
 Open access Proceedings Article DOI:10.1145/2837614.2837618

Fully-abstract compilation by approximate back-translation — Source link

Dominique Devriese, Marco Patrignani, Frank Piessens

Institutions: Katholieke Universiteit Leuven

Published on: 11 Jan 2016 - Symposium on Principles of Programming Languages

Topics: Compiler correctness, Compiler, Dynamic compilation, Functional compiler and Compiler construction

Related papers:

 Secure Compilation to Protected Module Architectures

 Protection in Programming-Language Translations

 Fully abstract compilation to JavaScript

 On Protection by Layout Randomization

 Typed closure conversion preserves observational equivalence

Share this paper:

View more about this paper here: https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-
1grpbih9k9

https://typeset.io/
https://www.doi.org/10.1145/2837614.2837618
https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9
https://typeset.io/authors/dominique-devriese-173f5l6k7u
https://typeset.io/authors/marco-patrignani-34fjt79x2w
https://typeset.io/authors/frank-piessens-3rj1ml972p
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/symposium-on-principles-of-programming-languages-1zu4o3vo
https://typeset.io/topics/compiler-correctness-9q5g00j7
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/topics/dynamic-compilation-wz6ww06n
https://typeset.io/topics/functional-compiler-2ytw0edy
https://typeset.io/topics/compiler-construction-8qv7xh62
https://typeset.io/papers/secure-compilation-to-protected-module-architectures-1tpgp1oen9
https://typeset.io/papers/protection-in-programming-language-translations-1htjfggclh
https://typeset.io/papers/fully-abstract-compilation-to-javascript-4vbktg0ivy
https://typeset.io/papers/on-protection-by-layout-randomization-22aq5eoqz0
https://typeset.io/papers/typed-closure-conversion-preserves-observational-equivalence-22uzc58qpd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9
https://twitter.com/intent/tweet?text=Fully-abstract%20compilation%20by%20approximate%20back-translation&url=https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9
https://typeset.io/papers/fully-abstract-compilation-by-approximate-back-translation-1grpbih9k9

Fully-Abstract Compilation by Approximate Back-Translation

Dominique Devriese Marco Patrignani ∗ Frank Piessens
iMinds-Distrinet, KU Leuven, Belgium

first.last @ cs.kuleuven.be

Abstract

A compiler is fully-abstract if the compilation from source lan-
guage programs to target language programs reflects and preserves
behavioural equivalence. Such compilers have important security
benefits, as they limit the power of an attacker interacting with the
program in the target language to that of an attacker interacting
with the program in the source language. Proving compiler full-
abstraction is, however, rather complicated. A common proof tech-
nique is based on the back-translation of target-level program con-
texts to behaviourally-equivalent source-level contexts. However,
constructing such a back-translation is problematic when the source
language is not strong enough to embed an encoding of the target
language. For instance, when compiling from the simply-typed λ-
calculus (λτ) to the untyped λ-calculus (λu), the lack of recursive
types in λτ prevents such a back-translation.

We propose a general and elegant solution for this problem. The
key insight is that it suffices to construct an approximate back-
translation. The approximation is only accurate up to a certain
number of steps and conservative beyond that, in the sense that
the context generated by the back-translation may diverge when
the original would not, but not vice versa. Based on this insight, we
describe a general technique for proving compiler full-abstraction
and demonstrate it on a compiler from λτ to λu. The proof uses
asymmetric cross-language logical relations and makes innovative
use of step-indexing to express the relation between a context and
its approximate back-translation. We believe this proof technique
can scale to challenging settings and enable simpler, more scalable
proofs of compiler full-abstraction.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Correctness Proofs; D.3.4 [Processors]: Compilers;
F.3.2 [Semantics of Programming Languages]: Operational Seman-
tics

Keywords Fully-abstract compilation, logical relations, cross-
language logical relations, step-indexed logical relations, compiler
security, secure compilation

We typeset source and target language terms in green resp.
pink; we recommend to print this paper in colour for maximum
clarity.

∗ Currently working at MPI-SWS, Germany <marcopat@mpi-sws.org>.

Copyright c© ACM, 2016. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in POPL ’16, January 20-22, 2016, St. Petersburg, FL, USA,
http://doi.acm.org/10.1145/10.1145/2837614.2837618.

Copyright c© ACM 978-1-4503-3549-2/16/01. . . $15.00

1. Introduction

A compiler is fully-abstract if the compilation from source lan-
guage programs to target language programs preserves and reflects
behavioural equivalence [Abadi, 1999, Gorla and Nestman, 2014].
Such compilers have important security benefits. It is often real-
istic to assume that attackers can interact with a program in the
target language, and depending on the target language this can en-
able attacks such as improper stack manipulation, breaking con-
trol flow guarantees, reading from or writing to private memory of
other components, inspecting or modifying the implementation of a
function etc. [Abadi, 1999, Kennedy, 2006, Patrignani et al., 2015,
Abadi and Plotkin, 2012, Fournet et al., 2013, Agten et al., 2012].
A fully-abstract compiler is sufficiently defensive to rule out such
attacks: the power of an attacker interacting with the program in the
target language is limited to attacks that could also be performed by
an attacker interacting with the program in the source language.

Formally, we model a compiler as a function J·K that maps
source language terms t to target language terms JtK. Elements
of the source language are typeset in a green, bold font, while
elements of the target language are typeset in a pink, sans-serif
font. Roughly, the compiler is fully-abstract, if for any two source
language terms t1 and t2, we have that they are behaviourally
equivalent (t1 ≃ctx t2) if and only if their compiled counterparts
are behaviourally equivalent (Jt1K ≃ctx Jt2K) [Abadi, 1999]. The
notion of behavioural equivalence used here is the canonical no-
tion of contextual equivalence: two terms are equivalent if they
behave the same when plugged into any valid context. Specif-
ically, we take contextual equivalence to be equi-termination:

t≃ctx t
′ def
= ∀C,C[t] ⇓ ⇐⇒ C[t′] ⇓. The universal quantifica-

tion over contexts C ensures that the results produced by t and t′

are the same [Plotkin, 1977, Curien, 2007].
The full-abstraction property can be split into two parts: the

right-to-left implication and the left-to-right implication, which we
call (contextual) equivalence reflection and preservation respec-
tively.

