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Abstract
MAP (maximum a posteriori) reconstructions of

transmission images produce more accurate ACFs (attenuation
correction factors) than smoothed division of blank and
transmission scans and analytical methods. Also, for highly
speciÞc tracers, transmission images can provide useful
anatomical cues for use in localizing structures and image
coregistration. The resolution of MAP images reconstructed
with a spatially invariant smoothing prior is known to be
nonuniform. Spatially variant smoothing parameters are used
here to achieve uniform resolution throughout the transmission
image. We also investigate the relationship between resolution
and the global smoothing parameter through computer
simulations. The resulting calibration curve can be used to
select the smoothing parameter to achieve a desired spatial
resolution. The tractability and feasibility of our method is
demonstrated through an application to phantom transmission
data collected using a Concorde P4 microPET system.

I. INTRODUCTION

Attenuation correction is important for quantitative PET
studies. Attenuation correction factors (ACFs) are computed
either by smoothed division of a blank and transmission scan
or through reconstruction and reprojection of the attenuation
image. In some cases reprojection is preceded by segmentation
of the transmission image to ameliorate the effects of noise
and scatter on the computed ACFs. Traditionally transmission
scans are performed in 2D modes using septa. With the
emergence of septa-less 3D PET scanners [1], it is desirable to
have a fully 3D transmission reconstruction algorithm.

In our previous work we developed MAP reconstruction
algorithms for 2D transmission scans [2] and 3D emission
scans [3] which have been successfully applied to clinical and
small animal PET scanners. Here we extend our work to a fully
3D transmission reconstruction method. The proposed method
has been applied to Concorde P4, a high resolution small
animal microPET scanner without septa. Transmission scans
can be performed in either coincidence or singles modes using
a spirally rotating Ge-68 point source. For this study we used
singles data, but our method is also applicable to coincidence
transmission scans.

Images reconstructed with MAP algorithms are known
to have nonuniform resolution and this problem has been
addressed [4]. Here we use space-variant smoothing parameters
to compensate for it. Simulations show that the resolution of
reconstructed transmission images are approximately uniform.

1This work was supported by the National Institute of Biomedical
Imaging and Bioengineering under Grant No. R01 EB00363.

The next step is to choose a global smoothing parameter to
adjust the resolution of the transmission image. This technique
avoids artifacts in attenuation corrected emission images
caused by oversmoothed transmission data [5], [6].

II. METHODS

A. Statistical Model
Transmission scan data can be modeled as a collection of

independent Poisson random variables with mean ȳi given by

ȳi =
τt

τb
b̄i exp(−[Px]i) + r̄i (1)

where x ∈ RM×1 is the attenuation coefÞcient at each voxel,
b̄ ∈ RN×1 is the mean of the blank scan sinogram, which can
be approximated by directly using a blank scan of sufÞcient
duration, τt is the transmission scan duration, τb is the blank
scan duration, P ∈ RN×M is the geometric projection matrix
and r̄ ∈ RN×1 is the mean value of background counts. For
coincidence scans, the background counts include scatters and
contamination due to randoms and emission. For singles scans,
there are no randoms but some LSO background is introduced.

In MAP reconstructions, our objective function is the log
posterior function:

φ(x,y) = L(y|x) − βU(x) (2)

where y ∈ RN×1 is the measured transmission sinogram, U(x)
is the prior function, β is a smoothing parameter controlling
the smoothness of the image and L(y|x) is the Poisson log-
likelihood function given by:

L(y|x) =
N∑

i=1

yi log ȳi − ȳi (3)

B. Preconditioned Conjugate Gradient (PCG)
We use the PCG algorithm to maximize the posterior

function (2) obtained in the previous section. The
preconditioned Polak-Ribiere form of the conjugate gradient
algorithm is:

x(n+1) = x(n) + α(n)a(n)

a(n) = d(n) + β(n−1)a(n−1) (4)

d(n) = C(n)g(n)

β(n−1) =
(g(n) − g(n−1))

′
d(n)

g(n−1)′d(n−1)
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where g(n) is the gradient vector of the log posterior function
φ(x,y) at x = x(n), stepsize α(n) is found by using a Newton-
Raphson line search. C(n) is the preconditioner, here we use
the preconditioner proposed in [2]:

C(n) = diag

{
x

(n)
k∑
i pik

}
(5)

C. Resolution
For MAP estimators, the local impulse response (LIR) can

be used to analyze the resolution of reconstructions [4]. The
local impulse response of the jth voxel is deÞned as:

lj(x) = lim
δ→0

E(x̂(y(x + δej))) − E(x̂(y(x)))
δ

(6)

As shown in [4], the local impulse response can be
approximated using a truncated series expansion with an
expression dependent on the Fisher information matrix. The
Fisher information matrix for the likelihood in (3) is given by

F = P′diag{ui}P (7)

For emission reconstruction, ui = 1
ȳi

, while for
transmission, ui = (ȳi − ri)(1 − riyi

ȳ2
i

).

For space-invariant priors, the local impulse response can be
approximated by [7]

lj(x) ≈ [F(j) + βR(j)]−1F(j)ej (8)

where F(j) is a local invariant approximation of the Fisher
information and R(j) is a local invariant approximation of the
second derivative of the prior energy function; ej is the j th unit
vector.

Here we use the contrast recovery coefficient (CRC) as a
measure of image resolution [7], which we deÞned as CRCj =
ljj(x), i.e. the height at voxel j of the local impulse response at
voxel j. Our goal is to have constant CRC values throughout
the image. For 3D PET systems, the CRC for the jth voxel can
be approximated by:

CRCj ≈ 1
N

∑

i

λi(j)
λi(j) + βκ−2

j µi

(9)

where λi(j) depends on the geometric matrix P, µi depends
on the prior function, and κj is the jth diagonal element of the
Fisher information matrix.

We can see from the above approximation of CRC that the
resolution of images reconstructed using the pure form of the
MAP technique is not uniform. This property is well known,
and modiÞcation to the smoothing parameter in order to achieve
uniform resolution has been proposed [4]. However the method
in [4] was only evaluated for the 2D case, where the system

is approximately shift-invariant. An extension of this idea to
3D is described in [7] in which the Fisher information, and
hence the resolution, is highly spatially variant due to large
differences in sensitivity throughout the image volume. In this
paper we follow [7] and also note that in the resolution analysis
mentioned above, the only difference between transmission and
emission scans is the form of the Fisher information matrix [8].

From (9) we can see that the data-dependency of the CRCs
comes from the κjÕs only. For a particular imaging system and
smoothing function, the λi(j)Õs are spatially varying constants.
To achieve a spatially invariant CRC we must therefore
choose the smoothing parameter β as a function of the Fisher
information so that the product ηj = βκ−2

j gives the desired
CRC in (9) at each voxel j. The problem is complicated by the
fact that spatial interactions in the smoothing function cause
coupling between the spatially variant smoothing parameters.
To account for this we write the quadratic smoothing function
in the following way:

βU(x) =
1
2
β

N∑

j=1

∑

k∈Nj ,k>j

δjkφjφk(xj − xk)2 (10)

where δjk is the reciprocal of the Euclidean distance between
voxels j and k, φj and φk are space-variant smoothing
parameters, β is a global scale factor, and Nj is the set of
neighboring voxels of voxel j.

To achieve uniform CRCs, a least-squares approach for
solving the following set of equations for φ was proposed in
[7]:

∑

k∈Nj

δjkφjφk = ηjκ
2
j

∑

k∈Nj

δjk (11)

where ηj is the value found from lookup tables that gives the
same CRC for each voxel j. In practice, as an approximate
solution, assuming the κjÕs are smooth and the relationship
between CRC and β is shift-invariant2 , we simply use a Þrst
order approximation φj = κj .

To determine the actual CRC for the reconstructed image,
we calibrate the relationship between the global parameter β
and CRC in simulations and then use a look-up table to achieve
the desired CRC. We compute this curve for both emission and
transmission reconstructions noting that the only difference in
the resolution analysis between the two cases is in the diagonal
elements of the Fisher information matrix, κj . Once we use
space-variant smoothing parameters to cancel the effect of κjÕs,
the resolution analysis is, to a Þrst order approximation, the
same for transmission and emission images.

