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Full Waveform LiDAR for Adverse

Weather Conditions
Andrew M. Wallace , Abderrahim Halimi , and Gerald S. Buller

Abstract—We present and discuss the case for full waveform
pixel and image acquisition and processing to enable LiDAR sen-
sors to penetrate and reconstruct 3D surface maps through ob-
scuring media. To that end, we review work on signal propagation,
on scanning and arrayed sensors, on signal processing strategies
for independent pixels and employing spatial context, on reducing
complexity and accelerating processing by sensor design, algo-
rithmic changes, compressed sensing, and parallel processing. We
report several experimental studies on LiDAR imaging through
complex media, and how these can inform the automotive LiDAR
scenario. We conclude with a discussion of future development and
potential for full waveform LiDAR (FWL).

Index Terms—Automotive LiDAR, full waveform LiDAR,
obscuring media, bad weather, signal propagation, scene
reconstruction, discussion paper.

I. INTRODUCTION

C
URRENT automotive sensing systems designed for either

full autonomy or driver assistance employ a multimodal

suite of disparate sensors for scene mapping and classification of

other road users, of which passive optical cameras, LiDAR and

radar are usually the main components [1]. As these sensors have

complementary strengths and weaknesses, sensor fusion [2]–[4]

is often applied to acquire high resolution images at near to far

ranges in both favourable and unfavourable viewing conditions.

However, fusion of disparate sensing systems with different

fields of view, acquisition rates, resolutions, and error models

is not trivial.

In this discussion paper, we make the case for full waveform

LiDAR (FWL) in its own right and as a key component of sensor

fused systems. We argue that new developments in solid state

LiDAR and in FWL data processing mean that we can now

consider LiDAR signals to have a penetrative capability through

obscuring media, and so move closer towards radar performance
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Fig. 1. The sensor suite and the test vehicle. This includes from left to right
(Inset), a Velodyne HDl-32E LiDAR a Zed Stereo Camera pair and a Navtech-
CIR104 79 GHz radar system.

in bad weather while retaining the advantages of high spatial

resolution. Further, as both radar and FWL provide continuous

data on reflected power as a function of range, this opens up new

research in full waveform fusion that goes beyond the current

state of the art. We provide illustrations from our own and other

researchers’ work on FWL, and follow this with a summary

and discussion of the necessary steps to make FWL automotive

sensing a reality.

II. LiDAR, RADAR AND PASSIVE OPTICAL

AUTOMOTIVE SENSING

Although a modern car has many types of sensor [1], we con-

centrate on those capable of the two key functions for situational

awareness, scene mapping and object recognition using a-priori

information provided by GPS and/or IMU systems if available.

Currently we employ a test vehicle to map the environment in

all weathers, fusing data from radar, LiDAR and optical stereo

sensors as shown in Fig. 1. However, the LiDAR sensor is a

limited, single or dual pulse system, typical of the automotive

context [5], [6]. We do not have FWL data available on this

vehicle; an example of concurrent multimodal data acquisition is

shown in Fig. 2. The main concentration for LiDAR technology

has been on scene mapping; deep neural networks have been

lauded for their success in recognizing objects in video data

(see [7] for competitive results on automotive benchmarks), but

this does not yet translate to results on objects appearing in

LiDAR (or indeed radar) data.
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Fig. 2. Examples of instantaneous video, radar and LiDAR images acquired by the field trials vehicle of Fig. 1. The images were taken around Edinburgh in
clear weather and the radar and optical stereo image scan be used identify targets (e.g. other vehicles) and correspondences can be made between the different
modalities. The LiDAR image is restricted in range, and demonstrates that we need more sensitive processing of full waveform data.

Even in good conditions, there are a number of limiting factors

to the deployment of LiDAR systems for autonomy and driver

assistance. In principle the resolution can be sub-cm in range

and cross-range as the collimated beam diameter divergence is

small, but such fine cross range resolution implies very dense

pixel arrays or fine scanning, and results in very large datasets.

A typical current, commercial LiDAR system may produce in

excess of 1,000,000 depth points per second, assuming a single

or a dual return per transmitted pulse. If we move to FWL, this

increases dramatically, depending on the distance resolution. So,

there are data bandwidth and storage [8] issues. The vehicle must

be able to see sufficiently far ahead to take appropriate action, but

LiDAR systems must be eye safe, setting limits on laser power,

and hence maximum range. A proposed specification from one

manufacturer is for a 905 nm wavelength solid-state LiDAR with

a range of 150 m at 8% surface reflectivity [5], although we have

not been able to achieve this with our existing sensors. Future

systems also need to be immune from interference (from other

vehicles) and malicious attack [9], necessitating more complex

signal filtering and coding strategies.

What of other sensing modalities? Passive optical sensors

can acquire 3D images from disparity analysis, but as there is

no direct light source this depends on detail in the scene, the

depth resolution is poor and varies with range. The intensity

response is integrated over the optical path, so there is no current

possibility of discriminative (by depth) optical processing for

‘seeing through fog’. Automotive radar systems [10] perform

much better in adverse weather, and have much longer range,

typically up to ≈300 m. Although they can have good resolution

in depth due to the high bandwidths in the 24 GHz–300 GHz

range [11], the image plane resolution is poor due to the wide

beam divergence. Especially in elevation, the data is effectively

discarded and a range bearing map is produced rather than a full

3D image. Recent research in low THz imaging in particular

aims to address these limitations, and super resolution and

interferometric depth techniques [12] may give genuine 3D radar

data at much better resolution in all dimensions. However, it will

be some time before this approaches LiDAR resolution.

Hence, we evaluate the issues concomitant with a move

from single return to FWL for operation in adverse weather

conditions, such as fog, rain, snow and mist. To that end, we

consider signal propagation, processing strategies, what lessons

can be learnt from experimental studies of FWL imaging through

obscuring media, and issues of sensor design and software and

hardware algorithmic complexity. This does not contradict the

probable need for fusion of radar and optical data, but simply

asks the question whether ‘clever’ processing of FWL data can

make a valuable contribution to acquire more detailed 3D scene

maps in adverse conditions.