Equivalence reflection (t1 ≃ctx t2 ⇐ Jt1K ≃ctx Jt2K) requires
that if the compiler produces equivalent target programs, then the
source programs must have been equivalent. In other words, non-
equivalent source programs must be compiled to non-equivalent
target programs. Intuitively, this property captures an aspect of
compiler correctness: if programs with different source language
behaviour become equivalent after compilation, the compiler must
have incorrectly compiled at least one of them.

We build on cross-language logical relations: a technique that
has recently been proposed for proving compiler correctness [Hur
and Dreyer, 2011, Benton and Hur, 2009, 2010]. The general idea
of this approach is depicted in Fig. 1 (purposely ignoring language-
specific things such as the types of the terms involved). The proof
starts from the knowledge that Jt1K ≃ctx Jt2K and needs to prove
that t1 ≃ctx t2. That is, for an arbitrary valid context C, it shows

t1
?

≃ctx t2

C
[

t1
]

⇓ ?
⇒ C

[

t2
]

⇓

(1)

(2)

(3) C≈ JCK
t2 ≈ Jt2K

C≈ JCK
t1 ≈ Jt1K

JCK
[

Jt1K
]

⇓ ⇒ JCK
[

Jt2K
]

⇓

Jt1K ≃ctx Jt2Kco
m

pi
le

r
co

rr
ec

tn
es

s
di

re
ct

io
n

Figure 1. Proving one half of full-abstraction: compiler correct-
ness. Only one direction of this half is presented (⇒), the other one
follows by symmetry.

t1 ≃ctx t2

〈〈C〉〉
[

t1
]

⇓ ⇒ 〈〈C〉〉
[

t2
]

⇓

(1)

(2)

(3)
〈〈C〉〉≈ C

t2 ≈ Jt2K
〈〈C〉〉≈ C

t1 ≈ Jt1K

C

[

Jt1K
]

⇓
?
⇒ C

[

Jt2K
]

⇓

Jt1K
?

≃ctx Jt2K

com
piler

security
direction

Figure 2. Proving the other half of full-abstraction: compiler secu-
rity.

that C[t1] ⇓ if and only if C[t2] ⇓. By symmetry, it suffices to show
that C[t1] ⇓ ⇒ C[t2] ⇓.

The idea of the approach is to define a cross-language logical
relation t≈ t that expresses when a compiled term t behaves as a
target-level version of source-level term t. This logical relation is
not compiler-specific: it should be understood as a specification of
a target-level calling convention rather than precise representation
choices for a specific compiler. If we can then prove that any term
is logically related to its compilation (t≈ JtK), and that the same
result holds for contexts (C≈ JCK), then equivalence reflection
follows. Starting from t1 ≈ Jt1K and t2 ≈ Jt2K and C≈ JCK, the
proof uses the inherent compositionality of logical relations to
know C[t1]≈ JCK[Jt1K] and the same for t2. If the logical relations
are constructed adequately, then related terms will necessarily equi-
terminate. Thus, C[t1] ⇓ iff JCK[Jt1K]⇓ and similarly for t2. In
particular, this yields the implications (1) and (3) in Fig. 1. Since
implication (2) follows directly from the hypothesis of (contextual)
equivalence for Jt1K and Jt2K, the proof for equivalence reflection
is finished.

Equivalence preservation (t1 ≃ctx t2 ⇒ Jt1K ≃ctx Jt2K) re-
quires that equivalent programs remain equivalent after compila-
tion. This means that no matter what target-level manipulations are
done on compiled programs, the programs must behave equiva-
lently if the source programs were equivalent. This precludes all
sorts of target-level attacks that break source-level guarantees.

If the source language is strong enough, it is possible to apply
a strategy analogous to proving equivalence reflection for proving
preservation, as depicted in Fig. 2.1 Given an arbitrary target-level
context C, we need to prove that C[Jt1K]⇓ implies C[Jt2K]⇓. In
a sufficiently-powerful source language, we can construct a back-
translation 〈〈C〉〉 for any target-level context C. Using the same
logical relation as above, it then suffices to prove that 〈〈C〉〉 is a
valid source-level context and that 〈〈C〉〉≈ C for any valid context
C. Together with t1 ≈ Jt1K, and similarly for t2, compositionality

1 Actually, both Figs. 2 and 3 are simplifications. Perceptive readers may no-
tice that the proof depicted here would falsely imply equivalence preserva-
tion for any correct compiler. We correct the simplifications in Section 5.6.

t1 ≃ctx t2

〈〈C〉〉n
[

t1
]

⇓_ ⇒ 〈〈C〉〉n
[

t2
]

⇓_

(1)

(2)

(3)
〈〈C〉〉n ._ C

t2 ._ Jt2K
〈〈C〉〉n &n C

t1 &_ Jt1K

C

[

Jt1K
]

⇓n
?
⇒ C

[

Jt2K
]

⇓_

Jt1K
?

≃ctx Jt2K

approx.com
piler

security

Figure 3. Proving equivalence preservation using an n-
approximate back-translation. An _ subscript indicates any
number of steps.

and adequacy of the logical relation then yield implications (1) and
(3) in the figure. The remaining implication (2) follows from the
assumed (contextual) equivalence of t1 and t2.

Constructing a back-translation of contexts is not easy, but it can
be done if the source language is sufficiently expressive. Consider,
for example, a compiler that translates terms from a simply-typed
λ-calculus with recursive types (λτ ;µ) to an untyped λ-calculus
(λu). Constructing a back-translation of target-level contexts can
be done based on a λτ ;µ type that can represent arbitrary λu values.
Particularly, we can encode the unitype of λu values in a type UVal
as follows:

UVal
def
= µα.B ⊎ (α× α) ⊎ (α ⊎ α) ⊎ (α → α)

given that λu has base values of type B, pairs, coproducts and
lambdas. In other words, all λu values can be represented as λτ ;µ

values of type UVal. We can then construct a back-translation of
λu contexts to λτ ;µ contexts such that the latter work with values
in UVal wherever the original λu context worked with arbitrary λu

values.

