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S U M M A R Y

Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models from

the full wavefield, which includes diving waves, post-critical reflections and short-spread

reflections. Most successful applications of FWI are driven by the information carried by

diving waves and post-critical reflections to build the long-to-intermediate wavelengths of the

velocity structure. Alternative approaches, referred to as reflection waveform inversion (RWI),

have been recently revisited to retrieve these long-to-intermediate wavelengths from short-

spread reflections by using some prior knowledge of the reflectivity and a scale separation

between the velocity macromodel and the reflectivity. This study presents a unified formalism

of FWI, named as Joint FWI, whose aim is to efficiently combine the diving and reflected

waves for velocity model building. The two key ingredients of Joint FWI are, on the data

side, the explicit separation between the short-spread reflections and the wide-angle arrivals

and, on the model side, the scale separation between the velocity macromodel and the short-

scale impedance model. The velocity model and the impedance model are updated in an

alternate way by Joint FWI and waveform inversion of the reflection data (least-squares

migration), respectively. Starting from a crude velocity model, Joint FWI is applied to the

streamer seismic data computed in the synthetic Valhall model. While the conventional FWI

is stuck into a local minimum due to cycle skipping, Joint FWI succeeds in building a reliable

velocity macromodel. Compared with RWI, the use of diving waves in Joint FWI improves

the reconstruction of shallow velocities, which translates into an improved imaging at deeper

depths. The smooth velocity model built by Joint FWI can be subsequently used as a reliable

initial model for conventional FWI to increase the high-wavenumber content of the velocity

model.

Key words: Inverse theory; Controlled source seismology; Body waves; Seismic tomogra-

phy; Wave scattering and diffraction; Acoustic properties.

1 I N T RO D U C T I O N

With the emergence of long-offset wide-azimuth acquisitions and

broad-band sources, full waveform inversion (FWI) has been rec-

ognized as an efficient tool for velocity model building (Virieux &

Operto 2009, for a review). In these long-offset experiments, FWI is

mainly driven by the information carried by diving waves and post-

critical reflections to build the long-to-intermediate wavelengths

of the velocity structure. The connection between the acquisition

geometry and the spatial resolution of FWI has been clearly estab-

lished in the theoretical framework of the generalized diffraction

tomography (e.g. Devaney 1982; Miller et al. 1987). It has been

shown that the wavenumber component k, injected at a diffractor

point in the subsurface is related to the local wavelength λ and the

scattering angle θ by the relationship

k =
2

λ
cos

(
θ

2

)

n, (1)

where n is the normalization of the vector k (Fig. 1). This relation-

ship shows that the wide-scattering angles associated with diving

waves and post-critical reflections contribute low-to-intermediate

wavenumber updates to the subsurface. Conversely, the small scat-

tering angles associated with short-spread reflections contribute

high wavenumber updates to the subsurface. One key issue in

the classical formulation of FWI (for short, referred to as FWI

in the following) is that the penetration depths of diving waves are

often insufficient to reach the deepest targeted structures, even from

modern wide-azimuth surveys. At these depths, FWI behaves as a

C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1535
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Figure 1. Spatial resolution of diffraction tomography and its connection

with acquisition geometry. The wavenumber vectors associated with the rays

connecting the source and the receiver to the diffractor are denoted by kS

and kR, respectively. The scattering angle is denoted by θ . The wavenumber

vector k = kS + kR is the spectral component mapped at the diffractor point

by the source–receiver pair during FWI.

least-squares migration of the short-spread reflections rather than

as a tool for velocity model building, and would fail to update the

low-to-intermediate wavenumbers of deep targets.

Alternatively, migration-based velocity analysis has been devel-

oped in the image domain to build the velocity macromodel by using

the reflection data (Diaz et al. 2013; Liu et al. 2013; Allemand &

Lambaré 2014). These approaches focus on the flattening of the

common image gathers generated by migration (Symes & Caraz-

zone 1991; Sava & Biondi 2004). Extended-domain approaches

have also been proposed, which attempt to minimize the energy left

in the non-physical dimensions added to the model space (Sava &

Fomel 2006; Yang & Sava 2011; Almomin & Biondi 2012; Biondi

& Almomin 2012; Sun & Symes 2012; Lameloise et al. 2015). The

main issue of these approaches is their high computational cost that

is made, on the one hand, by the migration step performed during

each velocity update and, on the other hand, by the extended-domain

imaging condition. Although 2-D applications have shown promis-

ing results, the cost of these approaches seems to prevent a direct

extension to 3-D cases, in particular when the forward modelling is

performed with the two-way wave equation.

Inspired by the pioneering work of Chavent et al. (1994), Chavent

(1996) and Clément et al. (2001) on migration-based traveltime in-

version (MBTT), recent data-domain FWI strategies, referred to

as reflection waveform inversion (RWI) in this paper, have been

proposed as a new alternative to build the velocity macromodel

from the reflection data (e.g. Xu et al. 2012; Ma & Hale 2013;

Brossier et al. 2015). As most of the seismic reflection processing

workflows, RWI relies on the explicit scale separation between a

smooth velocity macromodel and a rough reflectivity. This scale

separation results from the gap between wavenumber contents of

the velocity macromodel built by reflection tomography or migra-

tion velocity analysis and the reflectivity built by migration (Claer-

bout 1985; Wu & Toksöz 1987; Jannane et al. 1989; Mora 1989).

Such a separation leads to a two-step imaging workflow in which

one repeatedly alternates the velocity model building assuming a

known reflectivity and the reflectivity update by migration using the

previous velocity update as the background model. More sophis-

ticated approaches can be viewed to mitigate the computational

burden of this workflow, for example, by building the reflectivity in

the pseudo-time domain (Plessix 2013) to avoid performing migra-

tion at each iteration of the velocity update (Brossier et al. 2015;

Wang et al. 2015). In RWI, the governing idea behind the velocity

model building task is to assume the reflectivity is known in prior,

by which the reflected waves are predicted and the residuals are

minimized for the velocity macromodel update. Under this assump-

tion, high-wavenumber contributions such as migration isochrones

are not present in the sensitivity kernels of RWI. Moreover, this

prior reflectivity is used by RWI as the secondary sources to high-

light in the sensitivity kernel the contribution of the transmission

paths followed by the reflected waves. Indeed, the wide-scattering

angles associated with these transmission regimes are amenable

to update the low-to-intermediate wavenumbers of the subsurface

located between the reflectors and the surface (eq. 1).

Brute-force approaches might be performed without explicit

scale separation in the FWI formalism. They consist of applying

the conventional FWI to build reflectivity during early iterations by

a migration-like processing before updating the low-to-intermediate

wavenumbers of the subsurface from the transmission paths of

the reflected waves (AlTheyab et al. 2013). These approaches could

be further developed for the velocity macromodel building or for the

reflectivity imaging by a wavenumber-driven filtering of the gradient

of the FWI misfit function (Alkhalifah 2014, 2015; Alkhalifah & Wu

2014; Wu & Alkhalifah 2014). Note that RWI can be implemented

either in the time domain or in the frequency domain as shown by

Wang et al. (2013b). Other data-domain approaches for velocity

model building rely on a wavefield decomposition into upgoing and

downgoing waves to separate the contribution of forward-scattering

and backward-scattering in the sensitivity kernel of waveform in-

version (Tang et al. 2013; Wang et al. 2013a).

One key limitation of RWI, that will be overcome in this study, is

the exclusive reliance on the use of reflected waves, discarding the

low-wavenumber information on the shallow targets that are carried

by the diving waves.

In this study, we propose a new FWI method, referred to as joint

full waveform inversion (JFWI), which integrates the ingredients

of the conventional FWI and RWI into a unified formalism. Like

RWI, JFWI still rests on the scale separation between the velocity

macromodel and the reflectivity. The added value of JFWI com-

pared with RWI, is the combination of the diving waves and the

reflected waves such that the low-wavenumber information carried

by these two wave modes, as described above, are simultaneously

used in the velocity model building task. In JFWI, we regenerate

the reflectivity by conventional FWI using only short-offset reflected

waves (i.e. non-linear least-squares migration) at each iteration of

the scale-separation workflow. A key feature of JFWI is to require

the explicit separation of the early arriving phases (diving waves and

post-critical reflections) and the pre-critical reflections in the data.

Our approach shares some similarities with Wang et al. (2015),

who also use refracted and reflected waves to update the low-to-

intermediate wavenumbers of the subsurface. The main differences

is that our workflow relies on the waveform-difference misfit func-

tion to update the velocity macromodel and the reflectivity, whereas

the approach of Wang et al. (2015) relies on the cross-correlation

based misfit function, the so-called wave-equation tomography (Luo

& Schuster 1991), to perform the velocity macromodel update.

Although our approach relies on the explicit separation between

reflected waved and refracted waves, it does not require assign-

ing a time window to isolate phases as it does in the workflow of

Wang et al. (2015). This phase identification might be quite cumber-

some for the reflection recordings in the complex environments. In
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Joint full waveform inversion 1537

Figure 2. Illustration of the initial models and the data residuals used in different FWI approaches. (a) True velocity model including a reflector at 1 km depth.