To check the resolution uniformity of the proposed method,
we simulated a uniform cylinder with a cold chamber. The
simulated attenuation coefÞcient is 0.095/cm inside the cylinder

2We found that the relationship between CRC and β for the range
of CRC < 0.1 is approximately shift invariant; see for example, Fig 1a
in [7].
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and 0.03/cm in the cold chamber. Fig. 1 shows one plane from
the simulated phantom. The white points are those for which
the LIRs were computed in Fig. 1. Assuming that the mean of
the estimator equals the estimate obtained from noiseless data,
we can compute the local impulse response function from two
noiseless reconstructions as suggested in [4].

Figure 1: One plane of the simulated phantom
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Figure 2: Radial plots of LIR for four points with space-variant
smoothing parameters (left two columns) and without space-variant
smoothing parameters (right two columns).

Fig. 2 shows the radial proÞle of the LIR for four points,
two in the central plane and two in the second of 63 transaxial
planes. Within each plane the two points are selected such
that they have the same radial distance from the center of the
cylinder with one of them being at the center of the cold region.
The uniformity of the resolution is clearly seen. For comparison
the corresponding proÞles when the space-variant smoothing
parameter was not used are also shown. It is obvious that they
vary with the position of the point.

The simulated phantom was also used to compute the
CRC curve. The PET system simulated here is a simpliÞed
Concorde R4 system, which has the same transaxial geometry
but only 4 detector rings. We computed the CRC at the center
of the scanner as a function of the global smoothing parameter
for both transmission and emission simulations. The resulting
curves are shown in Fig. 3.

In [5] it was shown that the resolution mismatch between
the emission and transmission data can cause artifacts in
the attenuation corrected emission images. Similar artifacts
are also observed in statistical reconstruction methods [6].
A resolution-matching method was proposed in [5]. The
proposed method works well with analytical reconstruction
methods. For statistical reconstruction methods, the situation
is more complicated because the resolution of transmission
images are usually nonuniform. When we have uniform
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Figure 3: Emission and transmission CRC curves for the point located
at scanner center

resolution due to space-variant smoothing parameters, we
can choose an appropriate global smoothing parameter to
achieve a desired resolution, thus avoiding these artifacts. The
transmission image should be neither too smooth, thus causing
artifacts, nor too noisy, otherwise noise will be introduced into
the Þnal emission image. Optimization of the resolution in
transmission images to achieve the best quantitative accuracy
in emission images is not explored here, but the CRC studies
of transmission and emission data should provide a useful
guide to selection of smoothing parameters to minimize errors
propagating from transmission to emission images.

III. RESULTS

A. Computation
Sinogram data from the Concorde P4 microPET scanner

was rebinned with a span of 3 to 703 192x168 sinograms.
The transmission image was generated by running our PCG
algorithm for 30 iterations, each of which takes around 4
minutes on a 1.7GHz Pentium IV dual-CPU PC which has
1GB RAM.

B. Phantom Study
A 5cm diameter cylindrical phantom containing two smaller

cylindrical chambers was scanned. For the emission scan, only
the large background chamber was Þlled with a water solution
of F-18 (280 µCi). One of the two smaller chambers was
Þlled with water while the other was left empty (air). After
allowing enough time for decay of the emission activity, (> 10
half-lives) a transmission scan was initiated with a 0.5mCi
positron emitting point source spiraling through the FOV. We
used our 3D transmission reconstruction code to generate the
transmission image, which was then forward projected and
used in the emission reconstruction. The transmission image
and the attenuation corrected emission images are shown in
Fig. 4.

IV. CONCLUSION

In this paper, a fully 3D MAP reconstruction algorithm
for transmission is implemented and applied to a Concorde
P4 small animal microPET scanner. Preliminary results
from simulation and cylindrical phantom scans show that
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Figure 4: Central plane of the reconstructed phantom image:
Transmission image (left) and Emission image (right)

the proposed method is feasible. By using a space-variant
smoothing parameter, approximate uniform resolution is
achieved. We can calibrate the resolution of transmission and
emission images as a function of a global smoothing parameter
β, the result of which can be used to avoid the artifacts caused
by resolution mismatch and to optimize the Þnal emission
image.
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