Contributions of this paper If the types of the source language
are not powerful enough to embed an encoding of target terms, is it
possible to have a fully-abstract compiler between those languages?
In this paper we answer positively to this question and develop a
general technique for proving this. We instantiate this proof tech-
nique and develop a fully-abstract compiler from a simply-typed
λ-calculus without recursive types (λτ) to an untyped λ-calculus
(λu). With such a source language, we cannot construct a type like
UVal to represent the values that a λu context works with. Fortu-
nately, we can solve this problem by observing that a fully accurate
emulation is sufficient for the proof but in fact not necessary. An ap-
proximate back-translation is enough for the full-abstraction proof
to work, without sacrificing the overall simplicity and elegance of
the proof technique. The basic idea is depicted in Fig. 3. The dif-
ferences from Fig. 2 are the use of asymmetric logical relations .
and & (also known as logical approximations) to express (roughly)
that a term (or context) t terminates whenever t does (t & t) and
vice versa (t . t) and the addition of subscripts n where logical
approximations hold only up to a limited number of steps n. Note
that n in the Figure is defined as the number of steps in the eval-
uation C[Jt1K]⇓n and that we write _ for an unknown number of
steps.

The proof starts, again, from an arbitrary target-level context C
and the knowledge that C[Jt1K] ⇓n and we call n the number of
reduction steps in this execution. We then construct a λτ context
〈〈C〉〉n that satisfies two conditions. First, it approximates C up to
n steps: 〈〈C〉〉n &n C. This means that if C[t] terminates in less
than n steps then 〈〈C〉〉n[t] will also terminate for a term t related
to t. This, together with the knowledge that t & JtK, allows us
to deduce implication (1) in the figure. As before, implication (2)
follows directly from the (contextual) equivalence of t1 and t2.

Then we use a second condition on the n-approximation 〈〈C〉〉n,
namely that it has to be conservative, to deduce implication (3). In-
tuitively, the source-level context produced by the n-approximation
may diverge in situations where the original did not, but not vice
versa. Intuitively, the divergence will occur when the precision n
of approximate back-translation 〈〈C〉〉n is not sufficient for the con-
text to accurately simulate the behavior of C. This is expressed by
the logical approximation 〈〈C〉〉n . C which implies that if 〈〈C〉〉n[t]
terminates (in any number of steps), then so must C[t]. This allows
us to deduce implication (3).

The advantage of this approximate back-translation approach is
that it can be easier to construct a conservative approximate back-
translation than a full one. For example, considering λτ without
recursive types, we can construct a family of λτ types UValn,
indexed by non-negative numbers n:

UVal0
def
= Unit

UValn+1
def
=

Unit ⊎ B ⊎ (UValn ×UValn) ⊎ (UValn
⊎UValn) ⊎ (UValn → UValn).

Without giving full details here, UValn is an n-level unfolding
of UVal with additional unit values at every level to represent
failed approximations. This approximate version of UVal is enough
to construct a conservative n-approximate back-translation of an
untyped program context, and as such, it allows us to circumvent
the lack of expressiveness of λτ without recursive types.

In order to make this approximate back-translation approach
work, we need a way to formalise the relation between an untyped
context and its approximate back-translation. However, it turns out
that existing well-known techniques from the field of logical rela-
tions are almost directly applicable. Asymmetric logical relations
(like 〈〈C〉〉n . C above) are a well-established technique. More in-
terestingly, the approximateness of the relation can very naturally
be expressed using step-indexed logical relations. Despite this nat-
urality, it appears that this use of step-indexing is novel. The tech-
nique is normally used as a way to construct well-founded logical
relations and one is not actually interested in terms being related
only up to a limited number of steps.

To summarise, the contributions of this work are:

• a new and general proof technique for proving compiler full-
abstraction using asymmetric, cross-language logical relations
and targeting untyped languages;

• an instantiation of that proof technique to fully-abstractly com-
pile a simply-typed λ-calculus without recursive types to the
untyped λ-calculus;

• a novel application of step-indexed logical relations for express-
ing approximateness of a back-translation.

This paper is structured as follows. Firstly it formalises the
source and target languages λτ and λu (Section 2). Secondly it
presents the cross-language logical relations that are used to ex-
press the relation between λτ terms and their compilations as well
as between λu contexts and their back-translation (Section 3). We
define the compiler in Section 4. It applies type erasure and dy-
namic type wrappers that enforce the requirements and guarantees
of λτ types during execution. The paper then presents the approxi-
mate back-translation (Section 5) which is used when proving com-
piler full-abstraction (Section 6). Finally, we discuss the presented
results (Section 7), related work (Section 8) and we conclude in
Section 9.

2. Source and Target Languages

The source language λτ is presented in Fig. 4. It is a standard,
strict, simply-typed λ-calculus with Unit, Bool, lambdas, product

and sum types and a fix operator providing general recursion. The
figure presents the syntax of terms t, values v, types τ , typing
contexts Γ and evaluation contexts C. Apart from the type and
evaluation rules for fixτ1→τ2 , the typing rules and evaluation rules
are standard. The evaluation rules use evaluation contexts to impose
a strict evaluation order. The type and evaluation rule for fixτ1→τ2

are somewhat special compared to a more standard definition (see
e.g. [Pierce, 2002]): the operator is restricted to function types and
an additional η-expansion occurs during evaluation. This is because
we have chosen to make fix model the Z fixed-point combinator
(also known as the call-by-value Y combinator) [Pierce, 2002,
§5] rather than the Y combinator. The reason revolves around the
compiler devised in this paper. The target language of that compiler
is a strict untyped lambda calculus, where Y does not work but Z
does and using Z in λτ as well keeps the compiler simpler. Working
with the more standard Y fixpoint combinator in λτ is probably
possible but would require the compiler to use an encoding that
would be pervasive but irrelevant to the subject of this paper.