One source and receiver couple is indicated. (b) Homogeneous initial model (m) without reflector and erroneous background velocity for FWI. Only the direct

wave (green arrow) is generated. Residuals include the direct wave and the reflected wave residuals. (c) Homogeneous background (m0) and prior reflectivity

(δm) for RWI. Only the reflected wave (red arrow) is used. (d) Initial model with prior reflector for FWI. Both direct and reflected waves are modelled.

(e) Homogeneous background (m0) and prior reflectivity (δm) for JFWI. Compared with RWI (c), diving waves are used; compared with FWI (d), direct and

reflected wave residuals are explicitly separated (see text for details).

addition, we use a velocity-impedance parametrization to alternate

the update of the velocity macromodel and the reflectivity, unlike

Wang et al. (2015) who choose the velocity-density parametrization.

This paper is organized as follows. First, we shall review the

intrinsic limitation of FWI and RWI as well as the benefit that can be

expected from JFWI with a simple synthetic model. Second, we shall

discuss about the choice of a suitable subsurface parametrization

to perform the velocity model and reflectivity updates, such that

the scale separation between these two models is satisfied. This

naturally directs us towards a subsurface parametrization in terms

of wavespeed (VP) and impedance (IP). Third, we shall review the

ingredients of the JFWI workflow that alternates the updates of VP

and IP before showing its application to the synthetic Valhall case.

The experimental setup of this case study is designed in a way such

that the diving waves only sample the shallow part of the subsurface.

We shall first show how the use of diving waves in JFWI improves

the reconstruction of the shallow velocities compared with RWI, and

how this shallow improvement translates into an improved imaging

at greater depths. Then, we shall show that the smooth velocity

model built by JFWI can be subsequently used as a reliable initial

model for conventional FWI, resulting a broad-band velocity model

that can be taken for the purpose of structural interpretation.

2 R E V I E W O F F W I A N D RW I

2.1 Full waveform inversion (FWI)

FWI is a data-fitting procedure during which the subsurface model

m is iteratively updated in order to match the synthetic data, d = d(m)

with the recorded data, dobs. The misfit function is conventionally

defined as the least-squares norm of the data residuals weighted by

a linear operator W, that is

CFW I (m) =
1

2
‖W (dobs − d(m))‖2

2 , (2)

with an implicit summation over sources, receivers and time. As

the wavefield does not linearly depend on the subsurface param-

eters, this optimization problem is highly non-linear. Many local

optimization approaches have been proposed to mitigate this non-

linearity and make the misfit function as convex as possible: they

might differ in the misfit definition and/or in the domain within

which the minimization is performed, but all of them aim to up-

date the model by a linear-search method (Shin & Cha 2008; van

Leeuwen & Mulder 2010; Luo & Sava 2011; van Leeuwen & Her-

rmann 2013). The local descent direction relies on the gradient of

the misfit function with respect to the model parameters, which can

be efficiently computed by the adjoint-state method (for a review,

see Plessix 2006). For one source–receiver pair, the gradient can be

written in a compact form as

∇CFW I = u0 ⋆ λ0, (3)

where the symbols u0 = u0(m) and λ0 = λ0(m) denote the incident

wavefield and the back-propagated adjoint wavefield, respectively.

For multiple sources and receivers, the gradient is a summation of

u0 ⋆ λ0 over all sources and receivers. The adjoint wavefield is com-

puted with a source term that gathers the data residuals associated

with all kinds of waves (diving waves, reflected waves, scattered

waves etc.). The gradient of the misfit function is computed by a

zero-lag cross-correlation between the incident and adjoint fields.

This correlation operation, denoted by a single star (⋆) in eq. (3),

embeds, for the sake of compactness, the partial derivative of the

forward modelling operator with respect to model parameters (the

so-called diffraction pattern) that is cumbersome to be expressed in

the time domain. Hiding this kind of complexity in the star symbol

will not obscure the governing idea underlying the following deriva-

tion of the misfit function gradients. All details about the incident

and adjoint fields as well as the gradient expressions are provided in

Appendix A in the framework of frequency-domain FWI allowing

for more compact notations. Note that all our implementations are

performed in the time domain.

We first illustrate the FWI gradient (eq. 3) in the case of a ho-

mogeneous subsurface model in which a flat reflector is embedded

(Fig. 2a). The background model is homogeneous with a wrong

velocity and does not contain the reflector, so that the source of the

adjoint equation contains the residuals of the direct wave and re-

flected wave (Fig. 2b). These residuals give rise to two components

in the adjoint field denoted by λd
0 and λr

0, respectively. Correla-

tions of the incident wavefield u with these two components of the

adjoint wavefield respectively build a wide first Fresnel zone and a

secondary Fresnel zone (the so-called migration isochrone, Fig. 3a),
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1538 W. Zhou et al.

Figure 3. Illustration of gradients generated by different FWI approaches. Solid and dashed arrows denote the ray paths, respectively, followed by the incident

and adjoint fields that interfere constructively. (a) FWI gradient combines a low-wavenumber first Fresnel zone (represented by u0 ⋆ λd
0 ) between source and

receiver, and a high-wavenumber migration isochrone (represented by u0 ⋆ δλr). Note that the first Fresnel zone has a limited penetration in depth. (b) RWI

gradient shows two wide first Fresnel zones centred on the two-way paths followed by the reflected wave between the reflector (behaving as a secondary source)

and the source/receiver positions. (c) FWI gradient, with a prior reflectivity in the initial model, combines FWI (a) and RWI (b) gradients. Low-wavenumber and

high-wavenumber information enter into the gradient, hence breaking down the scale-separation prerequisite. (d) JFWI gradient combines the first Fresnel zone

generated by direct-wave residuals and RWI gradient. Compared with (c) the migration isochrone is not generated such that the scale separation is honoured.

over which the direct-wave residual and the reflection residual are,

respectively, back-projected (Woodward 1992). The width of these

iso-phase surfaces gives the spatial resolution with which a point

diffractor located in these surfaces is imaged by the current source–

receiver pair, according to eq. (1). A seismic acquisition generally

provides the samplings of the shallow subsurface with both diving

and reflected waves, allowing for a broad-band imaging of the shal-

low targets. In contrast, only short-spread reflections sample the

subsurface at greater depths, that is, beyond the penetration depths

of the diving waves, leading to a high-wavenumber imaging of deep

targets.

2.2 Reflection waveform inversion (RWI)

RWI focuses on the reflection data to build the subsurface model.

The method relies on the prior knowledge of the reflectivity to

predict the reflected waves. The misfit function is given by

CRW I (m0) =
1

2

∥
∥
∥W r

(

d
refl

obs − d
refl

pred(m0, δm)
)∥
∥
∥

2

2
, (4)

where the symbols d
refl

obs and d
refl

pred denote the observed and predicted

reflected waves, respectively, weighted by the linear operator W r.

The low-wavenumber background m0 and the high-wavenumber re-

flectivity δm are separated in scales, and RWI seeks to reconstruct

the background m0 only. Following Brossier et al. (2015), the gra-

dient with respect to the background model is (for the counterpart

in the frequency domain, see Appendix A),

∇CRW I = u0 ⋆ δλr + δu ⋆ λr
0 + δu ⋆ δλr , (5)

where the symbols u0 = u0(m0) and δu = δu(m0, δm) denote the

incident wavefield computed in m0 and the wavefield scattered by

δm, respectively. Similarly, the adjoint wavefield can be decomposed

as a component λr
0 propagating in the background model and a

scattered component δλr. The scattered wavefield includes forward

and backward scatterings (transmissions versus reflections) of any

order. Note that the three correlation operations in eq. (5) embed two

different diffraction pattern operators computed in m0 and m0 + δm,

respectively. The detailed expressions are provided in Appendix A.

The RWI gradient corresponding to the one-reflector synthetic

model is shown in Fig. 3(b). The source of the adjoint-state equa-

tion contains only the residual of the reflected wave (Fig. 2c). The

first term u0 ⋆ δλr represents the correlation between the down-going

field u0 and the up-going scattered field δλr (ray path indicated by

yellow arrows). This correlation builds a wide first Fresnel zone

connecting the reflector and the source position. Similarly, the sec-

ond term δu ⋆ λr
0 gives rise to a mirror Fresnel zone generated by

the upgoing scattered field δu and the downgoing field λr
0 (ray path

indicated by cyan arrows). Known as ‘rabbit ears’, this pair of Fres-

nel zones allow for a long-wavelength reconstruction of the deep

targets where FWI encounters difficulties. The third term represents

higher-order migration isochrones. Due to the weak amplitude of

the scattered fields δu and δλr, these higher-order isochrones are

generally of small amplitudes and thus negligible. In Fig. 3(b), two

mirror high-order migration isochrones are shown near the reflector

position. They are built, on the one hand by the zero-lag correlation

between the incident and adjoint fields transmitted across the reflec-

tor and, on the other hand by the zero-lag correlation between the

incident and adjoint fields reflected from the reflector. The reader

is referred to Appendix B for a more detailed description of these

higher-order contributions.

The limitation of RWI is the reliance of the exclusive use

of the reflected waves, discarding the low-wavenumber informa-

tion carried by the diving waves (i.e. u0 ⋆ λd
0 term, see analysis

of conventional FWI gradient). One may simply insert the div-

ing waves into the RWI misfit function, augmenting the reflec-

tion data residuals in eq. (4) with the diving wave residuals (i.e.

dobs − ddiv
pred(m0) − d

refl

pred(m0, δm)). This is equivalent to perform-

ing FWI with a prior reflectivity in the initial model (Fig. 2d).

