ultrasound data without any a priori
knowledge of the skull.

Importance of three dimensions
Most three-dimensional medical imaging analyses data initially in
two dimensions in order to produce a stack of planes that are
combined to form a final 3D image volume. There would be
advantages in applying this approach to ultrasound FWI: the
computational cost of inverting many 2D slices is lower than that
of true 3D inversion, and 2D acquisition systems are simpler to
design, build, and operate. However, the structural complexities of
the skull, and large contrast with soft tissue, act to distort the
wavefronts by refracting and scattering energy out of a 2D plane.
Figure 5a illustrates the detrimental effects of inverting three-

dimensional data in only two dimensions. Here, the data being
inverted are a dense two-dimensional subset of the full three-

dimensional data used to generate the results shown in Fig. 3. In
Fig. 5a, the data to be inverted have been generated by a 3D wave
equation applied to a 3D model, but the inversion assumes only a
2D model and uses a 2D wave equation. The inversion is therefore
unable to explain energy that has been refracted, reflected,
scattered, or guided out of the 2D plane. The model recovered in
this case is neither accurate nor useful.
Figure 5b shows the equivalent experiment conducted purely in

2D; in this second case, both the initial data generation and the
inversion are two-dimensional. The 2D inversion of 2D data
recovers a model that is as accurate as that recovered by 3D
inversion of 3D data. Comparing the data and waveforms in Fig.
5a, b demonstrates why 3D FWI of 3D data, and 2D FWI of 2D data
both succeed, whereas 2D FWI of 3D data fails entirely. The 2D and
3D data sets show major differences, and it is evident that there
must be significant out-of-plane energy present in the 3D data,
and this cannot be explained adequately during 2D FWI. As three-
dimensional effects will always be present in real data, successful
imaging of the brain using transmission FWI will always require 3D
data acquisition and 3D inversion in order to correct properly for
the three-dimensional distortion of the wavefield produced by the
bones of the skull.

In vivo laboratory observations
At the sub-MHz frequencies that were used in our numerical
experiments, transmission losses in soft tissue are small27,29–34, but
scattering and anelastic losses in the skull can be important24–26.
To test the significance of these losses, and to measure signal-to-
noise ratios in real transcranial ultrasound, we made in vivo and
ex vivo laboratory observations. In both these experiments, the
transceiver bandwidth and the source waveform were identical to
those used in the in silico simulations. Ultrasound intensities were
at all times below the lowest limits recommended by the British
Medical Ultrasound Society for continuous adult diagnostic
ultrasound35. In the in silico and ex vivo experiments, the subject
head and the transducers were immersed in water. In contrast, for
the in vivo observations, the transducers were held against the
scalp, coupled to the subject using sonographic gel. Both in vivo
and ex vivo experiments produced similar levels of signal and
similar signal-to-noise ratios
Figure 6 shows transcranial in vivo waveforms acquired in the

laboratory, at three orientations, using one of the authors as a
subject. The data are displayed un-stacked and un-processed; that
is, a single unfocused source was triggered once, and the raw data
recorded on a single-channel receiver are displayed without beam
forming, dynamic compression or other numerical manipulation.
These observations demonstrate unequivocally that transcranial
ultrasound can be recorded for the in vivo adult human head, with
good signal-to-noise ratios, for the 100–850 kHz bandwidth that
we have used through this study using the simplest of acquisition
systems. These unfocussed signals have travelled across the head,

Fig. 4 Inverting from a homogeneous starting model. a Homogeneous starting model with velocity of water. b Model recovered using
conventional FWI. c Model recovered using AWI. d Model recovered by FWI following AWI. The colour scale is as shown in Fig. 3. Note that the
skull is not present in the starting model, and the final model is well recovered.
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successively through gel, hair, skin, external soft tissue, cranium,
brain, and other internal soft tissue, cranium, external tissues, and
gel, in a variety of orientations and alignments.
We calculated observed signal-to-noise levels by comparing the