λτ program contexts C are λτ terms that contain exactly one
hole [·] in place of a subterm (we omit the formal definition).
We also omit the typing judgement for program contexts ⊢ C :
Γ′, τ ′ → Γ, τ , defined by inductive rules close to those for terms
in Fig. 4. The judgement guarantees that substituting a well-typed
term Γ′ ⊢ t : τ ′ in a well-typed context ⊢ C : Γ′, τ ′ → Γ, τ
produces a well-typed term Γ ⊢ C[t] : τ .

Figure 5 presents the syntax, well-scopedness and evaluation
rules for the target language λu: a standard untyped λ-calculus. The
calculus has unit, booleans, lambdas, product and sum values, and
produces a kind of unrecoverable exception in case of type errors
(e.g. projecting from a non-pair value, case splitting on a non-sum
value etc.). Such an unrecoverable exception is represented in a
standard way (see, e.g., [Pierce, 2002, §14.1]) as a non-value term
wrong with a special reduction rule. The well-scopedness rules are
unsurprising and the evaluation rules again use evaluation contexts
to impose a strict evaluation order. Note that the termination judge-
ment t ⇓ requires termination with a value, i.e. not wrong. Again,
we omit the definition of program contexts C (expressions with a
single hole in place of a subterm) and their well-scopedness judge-
ment ⊢ C : Γ′ → Γ, whose inductive definition guarantees that
substituting a well-scoped term Γ′ ⊢ t for the hole produces a well-
scoped result term Γ ⊢ C[t].

The interested reader can find full formalisation and proofs in a
separately-published technical appendix [Devriese et al., 2016].

3. Logical Relations

This section presents the Kripke, step-indexed logical relations that
are used to prove compiler full-abstraction. Firstly, this section
describes the specifications of the world used by the logical relation
(Fig. 6). Then, it defines the logical relations (Fig. 7) and finally it
proves standard properties that the relations enjoy. Note that part of
these logical relations, namely the novel insights needed to provide
compiler full-abstraction, are postponed until Section 5.2. The goal
of this section is to provide an understanding of what it means
for two terms to be related; this will be needed for understanding
properties of the compiler in the following sections.

The cross-language logical relations used in this paper are
roughly based on one by Hur and Dreyer [2011]. Essentially, we
instantiate their language-generic logical relations to λτ and λu

and simplify them by removing complexities deriving from the
System F type system, public/private transitions, references and
garbage collection.

Since we do not deal with mutable references, we use a very
simple notion of worlds, consisting just of a step-index k that can
be accessed with the lev(·) function (Fig. 6). We define a ⊲ modal-

t ::= unit | true | false | λx : τ. t | x | t t | t.1 | t.2 | 〈t, t〉 | inl t | inr t | case t of inl x1 7→ t | inr x2 7→ t | t; t

| if t then t else t | fixτ→τ t

v ::= unit | true | false | λx : τ. t | 〈v,v〉 | inl v | inr v

τ ::= Unit | Bool | τ → τ | τ × τ | τ ⊎ τ Γ ::= ∅ | Γ,x : τ

C ::= [·] | C t | v C | C.1 | C.2 | 〈C, t〉 | 〈v,C〉 | inl C | inr C | case C of inl x1 7→ t1 | inr x2 7→ t2 | C; t | if C then t else t

| fixτ→τ C

Γ ⊢ unit : Unit Γ ⊢ true : Bool
(x : τ) ∈ Γ

Γ ⊢ x : τ

Γ, (x : τ) ⊢ t : τ ′

Γ ⊢ λx : τ. t : τ → τ ′

Γ ⊢ t1 : τ1
Γ ⊢ t2 : τ2

Γ ⊢ 〈t1, t2〉 : τ1 × τ2

Γ ⊢ t : τ1 × τ2
Γ ⊢ t.1 : τ1

Γ ⊢ t : τ ′ → τ Γ ⊢ t′ : τ ′

Γ ⊢ t t′ : τ

Γ ⊢ t : τ

Γ ⊢ inl t : τ ⊎ τ ′

Γ ⊢ t : (τ1 → τ2) → (τ1 → τ2)

Γ ⊢ fixτ1→τ2 t : τ1 → τ2

Γ ⊢ t : τ1 ⊎ τ2
Γ, (x1 : τ1) ⊢ t1 : τ Γ, (x2 : τ2) ⊢ t2 : τ

Γ ⊢ case t of inl x1 7→ t1 | inr x2 7→ t2 : τ

Γ ⊢ t : Bool
Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ if t then t1 else t2 : τ

Γ ⊢ t1 : Unit
Γ ⊢ t2 : τ

Γ ⊢ t1; t2 : τ

t →֒ t′

C[t] →֒C[t′] (λx : τ. t) v →֒ t[v/x] 〈v1,v2〉.1 →֒v1 case inl v of

∣

∣

∣

∣

∣

inl x1 7→ t1

inr x2 7→ t2
→֒ t1[v/x1]

v ≡ true ⇒ t′ ≡ t1
v ≡ false ⇒ t′ ≡ t2

if v then t1 else t2 →֒ t′
unit; t →֒ t

fixτ1→τ2 (λx : τ1 → τ2. t) →֒
t[(λ y : τ1. fixτ1→τ2 (λx : τ1 → τ2. t) y)/x]

Figure 4. Syntax, static and dynamic semantics of the source language λτ (selection of).

t ::= unit | true | false | λx. t | x | t t | t.1 | t.2 | 〈t, t〉 | inl t | inr t | case t of inl x 7→ t | inr x 7→ t | t; t | if t then t else t | wrong

v ::= unit | true | false | λx. t | 〈v, v〉 | inl v | inr v Γ ::= ∅ | Γ, x

C ::= [·] | C t | v C | C.1 | C.2 | 〈C, t〉 | 〈v,C〉 | inl C | inr C | case C of inl x1 7→ t1 | inr x2 7→ t2 | C; t | if C then t else t

t →֒ t′

C[t] →֒C[t′]

C 6= [·]

C[wrong] →֒wrong (λx. t) v →֒ t[v/x] 〈v1, v2〉.1 →֒ v1

v ≡ unit ⇒ t′ ≡ t

v≡/ unit ⇒ t′ ≡ wrong

v; t →֒ t′

case inl v of

∣

∣

∣

∣

∣

inl x1 7→ t1

inr x2 7→ t2
→֒ t1[v/x1]

v ≡ true ⇒ t′ ≡ t1 v ≡ false ⇒ t′ ≡ t2
(v 6≡ true ∧ v 6≡ false) ⇒ t′ ≡ wrong

if v then t1 else t2 →֒ t′

Figure 5. Syntax and dynamic semantics of the target language λu (selection of).