III. LASER SIGNAL TRANSMISSION IN BAD WEATHER

A. Attenuation and Scattering of the Signal

Adverse conditions for automotive LiDAR can include rain,

snow, hail, mist, fog, smoke, and spray from the road sur-

face. Working from the basic laser radar equations [13], [14],

the designer has to factor in a wide dynamic range of return

signal strengths based on not just reflectivity but also on at-

tenuation. Traditionally, the four main wavelengths for study

of land based, sub-10 km sensing LiDAR have been near the
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Fig. 3. A comparison of attenuation loss in Fog and Smoke in the visible and
near infrared [19]. Here dense smoke is defined as having visibility < 0.07 km,
thick smoke < 0.5 km. These experiments were carried out in a controlled
atmospheric chamber of length 550 cm. (©2012 IEEE).

1 µm, 1.5 µm, 2 µm and 10.6 µm wavelengths [15], of which

the sub-1 µm waveband has the advantage of falling within

the detection range of widely available silicon-based optical

technology [16]. Light can propagate through the human eye

to the retina, which is unsafe, especially at visible wavelengths,

so that 1.5 µm is more suitable, although this necessitates the

more expensive and less integrated Indium Gallium Arsenide

(InGaAs) based detectors.

Theoretical scattering models (Rayleigh, Mie, Geometric)

depend on the relative size of the wavelength and the atmospheric

particles [17], and as there is no benchmark for what is adverse,

there is disagreement between different experimental studies,

and between theory and experiment. Experimental investiga-

tions usually focus on fog and smoke in controllable conditions

using machines or canisters [18]–[22]. Light propagation at

1550 nm may suffer less from attenuation by obscurants than

at shorter wavelengths, but Kim et al. [17] suggested that this

conclusion was true in haze, but not necessarily in fog, based on

theoretical modeling and a meta-analysis of the literature. Fig. 3

shows examples of the attenuation loss in different densities of

fog and smoke, showing an advantage for the higher wavelength

in dense smoke, but not fog. Similar studies and comparisons

between experiment and theory in fog and rain were conducted

by Rasshofer et al. [14] and Khan et al. [20].

Explicit studies on automotive LiDAR at the two wavelengths

of 905 nm and 1550 nm have been conducted [23], [24] and

compared to a 24 GHz radar in [23]. The main metric was

target detection. The conclusions confirm the other studies;

they considered it advantageous to use 1550 nm, not because

of differences in attenuation, but because the higher wavelength

allows significantly higher power while maintaining eye safety.

As regards the radar, they noted that resolution and classification

were poor, and very dependent on the target material.

Most of these studies tended to focus on relatively repro-

ducible pollutants rather than snow or rain which are harder

to characterize. Fersch et al. [25] did consider the influence

of discrete rain drops on a pulsed LiDAR but this really only

looked at rain on the aperture and they concluded the effect was

Fig. 4. Comparison of attenuation coefficient of glycol-based smoke at visible
and 1550 nm wavelengths as smoke disperses [29]. The key observation is the
significantly reduced attenuation at 1550 nm.

non-critical in reducing power. Trierweiler et al. [26] discussed

steps to both detect and remove the presence of contaminants on

sensors and any signal effect of very near-field distortion in the

signal can be effectively gated in many cases.

Our own trials [27] included verification of point-to-point

propagation measurements using a TCSPC LiDAR at a wave-

length of 1550 nm through several obscuring media, water fog,

smoke generated from a glycol smoke machine and white smoke

from canisters. Calibration targets were used to give an indepen-

dent visibility estimate [20] so that the attenuation length of the

medium could be calculated. The tunnel was filled initially then

the obscuring medium slowly dispersed, and images were ac-

quired at 2 minute intervals, as shown in Fig. 4 for glycol-based

smoke. These results confirm that the 1550 nm wavelength is

potentially advantageous for certain obscuring media, as in

Fig. 4, but not all, and improves eye safety. Satat et al. [28]

did similar experiments to recover single target surfaces through

fog, to which we shall return in Section V.

The study of Pfennigbauer et al. [22] is instructive. The

experimental environment was similar to [29], but they recorded

a FWL measurement through all the obscuring medium between

the sensor and the target, not gating the results around an

a-priori target position [29]. For an automotive LiDAR, this is

necessary because objects of interest are distributed in depth,

a near pedestrian, a distant car and so on. There are two key

observations. At 40 m visibility (Fig. 5), the majority of the

returned signal is from the intervening medium, and further

there are significant peaks due, presumably, to inhomogeneous

volumes in a relatively sparse medium. At 10 m visibility (not

shown), the intervening medium is homogeneous, but the target

is barely visible, if at all. Hence we argue later in this paper

for more advanced processing strategies that take into account

a significant presence of outliers, spatial constraints between

adjacent pixels, and modeling of the medium itself.

Recently, an extensive study by Carballo et al. [30] examined

the performance of 12 different LiDAR sensors to capture the

range accuracy and density of scenes in a 200 meter weather

chamber, simulating rainy and foggy conditions. This, too, is

instructive, showing false returns generated by intervening fog
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Fig. 5. Example of imaging a black and white planar target in fog with visibility
of 40 m from [22]. The path length was 30 m. Similar data can be found in [23]
and [28].

and rain that confuse the LiDAR sensors to detect false tar-

gets, and additional interference effects when using multiple

LiDARS simultaneously. Zhao et al. [31] developed an auto-

motive simulation package that includes geometric modelling,

attenuation using the laser radar equation, and a probabilistic

model for reflection from homogeneously distributed raindrops.

Outdoor validation tests were performed, but because these were

uncontrolled these provided only intuitive comparisons with the

simulated data. Although very instructive, these latter studies use

commercial systems that operate on the single echo principle,

and as such reinforce the necessity for full waveform processing

presented here.