Although all low-wavenumber contributions are gathered in the

gradient (Fig. 3c), the dominant imprint of the high-wavenumber

information carried by the migration of the reflection residuals (i.e.

u0 ⋆ λr
0, Fig. 3c, red arrows) makes challenging the extraction of

the low-wavenumber information carried by the first Fresnel zones

associated with RWI (Fig. 3b). This highlights the necessity to

force a scale separation between the low-wavenumber and high-

wavenumber components in the FWI formalism, and this is the aim

of the following section where we propose an alternative FWI for-

mulation that combines the diving waves and the reflected waves

for the velocity macromodel building without generating the high-

wavenumber isochrones.

3 J O I N T F U L L WAV E F O R M I N V E R S I O N

( J F W I )

We shall first review the main idea behind JFWI that will allows us

to mitigate the high-wavenumber contributions during the velocity
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Figure 4. Two-reflector model and the corresponding JFWI gradients. (a) Two-reflector model to generate multiscattered fields. (b) JFWI gradient for the

VP–ρ parametrization. Higher-order isochrones are produced due to constructive interference of the multiscattered fields (Appendix B for a detailed review of

all of these isochrones). (c) Same as (b) except that the VP gradient was built for the VP–IP parametrization. The low-wavenumber components of the gradient

are kept unchanged, while the undesired high-wavenumber components were filtered out.

model building before discussing the implementation of the JFWI

gradient.

3.1 Formulation

The governing idea of JFWI is to explicitly separate the contribu-

tions of the diving and reflected waves (Fig. 2e), which means that

the misfit function is decomposed as the sum of two terms,

CJFWI (m0) =
1

2

∥
∥
∥W d

(

ddiv
obs − ddiv

pred(m0)
)
∥
∥
∥

2

2

+
1

2

∥
∥
∥W r

(

d
refl

obs − d
refl

pred(m0, δm)
)
∥
∥
∥

2

2
, (6)

where the symbols ddiv
obs and ddiv

pred(m0) denote the observed and pre-

dicted diving waves, and W d and W r denote the weighting operator

that are applied to the diving and reflected waves, respectively. The

role of the two weighting operators is to balance the respective

contributions of diving and reflected residuals in the misfit func-

tion, considering that reflected wavefields have generally weaker

amplitudes than the diving waves. The operator W r can also embed

a time-dependent weighting of reflection residuals to enhance the

contribution of late reflected arrivals at the expense of early ones in

the misfit function. This inversion preconditioning can contribute

to balance the amplitudes of the shallow and deep perturbations in

the gradient of the misfit function, and hence improve the conver-

gence rate. Other weightings can also be added in the W d and W r

operators such as offset-dependent weighting, which can be useful

to design layer-stripping strategies. These issues will be illustrated

in the synthetic example presented in the sequel of this study.

Both the observed data and predicted data should be decomposed

into the diving part and the reflection part during the data pre-

processing stage. Many pre-processing tools, commonly used to

pre-process the reflection data before migration, can be applied here,

such as the dynamic time windowing or F-K filtering. While the

observed data are pre-processed once and for all before the inversion

starts, the decomposition of the predicted data, however, has to be

performed at each iteration of JFWI. This might be cumbersome

if the decomposition should be refined according to the velocity

model update. For the synthetic example shown in the following of

this study, we did not need to perform this refinement: we applied to

the modelled data, at each JFWI iteration, the same decomposition

rule based on the offset-dependent time window as is applied to the

recorded data. We could afford to keep the same windowing law at

each JFWI iteration because the initial model for JFWI is already

accurate enough to predict the first-arrival traveltimes within half

the dominant period. If the separation between the diving waves and

the reflected waves is awkward, a systematic separation procedure

would consist in performing two forward modellings, one in m0 and

one in m0 + δm. The first simulation provides the diving wavefield,

while the subtraction between the two simulated wavefields provides

the reflection wavefield.

The gradient of the misfit function with respect to the background

model m0 is given by (for the counterpart in the frequency domain

see Appendix A)

∇C J FW I = u0 ⋆ λd
0 + u0 ⋆ δλr + δu ⋆ λr

0 + δu ⋆ δλr , (7)

where the symbols λd
0 and λr

0 denote the background components

of the adjoint field generated by the diving-wave residuals and the

reflection residuals, and δλr denotes the scattered component of the

adjoint wavefield generated by the reflection residuals, respectively.

The first term in eq. (7) builds the first Fresnel zone associated

with the diving waves, while the second and third terms are those

generated during RWI. The key point is that the gradient in eq.

(7) does not include the u0 ⋆ λr
0 term associated with the high-

wavenumber migration isochrone (Fig. 3d).

The last three terms in eq. (7) encapsulate all of the high-

order scattering propagation. Among them, higher-order migra-

tion isochrones can be generated and hence, inject undesired high-

wavenumber components into the gradient. A two-reflector model,

in which internal multiples are generated, is used to illustrate the

imprint of these high-order migration isochrones on the gradient

(Figs 4a and b). A detailed review of the different high-order contri-

butions is provided in Appendix B. Due to their inconsistent spatial

locations, most of these high-order migration isochrones interfere

with each other in a destructive way when the contributions from

multiple shot gathers are stacked, and thus the gradient tends to

be free from these high-wavenumber components. Moreover, in the

next section, we shall show how to further reduce their footprint by

choosing a proper subsurface parametrization for JFWI.

3.2 Mitigation of high-order isochrones by choosing

suitable subsurface parametrization

In most acoustic FWI approaches, the subsurface is parametrized

by the velocity (VP) and the density (ρ) (e.g. Wang et al. 2015).

The diffraction patterns associated with these parameters are shown

in Figs 5(a) and (b), respectively. They show two wavefields scat-

tered by a single VP and ρ point perturbation in a homogeneous
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1540 W. Zhou et al.

Figure 5. Diffraction patterns of VP–ρ (a) and VP–IP (b) parametrizations.

Single diffractors are located in the centre of the homogeneous background.

A source at the vertex of the diffractor generates the scattered field, whose

amplitude variation with the scattering angle is representative of the diffrac-

tion pattern of the parameter. Note how the diffraction pattern of VP changes

depending on the other parameter involved in the parametrization (ρ versus

IP). See text for details.

background. These wavefields represent the partial derivatives of

the incident wavefield with respect to the model parameters that

undergo a perturbation. Zero-lag correlations of this kind of partial

derivative wavefields at the receiver positions with the data residu-

als form the FWI gradients. The amplitude variation of the partial

derivative wavefield with the scattering angle θ (i.e. the diffraction

pattern) controls the effective range of scattering angles who con-

fers the spatial resolution to the FWI gradient for one parameter

class [see Operto et al. (2013) for a recent tutorial on multipa-

rameter FWI]. The wavefield scattered by the VP diffractor shows

an isotropic radiation pattern, conferring a broad-band wavenum-

ber content to the VP gradient. On the other hand, the wavefield

scattered by the ρ diffractor has significant amplitudes at small-to-

intermediate θ , conferring a narrower (high) wavenumber content

to the ρ gradient. This VP–ρ parametrization is a natural choice

for FWI to reconstruct a broad-band VP model, keeping in mind

that cross-talks or leakage between VP and ρ are necessarily present

in the high-wavenumber part of the VP and ρ gradients. A careful

accounting for the Hessian should help remove this leakage in the

FWI subsurface models.

In contrast, the VP–IP parametrization leads to a natural scale

separation between the two parameter classes. The corresponding

diffraction patterns are shown in Figs 5(c) and (d). The wavefield

scattered by the VP diffractor has significant amplitudes for large

θ , leading to a VP gradient with a low-wavenumber content. Con-

versely, the wavefield scattered by the IP diffractor has significant

amplitudes for small θ , leading to an IP gradient with a high-

wavenumber content. Compared with the VP–ρ parametrization,

the VP–IP parametrization is more suitable to satisfy the scale-

separation condition underlying JFWI, although it will prevent the

reconstruction of the high wavenumbers in the VP model.

According to this diffraction-pattern analysis, we choose the VP–

IP parametrization to perform JFWI, where the low-wavenumber

part of the subsurface m0 is parametrized by VP and the high-

wavenumber part δm is parametrized by IP (eq. 6). The effect of

the subsurface parametrization on the JFWI gradient is illustrated

in Fig. 4(c) by the effective attenuation of the high-order isochrones

when the VP–IP parametrization is used. [Another advantage of the

VP–IP parametrization over the VP– ρ parametrization is described

in Snieder et al. 1989, their figs 2 and 3.]

3.3 Implementation of ∇CJFWI

In order to perform a computationally efficient implementation of

JFWI, we rewrite eq. (7) in a more compact form by regrouping

scattered and background wavefields, which is

∇CJFWI = u0 ⋆ λr
0 + δu ⋆ λr

0 + u0 ⋆ δλr + δu ⋆ δλr + u0 ⋆ λd
0

− u0 ⋆ λr
0 (8)

= ur ⋆ λr

︸ ︷︷ ︸

G1

+ u0 ⋆ (λd
0 − λr

0)
︸ ︷︷ ︸

G2

, (9)

where we have (re-)introduced the total reflection field ur = ur
0 +

δur and the total reflection adjoint wavefield λr = λr
0 + δλr . Note

that eq. (8) is a true identity even though we have concealed the

partial derivatives of the modelling operator inside the symbol ⋆.