W ::= (k) with k ∈ N

lev(W)
def
= W.k

⊲ (0)
def
= (0)

⊲ (k + 1)
def
= (k)

(k)⊒(k′)
def
= k ≤ k′

(k)❂⊲(k
′)

def
= k < k′

O(W).
def
=
{

(t, t)
∣

∣

∣ ∃k ≤ lev(W),v. t →֒k
v ⇒ ∃k′, v. t →֒k′

v)
}

O(W)&
def
=
{

(t, t)
∣

∣

∣ ∃k ≤ lev(W), v. t →֒k
v ⇒ ∃k′,v. t →֒k

′

v)
}

Figure 6. Logical relations: Worlds.

ity and a future world relation ⊒, expressing that future worlds
allow less reduction steps to be taken. We define two different ob-
servation relations O(W). and O(W)&. The former defines that
a λτ term t approximates a λu term t if termination of the first
in less than lev(W) steps implies termination of the second (in
an unknown number of steps). The latter requires the reverse. All
of our logical relations will be defined in terms of either O(W).
or O(W)&. For definitions and lemmas or theorems that apply for
both instantiations, we use the symbol � as a metavariable that can
be instantiated to either . and &.

Figure 7 contains the definition of the logical relations. The
first thing to note is that our logical relations are not indexed by
λτ types τ , but by pseudo-types τ̂ . The syntax for these pseudo-
types contains all the constructs of λτ types, plus an additional

Pseudo-types τ̂ , pseudo-contexts Γ̂, oftype(·) and repEmul(·).

τ̂ ::= Bool | Unit | τ̂ × τ̂ | τ̂ ⊎ τ̂ | τ̂ → τ̂ | EmulDVn;p Γ̂ ::= ∅ | Γ̂,x : τ̂

repEmul(τ̂)
def
= · · · (to be defined later, in Fig. 12)

oftype(τ̂)
def
= {v | ∅ ⊢ v : repEmul(τ̂)}

oftype(τ̂)
def
=































v

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v = unit if τ̂ = Unit

v = true or v = false if τ̂ = Bool

∃t. v = λx. t if ∃τ̂1, τ̂2. τ̂ = τ̂1 → τ̂2

∃v1 ∈ oftype(τ̂1), v2 ∈ oftype(τ̂2). v = 〈v1, v2〉 if ∃τ̂1, τ̂2. τ̂ = τ̂1 × τ̂2

∃v1 ∈ oftype(τ̂1). v = inl v1 or ∃v2 ∈ oftype(τ̂2). v = inr v2 if ∃τ̂1, τ̂2. τ̂ = τ̂1 ⊎ τ̂2































oftype(τ̂)
def
= {(v, v) | v ∈ oftype(τ̂) ∧ v ∈ oftype(τ̂)}

Logical relations for values (VJ·K), contexts (KJ·K), terms (EJ·K) and environments (GJ·K).

⊲ R
def
= {(W,v, v) | lev(W) > 0 ⇒ (⊲W,v, v) ∈ R}

VJUnitK�
def
= {(W,v, v) | v = unit and v = unit}

VJBoolK�
def
= {(W,v, v) | ∃v ∈ {true, false}.v = v and v = v}

VJτ̂ ′ → τ̂K�
def
=

{

(W,v, v)

∣

∣

∣

∣

(v, v) ∈ oftype(τ̂ ′ → τ̂) and ∃t, t.v = λx : repEmul(τ̂ ′). t and v = λx. t and
∀W′

❂⊲ W, (W′,v′, v′) ∈ VJτ̂ ′K�. (W
′, t[v′/x], t[v′/x]) ∈ EJτ̂K�

}

VJτ̂1 × τ̂2K�
def
=

{

(W,v, v)

∣

∣

∣

∣

(v, v) ∈ oftype(τ̂1 × τ̂2) and ∃v1,v2, v1, v2.v = 〈v1,v2〉 and v = 〈v1, v2〉 and
(W,v1, v1) ∈ ⊲ VJτ̂1K� and (W,v2, v2) ∈ ⊲ VJτ̂2K�

}

VJτ̂1 ⊎ τ̂2K�
def
=

{

(W,v, v)

∣

∣

∣

∣

∣

(v, v) ∈ oftype(τ̂1 ⊎ τ̂2) and
∃v′, v′. (W,v′, v′) ∈ ⊲ VJτ̂1K� and v = inl v′ and v = inl v′ or

∃v′, v′. (W,v′, v′) ∈ ⊲ VJτ̂2K� and v = inr v′ and v = inr v′

}

VJEmulDVn;pK�
def
= · · · (to be defined later, in Fig. 11)

KJτ̂K�
def
= {(W,C,C) | ∀W′ ⊒W, (W′,v, v) ∈ VJτ̂K�. (C[v],C[v]) ∈ O(W′)�}

EJτ̂K�
def
= {(W, t, t) | ∀(W,C,C) ∈ KJτ̂K�. (C[t],C[t]) ∈ O(W)�}

Logical relations for substitutions, open terms and program contexts.