Attenuation is not the only concern; turbulence can produce

wind affected, time varying refractive gradients that can create

scintillation, beam spreading and wander [15], which is par-

ticularly noticeable on short time exposures. The majority of

the studies have been directed at long distance optical com-

munication, e.g. [32]. The effect of such adversarial conditions

has not been systematically studied in an automotive context

where established benchmarks tend to provide good weather

data [33]. Li et al. [34] observed that turbulence effects were

substantial in reducing the achievable resolution in azimuth

and elevation at long range (8.2 Km) using a single-photon

system, especially during the day and in an urban environment.

Pawlikowska et al. [35], [36], have performed an extensive

study of the effects of turbulence on a photon counting system

at 1550 nm using both single element and arrayed detectors,

and Henrikson and Sjoberg [37] have investigated methods for

correction of scintillation effects in laser radar systems. To

model this theoretically on a single line of sight is complex;

Huela et al. [38] progressed from simpler models for beam

wandering and scintillation to more complex theory for phase

front distortion, comparing their work with previous attempts.

In summary, the effect of turbulence is very much dependent on

atmospheric conditions, natural or man-made, but these works

have been directed at much longer ranges than is common in

an automotive environment, and are unlikely to be the major

concern in this application.

B. Choice of Detector

For FWL, there are two main types of detector, linear

mode avalanche photodiodes (APDs) and time-correlated

single-photon counting (TCSPC), typically using Geiger mode

APDs or single-photon avalanche diode (SPAD) detectors [39].

APDs operate in linear multiplication mode, where the output

signal is linearly proportional to the incident optical power level,

thus providing full waveform information. These systems have

proven robust and reliable and have been used in a variety of

long-range LiDAR applications, but typically require detection

thresholds of the return signals of the order of several 100s

photons [39]. Single-photon LiDAR systems use APDs biased

above the avalanche breakdown voltage so that a single-photon

can initiate a self-sustaining and readily detectable avalanche

current. These detectors can register only the presence or

absence of a photon and cannot distinguish between one or two

(or more) photons incident at the same time. The advantage of the

single-photon approach is sensitivity at the single-photon level,

which when coupled with high repetition rate laser sources,

can produce an FWL response over many laser cycles. The

picosecond jitter of TCSPC systems can provide an advantage

in terms of signal-to-noise ratio and, significantly, in terms of

depth resolution (of the order of centimeters) when compared

to linear mode detectors. These advantages have been apparent

for a number of years [40], but have suffered from long data

acquisition times, too slow for most automotive applications.

However, as discussed in Section VI-A1, the development of

detector arrays, allied to rapid image processing techniques [41],

suggest that TCSPC LiDAR systems can become more effective

for future automotive requirements.

When imaging through obscuring media, light is attenuated in

both directions, so for a linear APD the return signal amplitude

is greatly reduced and may be missed in the presence of system

noise and back-scatter from the medium. In a TCSPC detection

system, however, the detector can only trigger only once per

laser pulse, with the detector requiring a reset after each event,

typically resulting in a detector dead time of 10’s nanoseconds.

If the likelihood of photon returns is high compared to the

pulse rate then a statistical skew in measurement probability

will occur across the timing window, called pulse pile-up. This

pile-up effect will be of particular significance in multiple return

measurements through adverse media [28], [39]. In previous

work, the authors have corrected single photon returns for loss

of light through vegetative layers [42], but this does not fully

correct for pulse pile up effects. In short, if TCSPC is to be

used for full dynamic range depth imaging in the automotive

context, rather than applying a window with limited depth of

field (‘gating’), further statistical correction is needed.

C. A Comparison With Automotive Radar

Automotive radar has the particular strengths of relatively

long range operation, is unaffected by lighting conditions (e.g.

at night) and is less sensitive than optical sensors to obscuring

media such as rain, mist, smoke or fog. Unfortunately, current

azimuthal and elevation resolution of automotive radars is poor,

and this makes detailed scene mapping and object classification

challenging and error prone. Automotive radar imaging and

processing systems [10] are generally targeted at the millimeter-

wave region from 30–300 GHz (1 cm to 1 mm wavelength),
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Fig. 6. Absorption spectra in fog and rain, from [45], [46] (©2012 IEEE).

penetrating poor weather [43] and receiving echoes from both

surfaces and actors within the field of view and at medium to long

range. 77 GHz is a popular choice, but increasing frequency and

modulating bandwidth in an FM system improves depth resolu-

tion, shown by experiment for a 150 GHz FMCW radar [11]. In

comparison with LiDAR, radar signals can propagate through

dense obscurants such as fog with much smaller propagation

loss [44], but the greater impediment to detailed scene mapping

and actor recognition is the low azimuth and elevation resolution

due to beam spread.

However, examining Fig. 6 one can observe that relative to

fog, in rain there is much higher attenuation [45], [46]. In an

explicit study of the effects of adverse weather on automotive

radar, Zhang et al. [47] note that rain, snow, mist, and hail,

can all have a significant impact, showing for example how

the received power and probabilities of detection of vehicles

and pedestrians reduce considerably as rain density increases.

Noruzian et al. [48] measured experimentally the effects of

snowfall, concluding that as the density of snow increases, so the

attenuation increases at all measured wavelengths. Comparing

wet and dry snow, higher attenuation occurred in the former

case.

In experiments to compare current automotive optical imaging

and a prototype automotive radar [49], a marquee was filled with

artificial (glycol based) obscurant and images were taken using a

150 GHz FMCW azimuth scanning radar, a Velodyne HDL-32E

LiDAR and a StereoLabs ZED optical stereo camera. In Figs. 7

and 8 the radar image can be compared against clear optical

images and against optical images acquired at a visibility of

4.4 m, as measured by a Secchi disc. At shorter distances, the

radar image shown in Fig. 7 is unaffected, but if we examine the

optical stereo image it is difficult to discertain the highlighted

objects, and several LiDAR returns at the further distances are

not detected by the algorithms used in the Velodyne system.

This illustrates very clearly the need for sensitive, full waveform

processing as argued in this paper.