RMS amplitude recorded before the transmitted signal arrives with
that recorded within a 20-μs window following the first signal

arrival. Signal-to-noise ratios calculated in this way for the in vivo
data, averaged over all orientations, were 39 dB, with a maximum
of 10 dB variation with orientation. We demonstrate in the
Supplementary Information that FWI remains robust at signal-to-
noise ratios below 2 dB. Our direct in vivo observations thus
demonstrate observed signal-to-noise levels that are very much

time (μs)

60 80 100 120 140 160 180

(a)

(b)

(c)

Fig. 6 In vivo transcranial observations. Un-processed, un-stacked, transcranial, ultrasound signals, low-pass filtered at 1 MHz, generated
using a single source and single receiver, coupled to the subject using sonographic gel, and held firmly against the scalp and hair. The source
waveform is identical to that used in both in silico and ex vivo experiments. The sonograms are amplitude normalised; true amplitudes and
travel times are approximately proportional to source-receiver separation. a Temporal to temporal. b Left frontal to right occipital. c Frontal to
parietal.
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Fig. 5 Model recovery using two-dimensional FWI. a 3D data inverted using 2D FWI. b 2D data inverted using 2D FWI. Left panels show
simulated data generated by a single source located at the yellow circle, as recorded on an elliptical array of 512 transducers placed around
the head. Centre panels show data recorded by a single receiver located opposite the source; the position of the data shown is indicated by
the blue line. Right panels show models recovered using purely two-dimensional FWI. Colour scale as shown in Fig. 3.
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larger than the minimum required for successful FWI, and were
obtained using safe levels of incident ultrasound, and employed
transducers and electronics that are readily deployable in a clinical
setting. It is clear that the signal penetration and signal-to-noise
ratios that are likely to be achievable in practical applications at
sub-MHz frequencies will be more than sufficient for transcranial
neuroimaging using low-frequency ultrasound supported by FWI.

Ex vivo laboratory observations
In the ex vivo experiment, we immersed a human skull in water,
recording transcranial ultrasound using the same transducers as
were used for the in vivo observations. The data recorded, with
and without the skull present, are displayed in Fig. 7. The principal
signal losses within an in vivo human head occur as the result of
anelastic loss within bone, reflection at the inner and outer
boundaries of the skull, and scattering within the cranium
especially at the boundary between the diploë and cortical bone.
The principal wavefront distortions are produced by the large
sound speed contrast between the bones of the skull and their
surrounding soft tissues, which have a sound speed close to that
of water. This ex vivo experiment is designed to capture all those
features.
Figure 7b shows the data recorded by a single transducer

without the skull present, and Fig. 7c shows data from the same
transducer with the skull interposed between the source and
receiver. Amplitudes are normalised in these figures so that Fig. 7c
is displayed at about five times the gain of Fig. 7b. The noise level
in the transcranial ex vivo data set observed in Fig. 7c is low; the
signal-to-noise ratio was 34 dB when measured as for the in vivo
data. The principal effect of interposing the skull is to advance the

arrival time by ~2.5 μs, which corresponds to one cycle at the 400-
kHz dominant frequency, and to reduce the transmitted
amplitude by about a factor of five. Assuming a skull thickness
of 7 mm, physical properties for wave speed, density, and
absorption given in Supplementary Table 1, and a cranium in
which lower-velocity lower density diploë is sandwiched between
faster, denser cortical bone, the observed delay time is as
expected. This delay means that the observed data are cycle
skipped with respect to a homogeneous model that contains only
water, and it explains why simple FWI fails to converge properly
when beginning from such a model, as in Fig. 4a.
Using the same simple model of the cranium to calculate

anticipated transmission amplitude losses produced by the skull,
the principal effect is that caused by normal-incidence reflections
at the water-to-cortical bone interfaces and at the cortical-to-
diploë interfaces. Together, these eight reflections reduce
transmitted amplitudes to ~36% of their values in a homogeneous
water model. Amplitude loss, produced by anelastic absorption
within both the cortical and cancellous layers, reduces amplitudes
at 400 kHz to about a further 77%, so that the total transmitted
amplitude would be expected to drop to ~28% as a result of
transmission through the skull. In the experimental data, the
corresponding amplitude drop is ~22%, well within the uncer-
tainties of this simple model. That the observed losses are slightly
greater than the calculated values is most likely a consequence of
small-scale structural complexity within the real skull, which will
moderately increase the magnitude of internal scattering.
We repeated the same experiment as shown in Fig. 7c, e in

silico, using a model obtained by converting a high-intensity X-ray
CT image volume of the ex vivo skull into acoustic sound speed.