Strict demonstration is provided by the developments starting from

eq. (A10) to eq. (A14) in Appendix A.

This alternative expression of the gradient leads to a workflow

that sequentially computes two quantities G1 and G2 (Algorithm 1).

The quantity represented by G1 is computed in m0 + δm (Fig. 3c)

by conventional FWI of the reflection data (hence, the first Fresnel

zone associated with the diving waves represented by u0 ⋆ λr
0 are

not embedded in this expression), while the quantity represented

by G2 is computed in m0 by conventional FWI of the diving waves

and reflection data (Fig. 3a), in which the sign of the reflection data

residuals is reversed. This reversal, indicated by the minus sign in

front of λr
0 in eq. (9), cancels by subtraction the first-order migra-

tion isochrone involved in G1, making the total gradient G1 + G2

dominated by low-wavenumber components. Moreover, computing

G1 or G2 requires the same tasks as those performed during FWI

to evaluate the FWI gradient in the time domain [the boundary-

saving strategy is used to alleviate the memory load (Clapp 2008)].

These tasks can be summarized as follows: simulate the modelled

wavefield and save the values on the model boundaries, compute

the data residuals at receiver positions, compute the adjoint field

by taking the residuals as the source function, and re-simulate the

modelled wavefield in reverse time by using the boundary values

as the Dirichlet condition, cross-correlate on the fly the two fields.

Therefore, for one evaluation of the FWI gradient, we need to do

three modellings and save two fields at maximum. As a combina-

tion of G1 and G2, Algorithm 1 requires to perform six modellings

and to store two fields for the cross-correlation. Consequently, the

workflow to evaluate the JFWI gradient has a time complexity two

times higher than the one of conventional FWI but the memory

requirement is the same (see Table 1). In addition, the cost of JFWI

is the same as the cost of RWI.

If more subtle data separations are used, that is, involving the

decomposition of the modelled wavefield on the fly by subtraction

of the full field and the background field, the implementation of G1
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Algorithm 1. Efficient evaluation of ∇CJFWI.

Table 1. Cost comparison.

Cost Conv. FWI RWI JFWI

Modellings 3 6 6

Storage 2 2 2

in eq. (9) is impossible. This is because G1 is only related to the

predicted reflection data, which would not be readily available at

the time of the adjoint simulation when the data separation is per-

formed on the fly with the aforementioned subtraction procedure.

In this case, we would recommend computing an approximation of

∇CJFWI with the following workflow: (1) Compute the conventional

FWI gradient in the model m0 + δm using both the diving and re-

flected wave residuals (Fig. 3c). (2) Build the first-order migration

isochrones by conventional FWI performed in model m0 using the

reflection residuals as the source of the adjoint equation. At this

stage, the predicted reflection data become available since the sub-

traction of the modelled full field and the background field can be

readily performed. (3) Subtraction of the two quantities gives a low-

wavenumber quantity, which is a good approximation of ∇CJFWI. A

relative error of 2 per cent is found in the synthetic Valhall case study

presented later. This implementation requires the same resources as

the one discussed above (Table 1, third column).

4 M U LT I PA R A M E T E R F W I F O R

V E L O C I T Y M O D E L B U I L D I N G A N D

I M P E DA N C E I M A G I N G

So far we have derived the principles of JFWI for low-wavenumber

velocity building, and choose the VP–IP parametrization for high-

wavenumber isochrones mitigation. In the following, we shall

design a complementary imaging tool that provides a high-

wavenumber model of the subsurface, and combine it with JFWI to

have an integrated inversion workflow.

4.1 IP imaging by waveform inversion of short-offset

reflection data (IpWI)

We perform the high-wavenumber imaging by waveform inversion

using only the short-offset reflection data (referred to as IpWI in the

following). According to the previous diffraction-pattern analysis,

the subsurface is parametrized by VP–IP and only the IP parame-

ter is updated using the VP model as the background model. The

corresponding misfit function is given by

C(IP ) =
1

2

∥
∥
∥W r

(

d
refl

obs − d
refl

pred(VP , IP )
)∥
∥
∥

2

2
. (10)

The corresponding gradient (Fig. 6) contains the first-order

isochrones similar to the ones which would have been imaged by a

Figure 6. Impedance gradient resulting from the migration of one residual

seismogram in a homogeneous background. The true model contains two

reflectors. The gradient only contains first-order isochrones. Ray paths of

the incident and adjoint fields for the source–receiver pair are illustrated.
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1542 W. Zhou et al.

migration processing

∇C = u0 ⋆ λr
0 = u0 ⋆ B†−1(

d
refl

obs − d
refl

pred

)

, (11)

where the forward modelling operator is denoted by the symbol B.

The only notable difference from a least-squares migration is

that the observed reflection data is used as the source function to

compute the backpropagated field in the migration process, whereas

the source function of the adjoint-state equation in this IpWI is the

reflection data residual.

4.2 Cycle workflow of VP–IP imaging

Recall that the VP–IP parametrization naturally leads to the scale

separation between the two parameter classes. The low wavenum-

bers of VP are reconstructed by JFWI, which requires a prior high-

wavenumber IP model built by IpWI. Conversely, the impedance

imaging requires a background VP that can be provided by JFWI.

Therefore, it is natural to combine JFWI and IpWI to reconstruct

these two parameters (a similar strategy can be found in Ma & Hale

2013). A critical issue is that, once the VP model has been modi-

fied by JFWI to some extent, a new IP reflectivity model should be

generated accordingly in order to match the reflection data before

continuing the VP update, and the initial smooth impedance model

should be used as the starting model for this new IpWI implemen-

tation (i.e. removing the imaged reflectivity; Brossier et al. 2015).

This directs us towards a cycle workflow in which the VP model

and the IP model are repeatedly updated in an alternate way by

several non-linear iterations of JFWI and IpWI (Algorithm 2), and

during each JFWI and IpWI step the two parameters are consid-

ered independently from each other. As the velocity model is not

expected to be accurate during the cycle workflow, we build the

impedance model from very short-offset reflections to enhance the

focusing of the reflectivity image, even if mispositioned in depth,

in order to avoid any biases associated to the residual moveout in

the depth-migrated domain.

5 S Y N T H E T I C E X A M P L E : VA L H A L L

C A S E S T U DY

5.1 Experimental setup

We apply our cycle workflow on a synthetic case representative

of the Valhall oil field. The true IP and VP models are shown in

Figs 7(a) and (c), respectively. The seafloor is at 62.5 m depth,

above the sediment layers that overlay several low-velocity gas

zones depicted in red. From 2.5 km to 3.3 km depths, the high-

velocity oil reservoir is separated from the low-velocity gas zones

by a cap rock of anticline structure. The sand is laid below the

reservoir with smooth VP, IP variations, supported by the bedrock

at 5 km depth. The model, which is 8.8 km in width and 5.2 km in

depth, is discretized by 418 × 704 gridpoints with a grid interval

of 12.5 m.

We use a Gaussian filter to smooth the true velocity model (ex-

cluding the water layer), and then extract one vertical profile to

build the 1-D initial model for JFWI and IpWI (Figs 7b and d).

This initial velocity model captures the large-scale variation of the

true model and discards all features of the gas zones. Therefore, the

main task of JFWI is to reconstruct the gas zones. Based on a former

analysis (Prieux et al. 2011, their fig. 2b), more than 14 km of offset

would be needed to record diving waves that propagate at reservoir

depths. In this study, the maximum offset is set to 6 km and the

diving waves reach a maximum penetration-depth of 1.5 km, which

is shallower that most of the gas layers. Therefore, only the reflected

waves can contribute to the reconstruction of the deep targets. The

initial impedance model is shown in Fig. 7(b), which was built by

taking a two-layer density model (setting 1000 kg m−3 for the water

and 2000 kg cm−3 below).

The forward problem is solved by a classical O(�t2, �x4)

staggered-grid finite-difference method. The absorbing boundary

condition implemented with perfectly matched layers (PMLs, e.g.

Bérenger 1994; Komatitsch & Martin 2007) is applied along each

edge of the model. Therefore, no surface-related multiples are gen-

erated in the data. We exclude this kind of multiples for a purpose

Algorithm 2. Cycle workflow of VP–IP imaging.
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Joint full waveform inversion 1543

Figure 7. Synthetic Valhall case study. (a) True IP model. (b) Initial IP model. (c) True VP model. (d) Initial VP model. (e) First shot gather. Diving and

reflected waves are recorded (separated by the time-offset boundary delineated by the red dashed line), as well as several multiscattered waves indicated by the

yellow ellipse and arrows. (f) Conventional FWI gradient, (g) RWI gradient and (h) JFWI gradient for VP.

to avoid potential cycle skipping among primary reflections and

secondary reflections. More realistic case involving the surface-

related multiples will be discussed in Section 5.3. The source func-

tion is a Ricker wavelet with a peak frequency of 6.25 Hz. We con-

sider a streamer acquisition of 80 shots, with the first shot gather

being shown in Fig. 7(e). The reflection phases with zero-offset

two-way traveltimes ranging from 0.4 s to 2.8 s are reflections from

the gas layers. The reflections from the cap rock and the reservoir

have zero-offset two-way traveltimes ranging from 2.8 s to 3.4 s,

followed by the multiscattered phases (indicated by the yellow ar-

rows) especially the one arriving at 3.8 s (by the yellow ellipse).