D. Fusion

As introduced in Section I, given the complementary strengths

of the different sensors [50], all prototype vehicles for au-

tonomous and assisted driving have sensor suites designed to

Fig. 7. Scene within tent before smoke machine is switched on, from [49].
The ellipses enclose two mannequins, a spherical target of 20 cm diameter (on
the left) and a trolley (on the right). From top to bottom are the radar, camera
and LiDAR images. (©2017 IET). (a) Radar Image. (b) Optical Stereo (Left)
and LiDAR Images.

cope with the different conditions. However, most sensor fusion

methodologies [3] rely on unchanging descriptions of prior

and error probabilities that are not appropriate to changing

weather conditions. For example, RobustSENSE [51] employs

{LiDAR, stereo camera, short and long range radar} sensors for

external environmental monitoring, aiming to maximize sensor

performance while keeping component costs reasonable (≤1000
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Fig. 8. Scene within tent as smoke density increases to give 4.4 m visibil-
ity [49]. The camera and LiDAR images are shown. (©2017 IET).

Euro). Radecki et al. [16] present algorithms for data association,

object tracking, and object classification using video, LiDAR

and radar, detecting and tracking cars and pedestrians in a variety

of conditions, {Sunny, Night, Wet and Cloudy, Snow, Rain}. In

addition to attenuation and image distortion, they paid attention

to sensor fouling in snow, rain, and dusty conditions, and gave a

full discussion of how these effects occur and how to avoid the

associated problems. For fusion, one needs a switching strategy,

and variable parameters according to conditions. Trivially, this

could be optical in good weather, radar in bad weather, but

this suggests we need algorithms to determine when to switch,

touched upon in Section III-E.

E. Online Fog Determination

If fog (or other weather) is an impediment to optical imaging

because it attenuates and degrades the recorded image, the

corollary is that measurements of passive optical and LiDAR

image data can be used to estimate fog or other pollutant densi-

ties [45]. Pfennigbauer et al. [22] suggested that it was possible

to determine the visibility range and hence estimate fog density

from a LiDAR waveform measured from immediately in front

of the sensor to a maximum range of 30 m, since the rate of

amplitude decay was a clear indication of this. This suggests a

way to recover targets hidden in fog, because if the distributed

return from the relatively homogeneous fog can be measured,

this can be substituted in a model that analyzes multiple real

target echoes against a known background [52], [28].

As a rare exception, Shamsudin et al. [53] have investigated

algorithms for fog detection and elimination from 3D point

Fig. 9. Multispectral data for a single pixel through tree canopy, from [42]. In
this case the stand-off distance was 45 m to the zero reference point, just above
the tree apex. (©2014 IEEE).

clouds and conducted experiments under laboratory conditions.

This uses intensity and geometrical distribution to separate

clusters and is applied to the much more constrained situation

of an indoor robot. Effectively, it is an outlier removal algorithm

based on geometry, laser intensity and the beam itself. This is

unlikely to be robust outdoors over wide range fields as beam

divergence, different surface reflectance and distributed surfaces

all confuse the issue.

IV. FULL WAVEFORM LIDAR SIGNAL ANALYSIS

Current automotive LiDAR systems [5], [6] work on single

or occasionally dual peak detection, using a constant false alarm

rate (CFAR) matched filter or a similar strategy, assuming that

return signals from the LiDAR are significantly above a con-

stant noise floor. We consider temporal pulse modeling of a

FWL return as a non-normalized statistical mixture of single

surface returns rather than as an aggregated convolution. Such a

waveform has density F (i; k, φ) [54] defined as

F (i; k, φ) =

k∑

j=1

fsystem(i;βj , t0j ) +B (1)

where k denotes the number of returns, β each peak amplitude,

t0 peak position, and B the background. Examples of four such

waveforms for a single array pixel are shown in Fig. 9.

FWL processing to extract the parameters of Equation 1, as

surveyed by Mallet and Bretar [55], is the key to extracting

meaningful information from more complex scenes in which

the simple model of reflection from a single (or possibly dual)

flat surface with negligible depth variation normal to the beam

direction, as used for example in the Velodyne scanner [56], is

not appropriate. Multiple echoes can occur due to secondary

reflections [57], imaging from and through transparent sur-

faces [58], [59], imaging through complex surface structures

with mean size less than the beam width such as trees [42], and of

particular relevance to the automotive case, through obscuring
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media in which much of the return is scattered from particles

between the sensor and objects of interest, shown in Fig. 5.

Wagner et al. [13], following [60], [61], considered the re-

turned signal as a mixture of Gaussians. In the system consid-

ered, pulses were wide, of the order of 5 ns, corresponding to

1.5 m distance, so resolution of closely separated surfaces was

difficult. Rather than resolve, Mallet et al. [62] considered the

waveform as a distributed response characteristic of the target,

using a similar pulse width and a large footprint, of the order of

25 m2. A set of characteristic signal return models (generalised

Gaussian, Nakagami, Burr) was used to discriminate between

cathedrals, lesser buildings, grass, fields and streets. However,

an automotive LiDAR operates at shorter range, less than 200 m.

If we employ a narrow pulse and beam width in a time correlated

photon counting (TCSPC) LiDAR system [40], the footprint

on an opaque surface is much narrower, and the change in

pulse shape due to surface variation in azimuth and elevation

is negligible. This means we can build a high resolution image

by scanning or a focal plane array.

Several strategies have been proposed to estimate multi-peak

parameters given the observed photon histograms. The key

advantages of a Reversible Jump Markov Chain Monte Carlo

(RJMCMC) approach [52], [63], following [64] are the ability

to detect very weak and closely based returns, as short as

1 cm at a distance of 330 m [52], but these algorithms are

time-consuming. Other algorithms [59], [65], [66] consider a

convex formulation coupled with sparsity promoting regularisa-

tion. These approaches take into account the Poisson statistics

of the data and use optimization and employ assumed spatial

correlation between pixels. This latter constraint can be used

to discourage adjacent pixels from having different values of k

(number of peaks) [67], enforce neighbouring pixels to share

similar depth and reflectivity estimates [41], [68], [69], or even

account for non-local spatial correlations [63], [70]–[72]. These

algorithms have been demonstrated on real data showing con-

siderable performance improvements; examples of their use in

real studies of object perception through fog are provided in

Section V-B.