ex-vivo

in-silico

water tank

human skull

source

receiver 
array

(a)

(b)

(c)

ex-vivo

(e)

in-silico
(f)

water-only

(d)

tim
e 

(μ
s)

tim
e 

(μ
s)

transducer number
time (μs)

Fig. 7 Ex vivo and in silico data after transmission across the head. a The geometry of the ex vivo laboratory experiment. b Data recorded
in the laboratory by the central transducer without the skull present. c The equivalent ex vivo data recorded with the skull. d The equivalent in
silico data with the skull. e Laboratory ex vivo data recorded on a finely sampled linear array with the skull. f The equivalent numerical data
simulated in 3D. The physical skull and the numerical model are nominally the same, but differ in detail, and the numerical model does not
include the effects of scattering by the physical transducers and their supporting hardware. Figures b–d are normalised to their largest
amplitude; the un-normalised amplitudes in b are about five times larger than those in c.
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The conversion from X-ray attenuation to sound speed is not
exact, so that the in silico data would not be expected to provide
an exact match to the laboratory ex vivo data. The real experiment
will also contain signals scattered by the physical transducers and
their supporting infrastructure; we did not attempt to duplicate
these additional signals in silico. Figure 7 compares the two
datasets. It shows that the timing, waveform, absolute amplitude
and variation of amplitude with position and time, in the ex vivo
laboratory data, are well reproduced by the in silico simulation,
verifying that our skull model and our modelling assumptions are
both reasonable.

Clinical application to stroke
The application of FWI to neuroimaging has the potential to
improve diagnosis in a wide range of neurological pathologies;
here, we explore its potential to aid early treatment of stroke, a
major cause of death and adult disability worldwide1. Stroke has
two principal causes: ischaemic stroke is most commonly caused
by a blood clot obstructing blood supply to the brain, and
haemorrhagic stroke is most commonly caused by bleeding within
the brain parenchyma. When the blood supply to the brain is
compromised, rapid intervention is required to restore circulatory
integrity, halt and reverse tissue damage, and prevent and reduce
morbidity, mortality, and disability. Although there are a number
of early treatments available, including thrombolysis, mechanical
thrombus extraction, and similar interventions36,37, their applic-
ability is limited in practice by the requirement for accurate high-
resolution brain imaging before these treatments can be
deployed2.
The indicated treatment for ischaemic stroke is contraindicated

for haemorrhagic stroke; brain imaging is therefore required to
diagnose and separate these causes. The need for speed is
paramount, but MRI is not portable and X-ray CT is barely so. Brain
imaging then takes place not when paramedics first reach the
patient, not within the ambulance, and not often within accident
and emergency units; as a result, relatively few stroke patients
receive a brain scan of any kind within the critical first hour, and
even fewer receive high-quality MRI2. There is then a clear need

for portable, fast, high-resolution, high-fidelity, 3D, brain imaging
that can differentiate between ischaemic and haemorrhagic
stroke, and differentiate these from other pathologies that can
mimic stroke. The development and clinical application of such a
method would markedly increase the survival rate and reduce the
severity of subsequent disability by enabling much earlier
treatment at the point of first patient contact.
To test the viability of this concept, we modified the target

model to contain a haemorrhage, Fig. 8a–c. To build this model,
we used physical properties for blood-infused soft tissue38,39.
Using a homogeneous starting model for the brain, and the true
model for the skull, we recovered the FWI images in Fig. 8d–f.
Figure 9 shows that the haemorrhage can be readily segmented
from the three-dimensional model, both in the target and the FWI-
recovered models. The target pathology is well recovered in the
FWI image, and has good tissue contrast with other features of the
brain. The boundaries and exact extent of the pathology are clear;
and although it is not shown here, FWI is well able to produce
time-lapsed images over a wide variety of time scales from
seconds to hours. The spatial resolution of FWI is capable of
detecting haemorrhage at all scales down to that of the
originating vasculature.