These multiscattered waves are generated from the highly reflective

cap rock and from the edges of the gas layers. As the direct/diving

waves do not significantly overlap the reflected waves in time, we

simply apply a linear time-offset window to the data set for the

purpose of data separation, defined by the following formula:

tsep (s) = offset (km) / 1.5 (km s−1) + 0.33 (s), (12)

where tsep is the time instant of the window boundary as a function

of offset (indicated by the red dashed line in Fig. 7e), the slope of

the linear boundary is given by the water wave speed (1.5 km s−1)

and the intercept is equal to 0.33 s according to the dominant period

of the Ricker wavelet. Furthermore, we estimate that the direct/

diving waves have amplitudes ten times higher than those of the

reflected waves. This prompts us to leave the amplitudes of the

direct/diving waves unchanged in the misfit function (i.e. W d equals

to the identity matrix), while the reflection residuals are multiplied

by a factor of ten in the misfit function.

Having been observed in several tests, JFWI tends to match the

recorded multiscattered phases (indicated by the yellow arrows and

ellipse in Fig. 7e) with the modelled primary reflections if the full

reflection wavefield is processed in one go, which implies that JFWI

also suffers from non-linearity as FWI does. Therefore, we apply a

progressively increasing time window procedure (Kolb et al. 1986)

to the data to enhance the robustness of JFWI. This is implemented

by muting the full-offset reflection data after 3.5 s during first few

cycles to remove the contribution of the multiscattered waves in

the misfit function, then gradually restore their amplitude to their

original level during later cycles.

The velocity gradients that are computed in the initial smooth

model by FWI, RWI and JFWI are shown in Figs 7(f)–(h), respec-

tively. As expected, the FWI gradient shows the limited penetration

depth (∼0.8 km) of the first Fresnel zones associated with the diving

waves and a high-wavenumber content at greater depths generated

by the stack of the migration isochrones (Fig. 7f). The RWI gradi-

ent shows how the migration isochrones were avoided by assuming

a known reflectivity in the waveform inversion formalism, while

low-wavenumber components were injected at all depths along the

transmission wave paths of the reflected waves that are predicted by

using the prior reflectivity (Fig. 7h). The JFWI gradient yet high-

lights how a deficit of low-wavenumber coverage in the shallow part

of the RWI gradient (Fig. 7g, see at 0.5 km and 7 km in distance)

can be filled through the diving wave contribution (Fig. 7h). The

optimization method relies on the L-BFGS quasi-Newton approach

(Nocedal 1980). We perform 10 non-linear iterations of IpWI and

20 non-linear iterations of JFWI during each cycle of the workflow.

We use only offsets smaller than 200 m to perform IpWI in order to

increase the linearity of the problem (see Section 4).

5.2 Results and discussions

Fig. 8 displays a selection of IP perturbations (namely IP updates)

and VP models obtained at different cycles of the workflow (Al-

gorithm 2). The initial IP perturbation is zero and the initial VP is
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1544 W. Zhou et al.

Figure 8. Selection of IP perturbations and VP models from the cycle IpWI+JFWI workflow. Long wavelengths are built in VP while short wavelengths are

imaged in the IP perturbation model.

smooth (Cycle 0). After the first cycle, the IP perturbation, com-

puted using the initial VP model as the background model, is not

well focused especially for the sand-bedrock interface. The image

of the gas-zone reflectors in the first IP perturbation are misposi-

tioned at excessive depths due to the overestimated velocities in

the initial model. Large-scale VP variations of the gas zones start to

show up at about 1.8 km depth in the first model built by JFWI. This

velocity update contributes to move the gas-zone reflectors at their

correct position during IpWI in the following cycles. We perform

22 cycles of the IpWI+JFWI workflow. The final VP and IP models

are shown in Figs 9(b) and (e), respectively. The reflectors have

been moved at their correct positions, as JFWI has injected long-to-

intermediate wavelengths into the velocity model. In particular, the

zone of influence of the low-velocity gas-zone between 2.5 km and

5 km in distance has been well delineated. The long-wavelengths

of VP between the reservoir and bedrock are rarely imaged due to

two facts: most of the incident energy is reflected backwards by the

hard cap rock and the smooth variations in the sand zone provides

few reflection information.

We also apply FWI and RWI on this data set to highlight the add-

value provided by JFWI. Results are shown in Figs 9(a), (c) and

(d). FWI is implemented with the VP–ρ parametrization and only

the VP model is reconstructed. RWI is performed with the VP–IP

parametrization. The same cycle workflow as was used for JFWI is

used again to perform RWI, except that the contribution of diving

waves is discarded by RWI.

The final VP model obtained by FWI is roughly the superim-

position of short-wavelength velocity perturbations on the smooth

initial velocity model. The inversion clearly fails to update the long-

to-intermediate wavelengths of the velocity model because of the

inaccuracy of the initial model and the lack of long offsets. The

short-wavelength components of the reconstructed VP are poorly

focused due to the inaccurate long-wavelength components.

In contrast, both RWI and JFWI have reconstructed the long

wavelengths of the gas zones to some extent. However, the final

VP model built by JFWI is significantly more accurate than the one

built by RWI, especially in the shallow part where diving waves

penetrate. An inspection of the vertical profiles extracted from the

true model, RWI model and JFWI model supports this statement

(Fig. 10, to be discussed later). The final IP models obtained by

IpWI, from either JFWI or RWI VP models, are purely superimpo-

sitions of the short-wavelength components imaged by IpWI on the
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Joint full waveform inversion 1545

Figure 9. Final subsurface models of different waveform inversion approaches. (a and b) Impedance models obtained by RWI (a) and JFWI (b). (c–e) VP

model obtained by FWI (c), RWI (d) and JFWI (e). See text for explanations.

Figure 10. (a and b) Logs of IP perturbations (a) and VP models (b) at x = 3.75 km for IpWI+RWI and IpWI+JFWI. Accounting for diving waves in JFWI

improves the velocity reconstruction in the shallow part, which translates into an improved imaging of the deep velocity and the impedance structures.

smooth initial IP model, according to the diffraction pattern of the

IP parameter (Fig. 5d). In summary, the scale-separation condition

has been fulfilled through this proposed cycle inversion.

Figs 10(a) and (b) show the logs of the IP perturbations ob-

tained by IpWI and the VP models inferred from RWI and JFWI at

x = 3.75 km, respectively. Above z = 1 km, the IP perturbations

computed from the RWI and JFWI VP models are almost equiva-

lent. However, the RWI VP model is clearly less accurate than the

JFWI VP model, particularly in the shallow part where the diving

waves penetrate. From 1.5 km to 2.5 km depth, due to the accumu-

lation of inaccuracies from the near surface, the velocities of the

RWI model are overestimated and prevent the correct positioning

in depth of the IP perturbations. This highlights that, indeed, an ac-

curate near-surface reconstruction is also critical to properly image

deeper zones.

5.2.1 Quality control by common image gathers

We further assess the quality of the velocity models inferred from

RWI and JFWI by generating common image gathers (CIGs) in

the offset-depth domain (Fig. 11). These CIGs are computed in the

initial VP, RWI VP and JFWI VP models by reverse-time migration

using the same modelling engine as was used during JFWI and

IpWI.
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1546 W. Zhou et al.

Figure 11. Common image gathers at positions x ={1.88 2.50 3.13 3.75 4.38 5.00 5.63 6.25 6.88} km from the initial VP (a), RWI VP (b) and JFWI VP (c)

models. Improvements to the event flatness provided by JFWI compared with RFWI are pointed by horizontal yellow arrows in the shallow part, red arrows at

the cap rock level and vertical green arrows at 5 km depth.

Compared with the initial VP model, both the RWI and JFWI VP

models can significantly improve the flatness of the events in the

CIGs. The improvement provided by JFWI compared with RWI is

more subtle as the CIGs generated by RWI are already quite flat.

Nonetheless, we still show that shallow events are flatter in the

CIGs inferred from the JFWI VP model relative to those inferred

from the RWI VP model (Fig. 11, horizontal yellow arrows). This

manifests the diving wave contribution used in JFWI as well as

the difficulty of the reflection-based imaging methods to update

the shallow part of the subsurface. This point was illustrated with

a real-data case study from Valhall by Prieux et al. (2011), who

showed that FWI of diving waves and reflected waves improved the

flatness of the CIGs in the first kilometres in depth of the subsurface

compared with the CIGs inferred from a reflection traveltime to-

mography velocity model. Some improvements achieved by JFWI

compared with RWI are also shown at the cap rock level (Fig. 11,

red arrows), which highlight how the more accurate shallow ve-

locity reconstruction impacts on the focusing of the deep reflector

images. The horizontal reflector at 5 km depth is also better imaged

in the JFWI model than in the RWI model (Fig. 11, vertical green

arrow).

5.2.2 Fitting amplitudes

Due to the geometrical spreading effects that are incompletely re-

moved during the FWI process, the amplitude of the impedance per-

turbations decreases with depth. Without an accurate reconstruction

of the impedance contrasts, the amplitude of the modelled reflected

waves can be significantly smaller than the observed amplitude. In

order to improve the amplitude fit, we precondition the gradient to

strengthen the deep perturbations at the expense of shallow ones

and perform 40 IpWI iterations with the preconditioned L-BFGS

optimization scheme, starting from the final VP model of JFWI

(Fig. 9e). We still use offsets smaller than 200 m.