V. EXPERIMENTAL STUDIES ON 3D IMAGING USING TCSPC

DATA THROUGH OBSCURING MEDIA

We now report our own, and other studies, on 3D image

formation using FWL through various obscuring media and

extrapolate to the automotive case. As discussed in Section III-B,

for much published work and for existing commercial sys-

tems the preferred receiver technology is usually based on the

Avalanche Photodiode (APD). In our experiments, we employed

Time-Correlated Single-Photon Counting (TCSPC) with excel-

lent sensitivity, depth resolution, and operated at eye safe low

laser power, all advantageous for automotive applications.

A. Penetrative LiDAR Through Tree Canopies

We investigated multispectral LiDAR imaging of forest

canopies to the ground floor along the tree apex direction (e.g.

from the perspective of an airplane) [42]. The obscuring media

Fig. 10. Multispectral Data for 100 accumulated pixels through the tree
canopy, from [42]. (©2014 IEEE).

is the canopy, so we can perform penetrative analysis, e.g. to de-

termine the presence of invasive species on the ground. Equally,

the canopy itself is of interest and using multispectral FWL

we recovered parameters to infer structural and physiological

processes.

In field trials, we collected a 10 by 10 matrix of full waveform

data from a viewpoint normal to the apex of a small conifer. Fig. 9

shows the pixel illuminated by four independent wavelengths

(531 nm, 579 nm, 670 nm and 780 nm). Fig. 10 shows the

response for these same four wavelengths integrated over all

the pixels, which is analogous to a wide footprint aerial sensor.

As stated previously, some have used an aggregated model to

represent the obscuring medium, such as generalised Gaussian,

Nakagami, Burr functions to represent the tree canopy [62], or

a gamma function to represent homogeneous fog [28]. Using

RJMCMC analysis, supplemented by additional parameters to

define spectral response, we recovered the relative abundance of

needle and bark through the canopy, as well as the ground surface

and height of the tree, using the model of Equation (1) with an

unknown number (k) of impulse responses. The dotted lines

in Fig. 10 are effectively the positions of instrumental returns

and show the recovered positions of several layers of the tree

canopy, and the ground, and each layer has a corresponding area

and reflectance model, leading to the abundance recovery. Like

Fig. 5, the last return is of low amplitude because the tree crown is

relatively dense, so that little radiation penetrates to ground level.

Fig. 10 shows that the bulk of the canopy returns are between

approximately 0.6 m and 1.5 m, and the ground plane return is

at approximately 1.8 m, and that although the vast majority of

the photon returns are for the intervening medium (the canopy),

there is nevertheless sufficient return to recover the “‘target”’

depth, assuming that the ground height is the parameter of

interest. The key lesson for automotive LiDAR is that where

multiple surfaces may exist within the fog, or the fog is itself

non-homogeneous, the superposition of impulses allows a more
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Fig. 11. Polystyrene head and calibration targets used in France for 3D
imaging work through obscuring media, from [27]. (©2019 IEEE).

Fig. 12. Examples of photon count histograms under different levels of at-
tenuation. These are focussed on a narrow time (distance) window of 2000 ps
(30 cm) extracted from the full measurement window of 65536 ps (9.8 m) [27].
(a) 14:00 hours. (b) 14:55 hours.

flexible model than predefined aggregated distributions [28],

[62].

B. Penetrative LiDAR Through Smoke and Fog

We now turn our attention to a more detailed study of LiDAR

imaging through obscurants (smoke, fog) conducted in a sealed

tunnel using different media and densities of the intervening

medium [29], a situation which is more representative of the

automotive case. For our experiments, we used a polystyrene

head and a series of planar targets, as shown in Fig. 11. The

transceiver was located at a stand-off distance of 17 m from

the tunnel, and the head at a distance of 24 m from the tunnel

entrance so that the total transceiver-target stand-off was 41 m.

In Fig. 12 are shown a single pixel captured as the tunnel is

filled with smoke (14:00 hours) then the corresponding pixel

image after most of the smoke has dispersed (14:55 hours). These

measurements are gated around the target, unlike Fig. 5, but

there is no clear concentration of photons at the object surface

in Fig. 12(a) due to reflections from the surrounding fog.

Satat et al. [28] have also recovered dense depth images of

mannequins, similar in essence to those shown in Figs. 11 and

5, through fog in a specially constructed chamber. Like [62],

they applied the alternative approach to the superimposition of

Fig. 13. An example histogram from [28]. OT refers to the optical thickness of
the fog. On the left the orange curve is the fitted Gamma function, and the green
curve is the assumed surface return. The yellow function denotes the difference.
(©2018 IEEE).

a variable number of impulse returns which is to model the

obscuring medium by a representative gamma function con-

volved with the instrumental response, as shown in Fig. 13. A

Kernel Density Estimate (KDE) smooths the original signal, then

the fitted gamma function at a given optical thickness (OT) is

subtracted from this to leave the signal estimate, and the assumed

single surface return is extracted. The key problem here is the

assumption of a single return so that peaks in the yellow signal

are assumed to be inhomogeneities in the fog rather than real

surface returns.

In a scene such as this, it is possible to incorporate assump-

tions about the nature of the objects depicted, in particular the

smoothness of the surfaces with few significant obscuring or

sharp curvature edges. In Fig. 14 are shown several examples of

reconstruction of the depth image of the polystyrene head that

take advantage of either local or non-local spatial constraints,

in addition to data statistics. In particular, the paper by Tobin

et al. [27] compares Multidimensional Nonlocal Reconstruction

of 3D (M-NR3D) [27] against two earlier approaches, Restora-

tion of Depth and Intensity using Total Variation (RDI-TV) [73]

and the Unmixing Algorithm (UA) [68]. The regularization term

included variation in intensity as well as depth, as both the head

and planar surfaces are of uniform Lambertian reflectance. In

more complex scenes it may be more appropriate to regularize

based on consistency of normal or curvature data or on the

assumption of a few piecewise extended surfaces [74], [75] but

this may make an already time-consuming optimization strategy

intractable as we consider in Section VI.