DISCUSSION
Both X-ray CT and MRI revolutionised medical imaging when they
first appeared; three-dimensional transmission and reflection
ultrasound tomography using FWI has the same potential for
impact across multiple disciplines, and has especial relevance for
rapid diagnosis and treatment of stroke. Supplementary Fig. 1
shows that the method is robust against the levels of noise that
we observe in realistic ex vivo and in vivo laboratory experiments,
and transcranial ultrasound signals have large amplitudes at the
relatively low, sub-MHz, frequencies that are sufficient for
successful sub-millimetre resolution. The method overcomes the
well-known limitations of conventional pulse-echo ultrasound
imaging of the adult human brain, and the related limitations of
conventional time-of-flight tomography.

Fig. 8 Recovery of a large haemorrhage by FWI. a–c Slices through a 3D wave-speed model perturbed by a large haemorrhage. d–f The
same slices through the FWI. The haemorrhage is well recovered by full-waveform inversion at high resolution in all slices. The colour scale has
been modified to highlight the haemorrhage.
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It is necessary either to include some prior model of the skull
within the starting model before attempting to recover the brain,
or to use an advanced form of FWI such as AWI that can converge
toward the correct answer from a simple starting model. To
account correctly for and remove the distorting effects of the skull,
it is essential to acquire and invert the data in three dimensions,
and unlike many other imaging techniques, it is not possible to
reduce three-dimensional imaging merely to the sum total of a
sequence of two-dimensional slices. In Supplementary Fig. 2, we
show that, at the low frequencies required by FWI, it is not
necessary to include density or anelastic absorption explicitly in
the inversion in order to recover a good image, but it may be
desirable to do so, both to improve the accuracy of the final
image, and to obtain additional independent parameters to aid
diagnosis. Other ultrasound methodologies, employing higher
frequencies, are more severely impacted by signal attenuation,
both in the skull and in soft tissue.
The computational effort required for 3D FWI is considerable.

The results shown in Fig. 3 required ~32 hours elapsed time to
complete, running on a conventional cluster of 128, CPU-based,
24-core, compute nodes. Our target is to reduce this elapsed time
to below 10 minutes; this requires a speed up of ~200 times. The
hardware that we used has a peak performance of ~60 tera-flop,
so achieving the desired speed up requires hardware capable of
operating usefully at a peak of ~12 peta-flop. Individual high-
performance GPU-based servers are currently able to achieve
speeds in excess of one peta-flop, so that a small array of these
would in principle be capable of producing a final model in <
10 minutes. Assuming 2019 prices, amortisation over 3 years, and
full utilisation of the hardware, the capital cost of the GPU-server
hardware required to do this represents a few tens of dollars to
invert a 3D transcranial dataset on a 500-μm grid. So, although the
computational burden of FWI is high, the cost per patient to
achieve a 10-minute turnaround is not high under appropriate
circumstances.
The potential value of FWI imaging is threefold. Most

importantly, it could improve outcomes in acute neurological
disorders such as stroke and head trauma by enabling earlier
intervention; the ultimate aim is diagnosis and treatment within
minutes of first contact with paramedics. Second, the low cost,
high safety, portability, and high resolving power of the
technology provides the ability to monitor the brains of patients
continuously at the bedside allowing clinicians to intervene, for a
range of pathologies, to prevent injury with the speed that the
brain demands, acting in rapid response as if the brain image was
a simple physiological variable such as blood pressure. And third,
the technology can be deployed readily and safely, for prevention
and diagnosis, in a wide range of situations where neuroimaging
would be desirable but is currently unavailable—for example,

within developing nations with limited health budgets, in remote
locations, routinely at contact-sports events, within military
deployments, or as part of disaster relief when local infrastructure
is compromised.