The number of iterations is taken four times as before such that

tiny differences in the data amplitude can influence the model up-

date. The refined impedance perturbations computed in the RWI

and JFWI velocity models are shown in Fig. 12. Compared with the

previous IP models (Figs 9a and b), the image of the deep reflec-

tors, such as the cap rock–reservoir interface, has been significantly

enhanced. Note also how the geometry of the reservoir is much

more accurately delineated in the IP model computed by using the

JFWI velocity model compared with the one using the RWI velocity

model.
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Joint full waveform inversion 1547

Figure 12. IP models after 40 iterations of IpWI performed with preconditioned L-BFGS optimization, using RWI (a) and JFWI (b) VP models as background

models (Figs 9d and e, respectively).

Figure 13. Logs of enhanced reflectivity (IP update) at x = 3.75 km. Com-

pared with previous IP logs (Fig. 10a), deeper reflectivity can be matched

by preconditioned L-BFGS optimization starting from the RWI or JFWI VP

models. Still, JFWI performs better than RWI in terms of depth positioning.

For the sake of completeness, we plot the vertical profile of the

new IP perturbation models at x = 3.75 km in Fig. 13. The amplitude

of the impedance perturbations is now much better estimated in the

deep part of the model.

The first shot gather computed in the true models and in the final

RWI and JFWI models are compared in Figs 14 and 15. Phases

and amplitudes in the JFWI-calculated data agree quite well with

those of the observed data, except for the multiscattered waves

(e.g. time = 4.4–5.2 s at offset = 6 km). Nevertheless, the ab-

sence of the multiscattered waves in the calculated data helps us

avoid somehow the cycle-skipping issues: the phase ended in time

= 4.6 s at offset = 6 km seems not to be cycle-skipped. As the

sand zone is hard to be recovered (due to few reflection information

from the seismogram), the moveout of the latest reflection coming

from the sand–bedrock interface is less properly matched especially

at offset = 4 km. More convex misfit functions (Luo & Schuster

1991; Brossier et al. 2009, 2010, 2015; Luo & Sava 2011; Ma

& Hale 2013; Warner & Guasch 2014) would be helpful to relax

the cycle-skipping issue raised by waveform-difference misfit func-

tions, and allow large traveltime shifts for the inversion procedure

to match the full-offset reflection phases. On the other hand, the

data calculated in the RWI final models match the observed data

at short offsets, but fail at long offsets (e.g. time = 3.6 s, 5.4 s

at offset = 6 km). This means that the diving-wave information is

also critical for the matching of the reflection data (phases, move-

outs), and should not be discarded in the high-resolution imaging

techniques.

5.2.3 Broad-band imaging of VP

The impedance model in Fig. 12 could be used for geophysical

interpretation. Alternatively, a broad-band VP model is also very

helpful to understand the structure of the subsurface and the rock

properties, but conventional approaches like FWI may fail in build-

ing such a VP model from a crude initial model due to the lack of

low frequencies (Fig. 9a). Joint FWI can be used as a robust tool for

initial model building since it can build the long wavelengths that

are required to perform reliable FWI (Fig. 9e).

Fig. 16(a) shows the result of FWI starting from the JFWI VP

model (Fig. 9e) under the VP–ρ parametrization. The two-layer

density model that was used as the initial model for JFWI is used

here as the background model, and is kept fixed during this FWI im-

plementation. The final FWI velocity model matches quite closely

to the true velocity model, except in the deep part due to the lack

of illumination. This result confirms the relevance of JFWI as a

robust tool to build an initial velocity model for FWI, leading to a

two-step velocity model building workflow of successive JFWI and

FWI. However, this VP model is prone to contain imprints from VP–

ρ cross-talks: the short-scale heterogeneities that are missed in the

background density model might be interpreted as the short-scale

velocity perturbations by FWI, leading to an erroneous velocity es-

timation. This might explain some amplitude mismatches between

the true and the FWI velocities in the log profile (Fig. 16b), for

example at 2–2.5 km depths.

The data fit of the first shot gather computed in the true VP

model and in the final JFWI followed by FWI VP model is shown

in Fig. 17. The multiscattered waves are generated (e.g. time =

4.4–5.2 s at offset = 6 km), due to the injection of the intermediate

wavenumbers into the final VP model, which allows us to model

these higher-order scattering effects from the top of the cap rock

and the vertical edges of the gas layers. Except at zero offset, the

match of the phase and amplitude is further improved comparing

with Fig. 15, especially for the multiscattered waves and the late

reflection at long offsets. In summary, this experiment manifests

that JFWI has a great potentiality to be used as a robust tool for

initial velocity model building for conventional FWI.
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Figure 14. Comparison of the first shot gather computed in the true VP model (second and fourth panels) and in the final RWI (first panel) and JFWI (third

panel) models. See text for details.

Figure 15. (a) Direct comparison between seismograms computed in the true VP model (black lines) and the final RWI model (blue lines) for the first shot

gather (Fig. 14). (b) Same as (a) for seismograms computed in the JFWI model (red lines). See text for details.

The match at zero offset has been degraded (within the two-way

traveltimes ranging from 1.8 s to 3.4 s) due to the offset weighting

that has been applied to enhance the reflection data at long offsets.

Moreover, this degradation might be caused by the fact that we have

kept the smooth density model to its initial values, suggesting that

the model space is not large enough to account for the amplitude

effects at short offsets. In other words, these amplitudes cannot

be matched by a velocity-only inversion procedure. Therefore, a

multiparameter FWI for VP and ρ should be considered to improve

the data fit.

5.3 JFWI in the presence of multiples

In this section, we discuss the robustness of JFWI in the presence of

surface multiples. The interest is that if JFWI allows the multiples

to be present in the data, the pre-processing workflow could be

simplified.

We still consider the synthetic Valhall model (Figs 7a and c) and

generate a data set with surface-related multiples (Fig. 18a). This

data set is processed by JFWI and IpWI by considering a free-surface

boundary condition on the surface during the seismic modelling.

Compared with the data set computed without free-surface multi-

ples (Fig. 7a), the diving waves have weaker amplitudes in the 1–

2 km offset range (using the same clip), and more complex reflection

wavefields are recorded. This prompts us to reduce the scaling fac-

tor applied to the reflected waves through the operator W r from 10

to 5, such that the contributions from the diving and reflected waves

are re-balanced in the JFWI misfit function. Moreover, as free sur-

face effects generate more multiscattering, we progressively feed

the inversion with late-arriving reflections at a slower rate than

in the former case performed without surface multiples. Here,

we mute the reflection data after 3.3 s over the full offset range

during first few cycles, then gradually restore their amplitude

to their original level during later cycles (also weighted by 5).
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Joint full waveform inversion 1549

Figure 16. (a) Broad-band reconstruction of the velocity model by con-

ventional FWI using JFWI VP model as the starting model. The VP-ρ

parametrization is used for inversion keeping the density model fixed).

(b) Comparison between velocity profiles (x = 3.75 km) extracted from

the true model (solid black line), the initial VP model (dashed line), the

JFWI VP model (red line) and the broad-band VP model shown in (a) (green

line). Leakage of ρ reflectivity is expected (e.g. at 2–2.5 km depths).

We apply the same time-offset window (eq. 12) to separate the

data.

Fig. 18(b) shows the JFWI result after 14 cycles. Although the

final JFWI VP model shows the long wavelengths of the true VP

model as in Fig. 9(e), we have witnessed some degradations of the

quality from this velocity result:

(i) The thin reflector at the water bottom between x = 3 km and

4 km is an artefact coming from the very early reflections in the

diving-wave time window. Because we have applied a simple lin-

ear time-offset window, the migration isochrones generated from

the reflections left in the diving-wave time window are not totally

cancelled during the summation of G1 and G2. When multiples are

present, these reflections may be enhanced, making the migration

isochrones apparent in the gradient. This highlights that a suc-

cessful application of JFWI heavily relies on the accuracy of data

separation.

(ii) Above 2 km depth, the resolution seems to be higher in

Fig. 18(b) than in Fig. 9(e), even though we have applied the same

Figure 17. Data fit of the first shot gather computed in the true VP model

(black) and in the final JFWI+FWI VP model (red), which is comparable

with the one obtained with the JFWI VP model (Fig. 15). Here, the fit at long

offsets of multiscattered waves has been nicely improved at the expense of

the fit at short offsets. See text for interpretation.

Gaussian smoothing regularization to the gradient (vertical and hor-

izontal correlation lengths equal to twice of the dominant wave-

length). This improved resolution might result from the improved

subsurface coverage provided by the surface-related multiples. This

statement deserves however further investigations.

(iii) In contrast, the low-velocity zone at 2.3 km depth is recon-

structed less accurately in Fig. 18(b) than in Fig. 9(e). We consider

that imaging at this depth, covered by only reflection kernels, is a

difficult task especially when multiples are present.