In similar vein, we also recorded spectral transmittance at

wavelengths from 500−900 nm for different sediment densities

in sea water in comparison with clear water, from both single-

pixel scanning [76] and arrayed detector [77] configurations.

Like the tree canopy examples, FWL processing was used to

compute the peak positions, amplitudes and background photon

count, and to classify target objects (model mines) through

underwater vegetation [78]. In essence propagation through un-

derwater sediment is analogous to propagation though airborne

obscurants and is not considered further here as it does not add

to the discussion.

VI. COMPLEXITY: HARDWARE AND SOFTWARE ISSUES

Complexity issues are key in dealing with the much greater

volume of data associated with FWL. We have to be system-

centric, considering focal plane vs. scanned hardware, how data
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Fig. 14. Depth image restored by a number of methods using spatial con-
straints and data statistics.NAL is number of attenuation lengths in glycol based
smoke. The per-pixel acquisition time was 3 ms (approximately 30 seconds
total). The data was reconstructed using, from top to bottom, cross-correlation;
RDI-TV [73]; UA [68]; M-NR3D [27]. The depth scale is in meters for all
images.

is acquired and read out, where and how it is processed, and what

computational languages and hardware are most appropriate. In

Section IV we argued that FWL required sophisticated tech-

niques to recover weak and closely separated returns expected

in imaging complex scenes through obscuring media. Methods

such as RJMCMC or the convex optimisation methods have

significant time complexity. In brief, to achieve high frame rate

processing, especially in the presence of obscurants, requires

significant progress in sensor design, algorithms, software and

embedded hardware.

1) Solid State Arrays: Solid state detector arrays: Over the

last few decades, silicon-based SPAD arrays have come to

prominence for a variety of applications, particularly when

fabricated in CMOS technology [79]. These sensors have been

configured in full TCSPC mode [80], [81], and for single-photon

3D imaging in range-gated mode [82], [83]. Over the years,

there have been considerable developments aimed at improving

the fill factor, the quantum efficiency, reducing crosstalk, and

incorporating fast read out circuitry [81], [84], [85]. Arrayed

silicon SPAD detectors are being developed explicitly for the

automotive sector [5], with detection capability demonstrated

at up to 300 m. Larger arrays are now being fabricated, e.g. of

256 × 256 [86] or 252 × 144 pixels [87]. Earlier [88], a 64 ×
32 pixel array was operated at an even higher rate of 100fps.

More recently, Gyongy et al. [89] demonstrated 1000fps depth

imaging using a 80 × 30 SPAD array with TCSPC capability

having an on-chip histogramming capability.

With silicon-based SPADs, the spectral range is limited to

wavelengths below 1000 nm. As highlighted in Section III,

there are advantages in using longer wavelengths. Up to ap-

proximately 1600 nm, this has been addressed by the use of In-

GaAs/InP and InGaAsAsP/InP SPAD detectors [83], [90]. Itzler

at al [90] demonstrated these picosecond-resolution TCSPC-

based detector arrays in formats of 32 × 32 and 128 × 32 pixels

applied to many applications including: high speed depth pro-

filing at 1000fps [91], panoramic 3D profiling in clutter [92],

and real-time depth reconstruction of complex, multi-surface

scenes [41]. Pawlikowska [35] provides a thorough account of

the relative merits of a scanned, single element 3D InGaAs/InP

TCSPC LiDAR system against a non-scanning transceiver sys-

tem containing a 32 × 32 InGaAs/InP SPAD detector array.

However, all of these process the data on the basis of an

assumed single surface return to limit complexity. Of concern is

the need to achieve high resolution over the full dynamic range,

typically 4 cm resolution from 1–200 m in the automotive case,

which places very high demands on data storage and processing

in an array structure. If using a focal plane array, there are limited

space and thermal budgets, and if we increase the complexity

of the data storage (e.g. for full histograms instead of single

points), then we reduce the fill factor and the frame rate accord-

ingly [93]. Simple binary logic and external frame summation

can reduce the frame time (to as low as 10 ms [94]) but that

does not allow full wave data analysis of the type described in

Section IV. To achieve FWL LiDAR data comparable to video

resolution in azimuth and elevation would require in excess

of 109 measurements per frame, which is unachievable now,

and so current, commercial sensors [5], [6], [22] process single

echoes at low vertical resolution, or multiple echoes on single

elevation sweeps, relying on sensor movement to ‘pushbroom’

the remaining dimension.

2) Array Architectures and Compressed Sensing: As stated

in the previous paragraph, in addition to maintaining high de-

tection efficiency and fill factor in a high resolution integrated

sensor, for FWL we have to store, transfer and process long

data vectors at each pixel, i.e. the depth profile, e.g. in contrast

to the triple RGB values recorded by a camera. This puts a

premium on space and thermal budgets, so full sensors generally

have low resolution in all spatial dimensions, and if processing

is integrated then it has to be very simple, e.g. a centre of

mass computation on the response. To try and resolve this and

eliminate the need to process every pixel, the first applications

of compressed sensing technology, e.g. [95], [96], were applied

to single pixel cameras, random sampling from a dense pixel

matrix using a digital-micro-mirror-device (DMD) to provide

the data to reconstruct 3D surfaces on the assumption of few

smooth surfaces, and in some cases uniformity of reflectance as

well.
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Fig. 15. Reconstructed scene from compressed reconstruction at a frame
processing time of 1 ms, from [97]. The scene is complicated, with several
surfaces separated by sharp, blade edges, and as such is representative of the
kind of data expected in the automotive context. (©2019 IEEE).

Recently, we expanded the CS methodology [97] into a pro-

grammable array, synchronizing the receiver and transmitter,

boosting the signal-to-noise-ratio (SNR) by restricting active

measurements to the patterns constituting the sensing matrix.

To reconstruct depth in the CS framework, a mixed domain

approach was adopted and simplified, using total variation (TV).