METHODS
In silico model
We used the MIDA 3D numerical model of the human head40, at the
original sample spacing of 500 μm, as the basis to build the sound speed
model used in the in silico simulations. Physical properties within the
model were derived from the geometry of the segmented model
combined with values for acoustic sound speed, density, and absorption
for different tissue types from24–27,29–34; further details appear in
Supplementary Table 1. Most minor tissue types within the model have
unmeasured acoustic properties; in these cases, we estimated their values
using small perturbations to the properties of other tissue types that
appeared analogous in their other physical properties and composition.
The models used to generate the data for all figures except

Supplementary Fig. 2 were purely acoustic. The model used for
Supplementary Fig. 2 included anelastic absorption, and assumed a linear
relationship between attenuation and signal frequency. At the relatively
low frequencies used in these simulations, such a model of absorption
provides a reasonable approximation to the properties of real tissue29.

In silico modelling
The experimental geometry was restricted to accommodate the applica-
tion of this technology realistically to human patients in a clinical setting,
and therefore no transducers were positioned in front of the face or below
the base of the head. Transducers were modelled assuming unfocused
single elements. We used 1024 transducers that acted as both sources and
receivers, generating just over a million source-receiver records of acoustic
pressure, each record lasting 240 μs. The source waveform consisted of a
three-cycle tone burst having a peak amplitude at a frequency of 400 kHz
and a useful bandwidth for FWI extending from ~100–850 kHz. This source
waveform is identical to that generated in our laboratory experiments.
The synthetic data were generated by solving the three-dimensional,

variable density, isotropic, linear, acoustic wave equation, explicitly in the
time domain, using a time-stepping finite-difference algorithm, with an
optimised stencil that is nominally tenth-order in space and fourth-order in
time. For the two-dimensional data shown in Fig. 4b, the analogous two-
dimensional wave equation was solved in which the model, wavefield,
sources, and receivers do not vary perpendicular to a two-dimensional
plane. For the anelastic data used to generate Supplementary Fig. 2, the
visco-acoustic wave equation was solved using the method described in
ref. 41.

Laboratory experiments
The ex vivo laboratory experiment was performed by immersing a
formalin-preserved human skull in water, generating an ultrasound pulse
on one side of the head, and recording the resultant signals on the other.
The skull retained some residual soft tissue, was stored dry, and was

(a) (b)

ground-truth segmented FWI-model segmented

Fig. 9 Segmented haemorrhage. a Haemorrhage auto-segmented from the true model. b Haemorrhage auto-segmented from the model
recovered by full-waveform inversion.
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typically immersed for a few tens of minutes during ultrasound
measurements. In the ex vivo experiment, sources, and receivers were
not in direct contact with the skull; in the in vivo experiment, sources, and
receivers were in direct contact with the head, coupled using
sonographic gel.
For the in vivo observations, we used single-element flat unfocused

Blatek-Industries 400-kHz AT30871 10-mm piezoelectric transducers as
source and receiver. For the ex vivo experiments, we used a single-element
unfocused Olympus 500 kHz V381 19-mm ultrasound source transducer. In
both in vivo and ex vivo experiments, the transducers were driven to
generate a three-cycle tone burst centred on 400 kHz at the intensities
commonly employed in conventional medical imaging7; this waveform
matched that used in the in silico experiments. For the ex vivo experiment,
we recorded the transmitted signals from the source using an Olympus
500 kHz V301 25-mm transducer located on the opposite side of the skull
at a perpendicular distance of 210mm from the source. A planar receiver
array was formed by moving the single receiving transducer successively in
4-mm steps to 729 positions to form a 27 × 27 array measuring 108 ×
108mm. For both the in vivo and ex vivo experiments, the data were
generated and recorded using a Verasonics Vantage 256, and the recorded
data were low-pass filtered at 1 MHz.
The in vivo experiment employed one of the authors as a participant, for

whom informed consent was obtained prior to the experiment. The
experiments complied with all relevant ethical regulations; the study was
approved by the Joint Research Compliance Office and the Imperial
College Research Ethics Committee, both of Imperial College London.