As was in Section 5.2.3, we launch the conventional FWI start-

ing from the JFWI VP macromodel (Fig. 18b) using the VP–ρ

parametrization. The two-layer density model that was used as the

initial model for JFWI is also used here as the background model,

and is kept fixed during this FWI implementation. The result is

shown in Fig. 18(c). The gas zone is properly reconstructed, with

some noise due to the multiples. The image of the cap rock, how-

ever, is not as accurate as the one built from multiple-free data.

We believe that this degradation results from the surface multiples

and the multiscattered waves generated by the hard interfaces and

the edge of the gas layers. Remembering the former application

without multiples, these multiscattered waves had already made

the velocity model building quite non-linear, which prompted us to

design a time-windowing approach to mitigate this non-linearity.

Here, as expected, the presence of multiples has significantly in-

creased the non-linearity, which forces us to apply a more prudent

time-windowing approach. With such an effort, the degradation of

the resolution is limited.

Regardless the difficulties raised by these two wave modes, we

still obtain a reasonable velocity model by FWI using the JFWI

model as the starting model. The log extracted at x = 3.75 km is

shown in Fig. 18(d). Without considering possible cross-talk effects

between parameters, the final VP values (green curve) fit quite well
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1550 W. Zhou et al.

Figure 18. Synthetic Valhall case study with free surface multiples. (a) First shot gather. (b) Long-wavelength VP model by JFWI. (c) Broad-band reconstruction

of the VP model (conventional FWI implementation starting from (b), VP–ρ parametrization and density fixed). (d) Logs of VP models at x = 3.75 km for (b)

and (c). JFWI suffers from the high-order scattering effects from the surface-related multiples and the multiscattered waves, therefore the VP results are worse

than the previous results (Figs 9e and 16a). However, from the log we see that the gas layers are still well imaged. See text for details.

the true VP values (black curve) above 3.2 km depth, and is much

comparable with the one inferred from multiple-free data (Fig. 16).

6 C O N C LU S I O N S A N D P E R S P E C T I V E S

Most applications of the conventional FWI are driven by diving

waves and post-critical reflections. However, imaging the long-to-

intermediate wavelengths in deep regions remains challenging if the

transmitted waves do not penetrate these regions due to insufficient

offsets. In contrast, RWI succeeds to some extent in imaging the

long-to-intermediate wavelengths of the deep regions focusing on

the two transmission wave paths followed by the reflected waves

from the surface to the reflector positions. This kind of approaches

relies on a scale separation between a smooth velocity model and a

known reflectivity, that allows one to suppress the contribution of

the unwanted (high-wavenumber) migration isochrones during the

velocity model building. The limitation of RWI is that diving waves

and post-critical reflections are not used, although they carry the

essential long-wavelength information of the shallow subsurface.

We have presented in this paper an extension of RWI, namely Joint

FWI, the aim of which is to account for the contribution of the diving

waves and post-critical reflections during the velocity model build-

ing. The relevance of the method is demonstrated with the synthetic

Valhall case study, which has shown that how the improvement of

the near surface imaging provided by the diving waves translates

into an improved imaging of the deep targets performed by RWI. Al-

though modern wide-azimuth long-offset seismic acquisition may

still not allow to record the diving waves with a sufficient penetra-

tion depth to sample the deepest targeted structures, diving waves

and post-critical reflections can have an increasing contribution in

the seismic wavefield. In this study, we have proposed a seismic

workflow which makes an optimal use of the information carried by

all kinds of waves to build a reliable velocity macromodel. Our ap-

proach requires however the explicit separation of the diving waves

(or post-critical reflections) and the pre-critical reflections.

The conventional VP–ρ parametrization of the subsurface favours

a broad-band reconstruction of the VP parameter, but the mitigation

of the cross-talks between VP and ρ is challenging from reflected

waves. In contrast, the VP–IP parametrization leads to a more natural

uncoupling between the two parameter classes, which is consistent

with the scale separation between the velocity model and the re-

flectivity underlying RWI and JFWI. It becomes therefore natural

to combine within an iterative workflow the velocity model build-

ing performed by JFWI and the impedance imaging performed by

conventional FWI of reflected waves (IpWI). As the impedance

model needs to be updated according to the velocity updates, JFWI

and IpWI are performed in an alternate way leading to the cycle

workflow.

For more efficient implementations of the cycle workflow, one

possibility is to reduce the iteration number of the IP inversion.

Although the amplitudes of the imaged reflectivity will be incom-

pletely estimated, the kinematics of the data can be retrieved to

reconstruct a reliable VP background model. As soon as the kine-

matic attributes of the data are matched, amplitudes can be further

used to build more accurate reflectivity images.

Having respectively built the low-part and the high-part of the

VP and IP spectra, it is natural to wonder whether imaging a broad

spectrum of the subsurface is possible. Starting from the velocity

macromodel built by JFWI, a broad-band velocity model can be ten-

tatively imaged by conventional FWI using the VP–ρ parametriza-

tion. The quality of the reconstructed velocity model shows that the

low-to-intermediate wavenumber components of the JFWI model

are accurate enough to successfully image the subsurface from re-

flected waves by FWI. In this experiment, only the VP parameter

is updated keeping the density fixed to its original value. There-

fore, this VP model is prone to contain imprints from VP–ρ cross-

talks. These cross-talks probably manifest by the overestimation

and/or underestimation of the reconstructed velocities. To tackle

this kind of cross-talks, multiparameter inversions which involves

the Hessian operator should be considered. Depending on the com-

putational facilities, L-BFGS (Nocedal 1980) or Truncated Newton

(Métivier et al. 2013) methods could be considered to introduce the

Hessian operator.

On the other hand, imaging low-wavenumber part of the IP

spectrum could be more difficult, as neither VP–ρ nor VP–IP
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parametrization can provide low-wavenumber sensitivity to the IP

parameter (cross-talks arise in the transmission regimes for the ρ–IP

parametrization). In this case, we have to rely on empirical para-

metric relations such as the Gardner relation. From this kind of

relation, we could rebuild the initial IP in each cycle to translate

low wavenumbers from VP to IP, or set a trust region to bound the

searching area of the IP inversion.

We also look forward to the applications of JFWI to real data sets

such as the real Valhall one. The cycle-skipping issue would appear

and could hinder the local search method to reach the global mini-

mum. Therefore, more robust misfit definitions would be required.

Besides, how the cycle inversion scheme is affected by the elastic

information of the data should be studied. For example, we fore-

see that the misinterpretation of elastic wavefields as acoustic ones

would generate reflection residuals due to inaccurate amplitudes.

The inversion of these residuals by JFWI would generate some ar-

tificial velocity perturbations even if the initial VP model is correct.

Accounting for density to absorb the elastic effects is an option,

although this inevitably questions the use of the VP–IP parametriza-

tion during JFWI (Borisov et al. 2014; Plessix et al. 2014; Plessix

& Solano 2015). Another possible strategy is to correct the acoustic

wavefields for the elastic effects by using artificial source terms

(Chapman et al. 2014; Hobro et al. 2014). A last-but-not-least pos-

sibility could be to rely on the kinematic-associated misfit functions

such as the ones based on cross-correlation (van Leeuwen & Mulder

2010), deconvolution (Luo & Sava 2011; Warner & Guasch 2014),

instantaneous phase (Fichtner et al. 2008; Bozdag et al. 2011), or

dynamic warping (Hale 2013). Extensions to 3-D geometry could

be performed, but the repetition of the IP inversion inside the cycle

workflow would be a computational obstacle. One possible solution

is to build the reflectivity in the pseudo-time domain instead of the

depth domain, by which reflection phases are always matched in

short offsets (Plessix 2013; Wang et al. 2015).
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A P P E N D I X A : D E R I VAT I O N O F

G R A D I E N T S T H RO U G H L A G R A N G I A N

F O R M U L AT I O N

Although we perform full waveform inversion in the time domain,

we shall derive the gradient formulations in the frequency do-

main for the sake of compactness. The Lagrangian quantities of

FWI, RWI, FWI with reflectivity (denoted by FWI+reflectivity in

Fig. 2(d), here FWI2 for short), and JFWI can be expressed with

common notations [see Plessix 2006 for a review of adjoint-state

method]:

L = Misfit function + ℜ〈a|First constraint〉

+ℜ〈b|Second constraint〉, (A1)

where a and b denote the adjoint-state variables and ℜ〈 · | · 〉

denotes the real part of the inner product. The specific expressions

of other notations are listed in Table A1. The physical meaning

of u0 and δu are the background and scattered components of the

modelled wavefield, respectively. Starting from the smooth initial

model, the scattered field is not generated during the first iteration

of FWI, therefore δu = 0 and only the first constraint is required.

The operator B denotes the modelling operator, s the source term

and R the real-valued sampling operator that extracts the calculated

data from the modelled field.

The expression of the first constraint is derived from the forward

problem equation [i.e. B(m)u = s] in m or m0 to constrain u0. Sim-

ilarly, the expression of the second constraint is from the equation

B(m + �m)(u + δu) = s = B(m)u to constrain δu. The source term

−�Bu0 with �B = B(m0 + δm) − B(m0) emits the scattered field

when the background field u0 hits local diffractors. Since the mod-

elling operator B(m0 + δm) depends on δm, high-order scattering

effects are accounted for in δu.