Earlier work relied on iterative processes to find the sparsest

solution and were computationally expensive for images larger

than 64 × 64 pixels [95], [96]. In contrast, we sampled and

processed the scene in small individual square tiles. The algo-

rithm was encoded in Matlab to reconstruct 3D scenes using

full waveforms derived from both synthetic 64 × 64 [98] and

real 256 × 256 data [78]. An example of a reconstructed scene

is shown in Fig. 15. The key observation is how the application

of full waveform, compressed sensing, implemented on a GPU

reduces the frame processing times to below 10 ms, which is

comparable to the necessary frame rates for the automotive area.

3) Reducing Algorithmic Processing Time: For deployment

in automotive scenarios, it is essential to reduce the compu-

tational cost of existing algorithms. Assuming a preferred al-

gorithm, the necessary first step is to profile the code. Quan-

tifying the performance of RJMCMC processing in compari-

son with the prevalent less complex approaches [99] showed

that simple likelihood computation accounted for 90% of the

processing time. This can be accelerated by special purpose

hardware.

Improving data representation is important. For example,

working in sparse regimes requires the use of a photon tagged

representation [63], [68], but in dense regimes it is more efficient

to work with FWL histograms in the presence of a scattering en-

vironment [100]. Simplifying assumptions, if valid, also ensure

faster performance. This can include fixing the number of esti-

mated peaks, the use of down-sampled data to reduce dimensions

and proposing specific formulations that allow parallel and GPU

computing tools. For example, in [101] we examined the ability

to resolve closely spaced surface returns, one of the key strengths

of TCSPC FWL systems, with a much faster approach. The

Fig. 16. Measurement of surface resolution using the RJMCMC, OMP and
the Matrix Pencil methods from [101]. The Matrix Pencil method results in a
reduction of per pixel processing time from 1s to 1.8 ms. (©2016 IEEE).

problem was reformulated as a parameter estimation problem

pivoted around the finite rate of innovation framework [102]. As

shown in Fig. 16 [101] we were able to achieve similar results

to full RJMCMC [52], but in a fraction of the time, reducing

computation time per pixel from 1s to 1.8 ms per pixel. This

comes with the caveat that it relies on low pass filtering of the

raw data, and on an a-priori assumption of two, relatively strong

returns. However, this approach does not make any a-priori

assumptions on spatial constraints, as in Fig. 14, so in that sense

is more generally applicable.

4) Parallel Methods for Full Waveform Analysis: If we con-

sider single pixels, or pixel windows, then the simplest form

of data parallelism is to process these independently and in de-

signing new arrayed sensors this can be encapsulated in on-chip

processing. As the same instruction sequence is performed on

multiple data sets, this makes it suitable for implementation on

a single-instruction-multiple-data architecture, such as the new

range of GPUs.

In [103], we also looked at multiple-instruction-multiple data

(MIMD) methods to implement the RJMCMC methodology, us-

ing both control and data parallelism. This facilitates concurrent

sampling by forming a group of parallel chains, decomposing

the state space into subsets of parameter space. The complete

state space of n candidate models, {k1, k2, . . ., kn} is divided

into (n−m+ 1) groups, each containing m adjacent models,

i.e. groupi = (ki, ki+1, . . ., ki+m−1). Each group is assigned

an independent RJMCMC chain, hence reducing the between-

model mixing complexity by reconfiguring the state space. An

implementation on a 32-node Beowulf cluster led to significant

speedup, of the order of 15–25 times, while maintaining the

same capability of RJMCMC to better explore the whole solution

space having several possible echoes.

VII. CONCLUSION

We have addressed some of the key strengths of full waveform

LiDAR (FWL) with particular regard to obscuring media. We

aim to prompt a discussion on the key strengths and weak-

nesses for deployment of FWL to allow autonomous or driver

assisted vehicles to operate in adverse weather, including smoke,

fog, mist and precipitation. Although we focus on automotive

LiDAR, by which we assume cars and public transport used

by the general population, such discussion encompasses more
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specialized applications, such as emergency vehicles operating

in adverse conditions, e.g. during fog that causes an accident, or

sensor controlled robots operating in extreme environments, e.g.

underground or in a smoke filled building. We now summarise

the main issues.

There is the issue of operating range, even in good weather.

Photon counting LiDARS have high sensitivity, and combined

with new developments in sparse modeling of scenes and very

efficient scanning optics have been shown to work at long

ranges [35], [104] but these are not (yet) suitable for automotive

applications. In addition to issues of optical and computational

efficiency, in general, the 3D reconstruction algorithms make

simplifying assumptions, e.g. that ‘reflectors are clustered in

depth’ [104], so that many pixels can be aggregated, which

is questionable in an automotive context. In contrast, current

automotive LiDAR manufacturers claim ranges in excess of

100 m; in our own experience even this is dependent on good

reflectivity and favourable ambient light. A move towards the

1550 nm wavelength should increase the operating range while

remaining within laser eye safety thresholds. In some adverse

conditions, such as dense smoke, the attenuation is also reduced

at the longer wavelength, so again this would improve operating

range. However, the move to 1550 nm wavelength comes at

a cost when compared to silicon where there is a consider-

able legacy of materials and device optimisation. Single-photon

detectors are now being developed for wavelengths around

1550 nm using Ge-on-Si [105], [106] which may reduce costs

if markets stimulate mass production.

Many existing automotive LiDARS use single return, or

perhaps dual (e.g. strongest, last) return only processing. If

FWL and TCSPC technology can be applied this will allow

not only improved distance resolution but also the capability

to detect and characteristic weak returns. Single shot image

plane resolution is usually poor. Scanning systems give dense

spatial sampling in the spin direction but generally use sparse

sampling normal to the spin direction, e,g, 32–128 lines, so that

denser sampling requires vehicle movement. If the spin rate is

fast and vehicle movement can be accurately monitored, and

point clouds accurately registered, then this may suffice. On the

other hand focal plane arrays have generally many fewer pixels

than conventional CCD cameras, so either larger arrays must be

developed, or mosaics of smaller sensors configured. The array

fill factors are also improving [81], [85], which together with

micro-lensing [84] should allow a more dense sampling of the

scene.