GJ∅K�
def
= {(W, ∅, ∅)}

GJΓ̂, (x : τ̂)K�
def
= {(W, γ[x 7→ v], γ[x 7→ v]) | (W, γ, γ) ∈ GJΓ̂K� and (W,v, v) ∈ VJτ̂K�}

Γ̂ ⊢ t �n t : τ̂
def
= repEmul(Γ̂) ⊢ t : repEmul(τ̂) and ∀W. lev(W) ≤ n ⇒ ∀(W, γ, γ) ∈ GJΓ̂K�. (W, tγ, tγ) ∈ EJτ̂K�

Γ̂ ⊢ t � t : τ̂
def
= Γ̂ ⊢ t �n t : τ̂ for all n

⊢ C �n C : Γ̂′, τ̂ ′ → Γ̂, τ̂
def
=

⊢ C : repEmul(Γ̂′), repEmul(τ̂ ′) → repEmul(Γ̂), repEmul(τ̂) and

for all t, t. if Γ̂′ ⊢ t �n t : τ̂ ′, then Γ̂ ⊢ C[t] �n C[t] : τ̂

Figure 7. Logical relations (partial, the missing definition can be found in Figs. 11 and 12).

kind of token type EmulDVn;p, indexed by a non-negative number
n and a value p ::= precise | imprecise. This token type
is not a λτ type; it is needed because of the approximate back-
translation. When necessary, we use a function repEmul() for
converting a pseudo-type to a λτ type. The function replaces all
occurrences of EmulDVn;p with a concrete λτ type. We postpone the
definitions and explanations of EmulDVn;p and of VJEmulDVn;pK�
to Section 5.2, after we have given some more information about
the back-translation. We will sometimes silently use a normal type
where a pseudo-type is expected, which makes sense since the
syntax for the latter is a superset of the former.

The value relation VJτ̂K� is defined by induction on the pseudo-
type. Most definitions are quite standard. All cases require related
terms to be in the oftype relation, which requires well-typedness

of the λτ term and an appropriate shape for the λu value. Unit
and Bool values are related in any world iff they are the same base
value. Pair values are related if both are pairs and the corresponding
components are related in strictly future worlds at the appropriate
pseudo-type. Similarly, sum values are related if they are both of
either the form inl · · · or inr · · · and if the contained values
are related in strictly future worlds at the appropriate pseudo-type.
Finally, function values are related if they have the right type, if
both are lambdas and if substituting related values in the body
yields related terms in any strictly future world.

The relation on values, evaluation contexts and terms are de-
fined mutually recursively, using a technique known as biorthogo-
nality (see, e.g., Benton and Hur [2009]). So, evaluation contexts
are related in a world if plugging in related values in any future

fix
def
= λf. (λx. f (λy. x x y)) (λx. f (λy. x x y))

erase(unit)
def
= unit

erase(false)
def
= false

erase(x)
def
= x

erase(〈t1, t2〉)
def
= 〈erase(t1), erase(t2)〉

erase(t1; t2)
def
= erase(t1); erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

erase(t.1)
def
= erase(t).1

erase(t.2)
def
= erase(t).2

erase(inl t)
def
= inl erase(t)

erase(inr t)
def
= inr erase(t)

erase(true)
def
= true

erase(λx : τ. t)
def
= λx. erase(t)

erase(fixτ1→τ2 t)
def
= fix erase(t)

erase(if t then t1 else t2)
def
=

if erase(t) then erase(t1)
else erase(t2)

erase(case t of inl x1 7→ t1 | inr x2 7→ t2)
def
=

case erase(t) of

∣

∣

∣

∣

∣

inl x1 7→ erase(t1)

inr x2 7→ erase(t2)

Figure 8. Type erasure: the first pass of the compiler.

world yields related observations. Similarly, terms are related if
plugging the terms in related evaluation contexts yields related
observations. Relation GJΓK� relates substitutions instantiating a
context Γ, which simply requires that substitutions for all variables
in the context are related at their types. For open terms, we de-
fine a logical relation Γ̂ ⊢ t �n t : τ̂ . This relation expresses
that an open λτ term t is related up to n steps to an open λu term
t at pseudo-type τ̂ in pseudo-context Γ̂ if the first is well-typed
and if closing t and t with substitutions related at pseudo-context
Γ̂ produces terms related at pseudo-type τ̂ , in any world W such
that lev(W) ≤ n. If Γ̂ ⊢ t �n t : τ̂ for any n, then we write
Γ̂ ⊢ t � t : τ̂ . Finally, we define a logical relation for program
contexts ⊢ C � C : Γ̂′, τ̂ ′ → Γ̂, τ̂ which requires that substituting
terms related at the appropriate pseudo-type type produces terms
related at the appropriate pseudo-type.

It is interesting to note that the simple type system of our source
calculus does not actually present a technical need for the use
of step-indexing. Because there are no recursive types or general
references, it is a simple enough system that we can give well-
founded logical relations without any step-indexing. However, as
mentioned before, we use step-indexing for a different reason than
other work: not for constructing a well-founded logical relation, but
for stating that two terms are related only up to a certain number of
steps. More details follow in Section 5.

These logical relations are constructed so that termination of
one implies termination of the other, according to the direction of
the approximation (. or &, Lemma 1).

Lemma 1 (Adequacy for . and &). If ∅ ⊢ t .n t : τ , and if
t →֒m v with n ≥ m, then also t ⇓. If ∅ ⊢ t &n t : τ and if
t →֒m v with n ≥ m, then also t ⇓.

4. The Compiler

This section presents our compiler from λτ to λu. The compiler
proceeds in two passes: type erasure (Fig. 8) and dynamic type-
checking wrappers (Fig. 9).

The erasure function is called erase; it converts all λτ con-
structs to the corresponding λu constructs. fixτ1→τ2 is erased to a
λu definition of the Z combinator fix .

protectUnit
def
= λx. x protectBool

def
= λx. x

protectτ1×τ2

def
= λy. 〈protectτ1 y.1, protectτ2 y.2〉

protectτ1⊎τ2
def
= λy. case y of

∣

∣

∣

∣

∣

inl x 7→ inl (protectτ1 x)

inr x 7→ inr (protectτ2 x)

protectτ1→τ2
def
= λy. λx.protectτ2 (y (confineτ1 x))

confineUnit
def
= λy. (y; unit)

confineBool
def
= λy. if y then true else false

confineτ1×τ2

def
= λy. 〈confineτ1 y.1, confineτ2 y.2〉

confineτ1⊎τ2
def
= λy. case y of

∣

∣

∣

∣

∣

inl x 7→ inl (confineτ1 x)

inr x 7→ inr (confineτ2 x)

confineτ1→τ2
def
= λy. λx. confineτ2 (y (protectτ1 x))

Figure 9. Dynamic type checking wrappers: the second pass of the
compiler.