Setting the derivatives of eq. (A1) with respect to the state vari-

ables to zero gives the adjoint-state equations, listed in Table A2,

where �d∗ denotes the conjugate of the data residual, T the trans-

pose operation and † the adjoint operation. In the first column, �d∗

represents the data residuals at the receiver positions, reversed in

time, augmented with zeroes in the subsurface model by the pro-

longation operator R T, and used as virtual sources to produce the
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Table A1. Specific expressions of the Lagrangian terms for each formulation.

Misfit function State variable(s) First constraint Second constraint

FWI 0.5‖W(dobs − Ru)‖2 u0 B(m)u0 − s –

RWI 0.5‖W r (d
refl

obs − Rδu)‖2 u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

FWI2 0.5‖W d (ddiv
obs − Ru0) u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

+W r (d
refl

obs − Rδu)‖2

JFWI 0.5‖W d (ddiv
obs − Ru0)‖2 u0 and δu B(m0)u0 − s B(m0 + δm)δu + �Bu0

+0.5‖W r (d
refl

obs − Rδu)‖2

Table A2. Adjoint-state equations for each formulation.

∂δuL = 0 gives ∂u0
L = 0 gives

FWI – B(m)†a = −R TW TW�d∗

RWI B(m0 + δm)†b = B(m0)†a = −�B†b

−R TW rTW r�d refl∗

FWI2 B(m0 + δm)†b = B(m0)†a =

−R TW rT(W d�d div∗ + W r�d refl∗) −�B†b − R TW dT(W d�d div∗ + W r�d refl∗)

JFWI B(m0 + δm)†b = B(m0)†a =

−R TW rTW r�d refl∗ −�B†b − R TW dTW d�d div∗

Table A3. Expressions of a and b for each

formulation.

b a

FWI – W 2(λd
0 + λr

0)

RWI W r2(λr
0 + δλr ) W r2δλr

FWI2 W rd (λd
0 + δλd ) W d2λd

0 + W rdδλd

+W r2(λr
0 + δλr ) +W dr λr

0 + W r2δλr

JFWI W r2(λr
0 + δλr ) W d2λd

0 + W r2δλr

adjoint field b. In the second column, the other adjoint quantity

a is emitted by the residual source at receiver positions or by the

secondary sources located at diffractor positions δm. The adjoint

propagator B† indicates that the computation of the adjoint quanti-

ties can be implemented by modifying the forward modelling code

without much effort, and the cost to compute one adjoint quantity

is the same as the cost of one forward modelling computation.

Analysis of these equations allows us to give a more physical

interpretation of the adjoint fields a and b, listed in Table A3, where

λd
0 denotes the background adjoint field from the diving wave resid-

uals, δλd the scattered adjoint field from the diving wave residuals,

λr
0 the background adjoint field from the reflected wave residuals,

and δλr the scattered adjoint field from the reflected wave residu-

als. W 2 is the short-hand for W TW, and similarly W d2 for W dTW d,

W r2 for W rTW r, W dr for W dTW r and W rd for W rTW d. Instead of

computing the adjoint quantities a and b, we actually compute the

adjoint fields λ’s because their source terms are easier to be built:

the evaluation of the operator �B is not required and only the data

residuals are computed.

In the adjoint-state method, the gradient is found by taking the

derivative of eq. (A1) with respect to m or m0. Inserting the respec-

tive expressions of a, b, we find that

∇CFW I =
(

λd
0 + λr

0

)†
W 2 ∂ B(m)

∂m
u0, (A2)

∇CRW I = δλr† W r2 ∂ B(m0 + δm)

∂m0

u0 + λ
r†
0 W r2 ∂ B(m0 + δm)

∂m0

δu

(A3)

+ δλr† W r2 ∂ B(m0 + δm)

∂m0

δu (A4)

+ λ
r†
0 W r2 ∂�B

∂m0

u0, (A5)

∇CFW I 2 =
[

λ
d†
0 W d2 + λ

r†
0 W rd

] ∂ B(m0)

∂m0

u0 (A6)

+
[

δλd† W dr + δλr† W r2
] ∂ B(m0 + δm)

∂m0

u0 (A7)

+
[

(λd
0 + δλd )† W dr + (λr

0 + δλr )† W r2
] ∂ B(m0 + δm)

∂m0

δu (A8)

+
[

λ
d†
0 W dr + λ

r†
0 W r2

] ∂�B

∂m0

u0, (A9)

∇C J FW I = λ
d†
0 W d2 ∂ B(m0)

∂m0

u0 + δλr† W r2 ∂ B(m0 + δm)

∂m0

u0

(A10)

+ λ
r†
0 W r2 ∂ B(m0 + δm)

∂m0

δu + δλr† W r2 ∂ B(m0 + δm)

∂m0

δu (A11)

+ λ
r†
0 W r2 ∂�B

∂m0

u0. (A12)

Apart from the fact that they are formulated in the frequency do-

main, these gradients expressions are the exact forms of the compact

ones provided in eqs (3), (5) and (7), respectively. For FWI2, the

gradient expression is not given but illustrated in Fig. 3(d).

The terms associated with ∂�B/∂m0 have non-zero values only

at reflector positions (where δm differs from 0). Regularization of

the inverse problem helps suppress these unwanted contributions
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because they have high-wavenumber contents. Therefore, the last

terms of RWI, FWI2 and JFWI gradients (A5), (A9) and (A12) can

be neglected. Nonetheless, the workflow proposed to evaluate the

JFWI gradient (Algorithm 1) provides the exact expressions. In the

frequency domain, G1 and G2 are given by:

G1 =
(

λr
0 + δλr

)†
W r2 ∂ B(m0 + δm)

∂m0

(u0 + δu), (A13)

G2 = λ
d†
0 W d2 ∂ B(m0)

∂m0

u0 − λ
r†
0 W r2 ∂ B(m0)

∂m0

u0. (A14)

One can verify that adding G2 to G1 results in the same expression

as (A10) to (A12).

Another approximation can be made on eqs (A6)–(A9). Terms

representing interferences of δλd and u0, λd
0 and δu as well as δλd

and δu can be discarded simply because these interferences happen

to high-order scattered fields, giving negligible contribution to the

gradient (e.g. around 2 per cent of the total energy in the Valhall

case).

A P P E N D I X B : H I G H - O R D E R

S C AT T E R I N G E F F E C T

Formulations of the high-order migration isochrones can be the-

oretically deduced from expressions (A10) to (A12). Taking the

two-reflector case (Fig. 4a) as an example, the scattered compo-

nent of the adjoint field can be decomposed as infinite series in an

increasing order:
⎧

⎨

⎩

δλr1 = δλr1
1 + δλr1

2 + δλr1
1,2 + . . . ,

δλr2 = δλr2
1 + δλr2

2 + δλr2
1,2 + . . . ,

where r1 and r2 respectively indicate the early and late reflection

phases that provide the adjoint sources. Numbers in the subscript

indicate the reflectors at which the scattering takes place. 1: scatter-

ing at the shallow reflector; 2: scattering at the deep reflector; 1, 2:

successive scatterings at the shallow and deep reflectors. Similarly,

the scattered component of the incident field can be decomposed

using the expression δu = δu1 + δu2 + δu1, 2 + . . . . Inserting these

decompositions into expressions (A10) to (A12), omitting small-

amplitude terms and switching to the time domain, the gradient

turns out to be

∇CJ FW I = u0 ⋆ λd
0 (A) (B1)

+u0 ⋆ δλr1
1 (B) + δu1 ⋆ λr1

0 (C) + δu1 ⋆ δλr1
1 (D) (B2)

+u0 ⋆ δλr2
2 (E) + u0 ⋆ δλr2

1,2(E) + δu2 ⋆ λr2
0 (F) + δu1,2 ⋆ λr2

0 (F)

(B3)

+u0 ⋆ δλr2
1 (G) + δu1 ⋆ λr2

0 (H) + δu1 ⋆ δλr2
1 (I, J) (B4)

+δu2 ⋆ δλr2
2 (K) + δu1,2 ⋆ δλr2

2 (K) + δu2 ⋆ δλr2
1,2(K) (B5)

+δu1,2 ⋆ δλr2
1,2(K). (B6)

Each term represents one or two Fresnel zones labelled by the

capital letters in parentheses. They are shown in Fig. B1. Zone A is

the classical first-Fresnel zone wave path generated by direct/diving

waves (Fig. B1a). Zones B and C are the RWI wave paths associ-

ated with the first reflection, whereas Zone D is a high wavenumber

isochrone located near the shallow reflector (Fig. B1b). The size

of Zone D decreases as higher frequencies are used. The late re-

flection phase gives rise to other zones E to K (Fig. B1c). Zones

E and F are the RWI wave paths associated with the second re-

flector. Zones I, J, G and H are higher-order migration isochrones.

In migration imaging, these isochrones are conventionally consid-

ered as migration artefacts, suppressed by destructive interference

from different source–receiver couples. Like Zone D, Zone K is

located near the deep reflector position and shrinks with higher

frequencies.

Figure B1. Decomposed JFWI gradient in the two-reflector case, components associated to (a) direct/diving wave, (b) early reflection phase denoted by r1,

and (c) late reflection phase denoted by r2. Fresnel zones A–K are represented by correlation terms in eqs (B1)–(B6). Solid and dashed arrows denote the ray

paths followed by the modelled and adjoint fields, respectively. Blue paths are useful for low-wavenumber imaging unlike the red ones.
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