FWI iteration
During FWI, we inverted the in silico data in the time domain over eight
finite-frequency bands, starting at a dominant frequency of ~ 100 kHz, and
moving successively to higher frequencies to reach the maximum useable
frequency in the data of ~850 kHz. This multi-scale approach helps to
ensure that the inversion does not become trapped at some local solution
produced by inadequacies in the starting model. Within each frequency
band, we used ten iterations in total, using a tenth of the data at each
iteration, so that data from each source was used just once per frequency
band. The highest frequencies present in the data have a half-wavelength
in the brain of less than a millimetre, so that we would expect to be able to
resolve sub-millimetre structure in the final recovered model.
During AWI, we began the inversion from a homogeneous water model

using a single frequency band centred on 100 kHz. Other than the change
of misfit function, AWI proceeds in a similar fashion to FWI. Following AWI,
we smoothed the resultant model, and used that to begin FWI from
320 kHz, moving successively to the maximum frequency in the data as
before.

FWI algorithm
FWI is an imaging method that seeks to find a model that can numerically
reproduce experimental data. It does this by solving a non-linear least-
squares local optimisation problem, modifying the model in order to
minimise the misfit, f, defined as (half) the sum of the squares of the
differences between the experimental data and an equivalent simulated
dataset that is numerically generated using a numerical model of acoustic
properties. Thus, we seek to minimise:

f ¼ 1
2

p� dð ÞT p� dð Þ (1)

where p and d represent the predicted (numerically generated) and
observed (experimental) data, respectively, organised as vectors that
contain concatenated time-series of pressure variations at each recording
location for every source location. In this in silico study, the experimental
data were themselves generated using a known ground-truth target
model. At the initiation of FWI, a starting model m, representing an initial
estimate of the target of interest and composed of many model
parameters mi, is used to solve the wave equation and generate the
predicted data set p. In the account below, the quantities f, p, A, and u
each depend upon the assumed model m, whereas d, s, and R do not.
The computational cost of numerically solving the governing wave equation

in 3D for many sources restricts computationally tractable solutions to iterated
local gradient-descent methods. We solve the problem by seeking the
direction of steepest descent, on the hyper-surface defined by f, which has as
many dimensions as there are model parameters mi. For the 3D model shown
in Fig. 3, this hyper-surface had ~ 108 dimensions. This gradient-descent
algorithm seeks to move from the starting model, by a sequence of small

steps, successively downhill on this hyper-surface, to arrive close to the model
that lies at the lowest point on the surface—this is the model that best predicts
the observed data in a least-squares sense.
In order to find the direction of steepest descent, the derivative of the

misfit with respect to the model parameters is found using the adjoint-
state method15. The derivative of f with respect to each of the model
parameters mi takes the form:

∂f
∂mi

¼ ∂p
∂mi

� �T
p� dð Þ (2)

To compute the first derivative of the predicted data with respect to the
model parameters mi, we start by writing the wave equation as a matrix-
vector operation:

Au ¼ s (3)

where A is the wave equation written in a suitable discrete form—here we
used high-order finite differences to approximate the 3D anisotropic
variable density visco-acoustic wave equation, u is the pressure wavefield
and s is the source. Differentiating this with respect to mi, and taking into
account that both A and u depend upon the model parameter mi but that
the source s does not, gives:

A
∂u
∂mi

þ ∂A
∂mi

u ¼ 0 (4)

Assuming that A is invertible, which it must be if Eq. 3 has a unique
solution, leads to the expression:

∂u
∂mi

¼ �A�1 ∂A
∂mi

u (5)

for the variation of the wavefield u with the model parameter mi. Now, the
predicted data p are simply a subset of the full wavefield obtained at
those locations where we happen to have placed receivers. Thus, we can
use a restriction matrix R to extract the corresponding data as p= Ru, so
that:

∂p
∂mi

¼ �RA�1 ∂A
∂mi

u (6)

Because, again, R does not depend on mi. The final expression for the
gradient is then:

∂f
∂mi

¼ �uT ∂A
T

∂mi
A�TRT p� dð Þ (7)

Reading from right to left, this expression implies the following
sequence of steps to calculate the gradient:

1. Compute the residual data (p – d) by solving the wave equation to
generate p in the starting model,

2. Inject the residual data into the model at the receiver positions,
3. Solve the wave equation backwards in time using the injected

residual data as a virtual source,
4. Scale the resulting wavefield using the differential of the wave

equation operator A with respect to the model parameters mi,
5. Find the zero lag of the cross-correlation of this wavefield in time with

the original forward wavefield u at every point in the model.