There are storage and processing issues for FWL. In the

penetrative LiDAR studies cited above, a sensor acquires a full

waveform at each pixel or scan direction; this is then processed

to find the multiple reflections contained therein. To store and

read out such voluminous data at each pixel requires addi-

tional circuitry that reduces the semiconductor area available for

sensing, and also takes considerable time, reducing frame rate.

Conversely, to introduce on-chip processing using other than

simple centre of mass detectors, would be both area and time

expensive. Having said that, there may not be a need to store

then post-process full waveform data. Taking TCSPC sensors as

an example, one can consider each photon arrival as an event

that updates range estimates, which are retained as new photons

arrive.

A number of authors have shown that compressed sens-

ing [107] has the potential to acquire high resolution images from

relatively few samples, usually sampled at random [63], [65],

[95]. The advantage of reducing the number of pixel samples,

and using optical methods to sample randomly, is that it allows

us to use fewer pixel sites and attain faster frame rates. Further,

it can potentially release sensor area for readout and processing

circuitry. However there are some caveats. Compressed sensing

relies on the signal or image being sparse in some domain, and

the majority of illustrations of compressively sensed LiDAR use

simple test scenes with simple surfaces and even uniform re-

flectance. Further, success is often measured by a reconstructed

distance from ground truth, which is best on continuous surfaces

rather than significant blade or fold boundaries. In an automotive

LiDAR, the anomalies have precedence over the common-place,

so one has to be careful that the sparse domain does not eliminate

the irregularities. Equally, in scene reconstruction it is important

to be sure that the underlying sparsity assumptions are applica-

ble, and to include estimates of uncertainty on the reconstructed

scene data. Nevertheless, the concept is promising for future

automotive systems.

Allied to the potential of compressed sensing, there is a key

requirement for algorithmic acceleration. Much has been made

of the recent, ubiquitous application of deep learning, but the

recent progress is due in large part to hardware innovation such as

relatively low cost GPU architectures. So there is a requirement

for stack (task − > algorithm − > code − > compilation − >

hardware) analysis of solutions to the signal and image analysis

problems presented here, including for example delegation of

repetitive maths to FPGAs, application of SIMD and multi-

core architectures as appropriate to the problem, as shown in

Section VI

In Section V we presented a number of examples of penetra-

tive LiDAR in action. In some of these studies the target was

gated so the surface shape was sensed using a-priori knowledge

of distance, i.e. using differential depth of focus. However, in

an automotive LiDAR, the assumption is that the scene must be

sensed at all ranges, and in adverse weather, one must analyse

the medium. This was best illustrated by the tree canopy exam-

ple [42], but if we examine sensing through fog, we realise we

cannot assume a homogenous and constant arrival of returned

light as a function of depth, as is the case in almost all previous

research. Allied to this, in an automotive system, if we want

to adjust dynamically to changing conditions, then we need to

know what those conditions are, a circular problem.

Hence, although LiDAR research and development is pro-

ceeding apace, is it likely in the short term that this could

become a sole sensor of choice? It seems that in the near term

at least sensor fusion [3] will remain necessary. For example,

radar is well know to operate well in bad weather but suffers

from poor scene resolution, currently a focus of improvement

using different radar frequencies, and processing methods such

as Doppler beam sharpening and synthetic aperture. There is also

variability on return that leads to difficulty in target recognition

or detection in cluttered environments (by which we mean



WALLACE et al.: FULL WAVEFORM LiDAR FOR ADVERSE WEATHER CONDITIONS 7075

having several confusing objects such as echoes, potholes, line

markings, which are difficult to model in electromagnetic simu-

lation, rather than statistically modelled background). Similarly,

we know that video processing for object recognition is much

more advanced, but both this and stereo scene reconstruction

suffer badly in adverse conditions. Therefore, we would suggest

that FWL filtered by better resolved radar data to give a-priori

information about coarse scene structure, could in future give

highly resolved scene reconstruction, but not immediately.

Less studied, interference or crosstalk [9] between different

sensors operating in a cluttered environment such as a road

network is a potential problem. In terms of ambient light, a

scanning LiDAR employs spatial (through a directional beam),

spectral (using a narrow band filter) and temporal (gated range)

filtering. Yet, Carballo et al. [30] found considerable interference

between multiple LiDARS in a weather tunnel, in the form of

both fringe patterns and random echoes, but were unable to

model these effects theoretically. Most models that do exist,

e.g. [108], are based on solution of the laser radar equation with

a realistic automotive or other transceiver model, and either a

synthetic environment or a mathematical model of probability

of return. Hence, automotive LiDARs should have some degree

of immunity to ambient effects, even in strong sunlight. If a focal

plane array is used, with a wide footprint transmitter for parallel

data acquisition, some capability for spatial filtering is lost. As

the dynamic range must be over 100 m or more, this negates

a degree of temporal filtering. Therefore, most authors suggest

that some further form of sensor specific modulation, e.g. code

division multiple access [25], is required to disambiguate the

intended from other sources. Again, this is really designed for

single returns, as multiple surfaces will alter the received code,

and the effect of an obscurant is to provide many such additional

returns. To the best of our knowledge, models and coding

strategies for avoiding interference using FWL in obscurants

have not been addressed.

Finally, there are design and cost concerns. Whereas one can

buy a CCD camera or a car radar for less than $200, LiDAR

systems are comparatively expensive. Further, it is not practical

to have a scanning LiDAR or indeed radar system mounted on

top of a production vehicle. Hence, the future of full waveform

LiDAR rests on the design of focal plane arrays, with or without

compressed sensing, that satisfy all the requirements of the

previous paragraphs in this section. If and when such technology

becomes ubiquitous, then the cost per installed system should

drop considerably.

In conclusion, we would suggest that FWL is a key component

of future sensing systems for the automotive sector, and in the

face of adverse weather conditions, analysis of the intervening

medium is a crucial component of the development of algorithms

and sensors.
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