The erase function can be considered as a compiler, but it is
only a correct compiler, not a fully-abstract one, as explained in
Example 4.1.

Example 4.1 (Erasure is correct but not secure [Patrignani et al.,
2015, Fournet et al., 2013]). Consider the following, contextually
equivalent λτ functions of type Unit → Unit:

λx : Unit.x ≃ctx λx : Unit. unit

The erase function will map these to the following λu functions:

λx. x 6≃
ctx

λx. unit

The results of erase are not contextually equivalent, essentially
because applying them to a non-unit value like true will produce
true for the left lambda and unit for the right lambda. In this ex-
ample, contextual equivalence is not preserved because the original
functions are only defined for Unit values, but their compilations
can be applied to other values too.

Lemma 2 states that every λτ term is related to its erased term
at its type.

Lemma 2 (Erase is semantics-preserving (for terms)). If Γ ⊢ t : τ ,
then Γ ⊢ t � erase(t) : τ .

An analogous result applies to program contexts:

Lemma 3 (Erase is semantics-preserving (for context)). For all C,
if ⊢ C : Γ′, τ ′ → Γ, τ then ⊢ C � erase(C) : Γ′, τ ′ → Γ, τ .

One should intuitively understand this result as “t behaves the
same as erase(t) when both are treated as values of type τ”. The
result does not specify what happens when we treat t as a value
of a different type, like we did in Example 4.1 to demonstrate
a full abstraction failure. Intuitively, it only specifies a kind of
equivalence reflection for the erase function, not preservation.

Remember that a fully-abstract compiler must protect terms
from being used in ways that are not allowed by their type, as
in Example 4.1. This is taken care of by the second pass of the
compiler.

We construct a family of dynamic typechecking wrappers
protectτ and confineτ . protectτ is a λu lambda term that wraps an
argument to enforce that it can only be used in ways that are valid
according to type τ , as often done in secure compilation work [Pa-
trignani et al., 2015, Bowman and Ahmed, 2015, Fournet et al.,
2013, Ahmed and Blume, 2008]. Dually, confineτ wraps its argu-

ment so that it can only behave in ways that are valid according
to type τ . In the definition, the cases for product and coproduct
types simply recursively descend on their subterms preserving the
expected syntax of a product or coproduct argument. Protecting at
a function type means wrapping the function to confine its argu-
ments and protect its results, and dually for confining at a function
type. Finally, protecting at a base type (i.e., Unit or Bool) does
nothing, simply because there is nothing one can do to a base value
that is not allowed by its type. Confining a value at a base type is
more interesting. Both for Unit and Bool values, we use the value
in such a way that will only work when the value is actually of the
correct type. If it is, we return the original value, otherwise the term
will reduce to wrong.2

Example 4.2 (Protect and confine make a term secure). Con-
sider the protect wrapper for type Unit → Unit protectUnit→Unit,
which is (roughly) equal to λy. λx. y (x; unit). Applying that
wrapper to a function f (i.e. protectUnit→Unit f) reduces to λx. f (x; unit).
Applying this value to a non-unit value will simply evaluate to
wrong, therefore addressing the issues of Example 4.1.

For the second pass of the compiler, Lemma 4 holds.

Lemma 4 (Protect and confine are semantics-preserving). If Γ ⊢
t �n t : τ then Γ ⊢ t �n protectτ t : τ and Γ ⊢ t �n confineτ t :
τ .

Lemma 4 states that if t is related to t at type τ , then adding
a protectτ or confineτ wrapper around t does not change that. In
other words, the wrappers do not change the behaviour of t as long
as they are treated as values of type τ . In Section 5.5, we will have
more to say about the security of the wrappers.

This section concludes with the definition of the compiler used
in this paper.

Definition 1 (The J·K compiler). If Γ ⊢ t : τ , then t is compiled

to JtK and: JtK
def
= protectτ (erase(t)).

Lemmas 2 and 4 about the first and second pass of the compiler
can be combined into Lemma 5 to obtain that a λτ term of type
τ behaves like its compilation when both are treated as terms of
type τ .

Lemma 5 (J·K is semantics-preserving). For all t, if Γ ⊢ t : τ then
Γ ⊢ t � JtK : τ .

5. Approximate Back-Translation

This section presents the core idea of our proof technique: the ap-
proximate back-translation. As explained in Section 1, the idea is to
translate a target language program context C to a source language
program context 〈〈C〉〉n which conservatively n-approximates C. In-
tuitively, this means that 〈〈C〉〉n behaves like C for up to n steps but
it may diverge in cases where the original did not if C takes more
than n steps. We will make this more precise in Section 5.2.

At the core of the approximate back-translation is the λτ type
UValn. The type is essentially a λτ encoding of the unitype of λu.
Where the untyped context C manipulates arbitrary λu values, its
emulation 〈〈C〉〉n manipulates values of type UValn. Section 5.1
defines UValn and the basic tools (constructors and destructors)
for working with it. To explain how values in UValn model values
in λu, Section 5.2 fills in the missing piece of the logical relations
of Fig. 7 by defining VJEmulDVn;pK�.

The type UValn is sufficiently large to contain n-approximations
of λu values. However, it also contains approximations of λu values
up to less than n steps. This is crucial, as for a term to be well-typed

2 Note that it would also be valid to produce a diverging term in this case, if
λu had some form of dynamic type test which allowed us to do that.

the accuracy of the approximation can be less than n. In these cases
values of type UValn will be downgraded to a type UValm with
m < n. Dually, there will be cases where some values need to
upgrade. Section 5.3 defines functions to perform value upgrading
and downgrading.

With the definition of upgrading and downgrading, we have de-
fined all the machinery that revolves around UValn. Section 5.4
constructs the function emulaten, responsible for emulating a con-
text such that it translates a λu term t into a λτ term of type UValn.
This function is easily extended to work with program contexts,
producing contexts with hole of type UValn as expected.