The result of applying these steps is a gradient vector oriented to point
in the direction of maximum increase of f at the current position in the
solution space. The negative of the gradient indicates the direction in
which small changes to the model will create the largest decrease in the
misfit f, so the model should be changed in this direction. Typically, the
problem will be non-linear and non-convex, and therefore it requires that
the model is updated iteratively, and that the starting point is within the
basin of attraction of the global minimum. In a practical FWI algorithm, the
direction of steepest descent is typically preconditioned in some way to
speed convergence; here, we used spatial preconditioning to compensate
for illumination variation within the model16. A more-complete develop-
ment, and further details are given in ref. 15,16,18.

AWI algorithm
AWI3 is a form of FWI that has immunity to cycle skipping. In conventional FWI,
the algorithm seeks to drive the sample-by-sample difference between the
predicted and observed data to zero. In contrast, in AWI the algorithm seeks to
drive the ratio between the two data sets to unity. Both approaches aim to
drive the predicted data set towards the observed data set, and consequently
to drive the recovered model towards the true model. With perfect data, and
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perfect algorithms, both approaches will reach the same end point. However,
when both methods are implemented using local gradient descent, they
follow different paths through the space of possible models in their attempt to
reach the true model. In these circumstances, FWI will tend to become trapped
in local minima when the predicted data differ from the observed data by
more than half a wave cycle, whereas AWI will not.
The ratio used in AWI is not generated sample-by-sample; rather it is a

ratio formed frequency-by-frequency after temporal Fourier transform, and
the ratio is formed separately for each source-receiver pair. As division in
the frequency domain represents deconvolution in the time domain, the
AWI algorithm effectively deconvolves one data set by the other and then
attempts to drive the result of that deconvolution toward a unit-amplitude
delta function at zero temporal lag. The mathematical details are given in
ref. 3, and practical details are given in ref. 19.

Algorithm for time-of-flight tomography
The model shown in Fig. 2c was generated using time-of-flight tomography.
This method is analogous to FWI, but with two significant differences: the data
to be inverted consist of single numbers, one for each source-receiver pair,
representing the time taken for energy to travel through the target model
from source to receiver; and geometric ray-tracing rather than the full wave
equation is used to calculate these travel times. This approach has the
advantage that it is computationally more tractable than FWI, and so runs
orders of magnitude more quickly; it is also much less likely than FWI to
become trapped in local minima. But, it has the disadvantage that it cannot
recover structure in the model below the scale of the diameter of the first
Fresnel zone.
We solved the tomographic problem by minimising a misfit similar to that

shown in Eq. (1), but where p and d are now vectors containing the travel
times rather than the raw observed acoustic pressure data. We address the
problem as before by solving a non-linear least-squares local optimisation
problem, using gradient descent preconditioned by conjugate gradients.
Unlike the more familiar X-ray CT, in ultrasound tomography changes to the
model affect the path that energy follows from source to receiver, and it is
necessary to include this non-linear effect into the inversion by iterating.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The true model was generated using the MIDA model described in ref. 40. The model
can be obtained in digital form from the authors of that paper. We populated that
model using the physical properties shown in Supplementary Table 1. The synthetic
acoustic dataset that we generated from this model is available from the Dryad
digital archive (https://doi.org/10.5061/dryad.nzs7h44n7).

CODE AVAILABILITY
The computer code used to generate synthetic data and to perform the inversions is
Fullwave3D, described in ref. 16. This is a large and sophisticated commercial package
developed for and licensed to the petroleum industry. The software is available on
commercial terms, and can be licensed both for use on private HPC systems and on
the commercial public cloud. For those wishing simply to reproduce the results
shown here, a more-practical option is likely to be to use one of the several open-
source modelling and FWI packages that are now becoming available, or for those
with access to commercial geophysical processing software to use one of the
growing number of such packages that include facilities for performing FWI. Several
of the latter packages are available to university-based researchers, for non-
commercial use, on heavily discounted terms.
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