However, remember from Fig. 3 in Section 1 that the goal of
the back-translation is generating a context 〈〈C〉〉n whose hole can
be filled with λτ terms t1 and t2. However, the type of t1 and
t2 is not UValn but an arbitrary λτ type τ . Thus, there is a type
mismatch between the hole of the emulated context emulaten(C)
and the terms that we want to plug in there. Since the emulated
contexts work with UValn values, we need a function that wraps
terms of an arbitrary type τ into a value of type UValn. This is
precisely what Section 5.5 defines, namely a function injectτ ;n
of type τ → UValn.

Finally, Section 5.6 defines the approximate back-translation
function 〈〈·〉〉τ ;n, mapping a λu context C to a λτ context 〈〈C〉〉τ ;n.
The additional index τ w.r.t. earlier discussions is needed to intro-
duce an appropriate call to injectτ ;n as discussed above, so that
the hole of 〈〈C〉〉τ ;n is of type τ . Plugging a term t1 in 〈〈C〉〉τ ;n n-
approximates plugging in the compilation Jt1K in context C.

Right after the definition of each of the concepts discussed
above (downgrade, upgrade, injectτ ;n and emulaten), this sec-
tion formalises the results about their behaviour. These results are
expressed in terms of the logical relations of Fig. 7 and of the
EmulDVn;p pseudo-type; they will be used to prove equivalence
preservation in Section 6.

5.1 UVal and its Tools

The family of types UValn is defined as follows:

UVal0
def
= Unit

UValn+1
def
=

Unit ⊎ Unit ⊎ Bool ⊎ (UValn ×UValn)⊎
(UValn ⊎UValn) ⊎ (UValn → UValn)

UValn is the type that emulated λu terms have when back-
translated into λτ . For every n, UValn is clearly a valid λτ type. At
non-zero levels, the type UValn+1 is a disjunct sum of base values
(the second occurrence of Unit and Bool), products and coprod-
ucts of UValns and functions mapping a UValn to a UValn. All of
these cases are used to emulate a corresponding λu value. Addi-
tionally, at every level including n = 0, the type UValn contains
a Unit case which is needed to represent an arbitrary λu value in
cases where the precision of the approximate emulation is insuffi-
cient to provide more information. Note that the two occurrences of
Unit in the definition of UValn+1 are intentional. The first is used
for imprecisely representing arbitrary λu terms while the second
accurately represents λu

unit values.
To work with UValn values, we need basic tools for dealing

with sum types: tag injections and case extractions (Fig. 10). Func-
tions inunk;n, inUnit;n, inBool;n, in×;n, in⊎;n, in→;n are conve-
nient names for nested applications of coproduct injection func-
tions for the nested coproduct in the definition of UValn+1. The
term unkn produces either the single value of UVal0 or uses
inunk;n to produce a UValn+1 value representing a 0-precision ap-
proximate back-translation of an arbitrary untyped term. For using
UValn values, we define functions caseUnit;n, caseBool;n, case×;n,
case⊎;n, case→;n using a somewhat liberal pattern matching syn-
tax that can be easily desugared to nested case expressions. The

inunk;n : UValn+1

inUnit;n : Unit → UValn+1

inBool;n : Bool → UValn+1

in×;n : (UValn ×UValn) → UValn+1

in⊎;n : (UValn ⊎UValn) → UValn+1

in→;n : (UValn → UValn) → UValn+1

unkn : UValn

unk0
def
= unit

unkn+1
def
= inunk;n

omegaτ : τ omegaτ
def
= fixUnit→τ (λx : Unit → τ.x) unit

caseUnit;n : UValn+1 → Unit caseBool;n : UValn+1 → Bool

case×;n : UValn+1 → (UValn ×UValn)

case⊎;n : UValn+1 → (UValn ⊎UValn)

case→;n : UValn+1 → UValn → UValn

caseUnit;n
def
= λx : UValn+1. case x of {inUnit;n x 7→ x; _ 7→ omega}

caseBool;n
def
= λx : UValn+1. case x of {inBool;n x 7→ x; _ 7→ omega}

case×;n
def
= λx : UValn+1. case x of {in×;n x 7→ x; _ 7→ omega}

case⊎;n
def
= λx : UValn+1. case x of {in⊎;n x 7→ x; _ 7→ omega}

case→;n
def
=

λx : UValn+1. λy : UValn. case x of

{in→;n z 7→ z y; _ 7→ omega}

Figure 10. Basic tools for working with UValn. The subscript of
omega is omitted when it is clear from the context.

functions are lambdas that inspect their UValn+1 argument and
return the contained value if it is in the appropriate branch of the
coproduct, or diverge otherwise. To achieve divergence, we use a
term omegaτ constructed using fix. We simply write omega when
the type τ can be inferred from the context.

5.2 λu Values vs. UVal

To make the correspondence between a λu term and its emula-
tion in UValn more exact, this section fills in the definition of
VJEmulDVn;pK�, the missing piece of the logical relations of Fig. 7.
Recall that the intuition is that EmulDVn;p is a token type that is
used to relate λu terms to their λτ emulation of type UValn. This
relation is done up to an approximateness degree, denoted with
p ::= precise | imprecise, that is explained below. Intuitively,
the previously presented cases of the logical relations define the re-
lation between a λτ term and its compilation. The VJEmulDVn;pK�
case defines the relation between a λu term and its UValn-typed
back-translation, as motivated in Example 5.1.

Example 5.1 (The need of EmulDV). Consider the term t ≡
inBool;1 true. Since UValn is a sum type, according to the defi-
nition of VJτ ⊎ τ ′K, it can be related only to terms that have the
same tag. However, for the back-translation we do not want this,
we want that term to be related to the t term that t approximates (in
this case, true).

Type EmulDVn;p serves the purpose of bridging the syntactic
difference, allowing inBool1 true and true to be related.

Before explaining the definition of the logical relations for
EmulDVn;p, we should explain how we elaborate on the approxi-
mateness of the correspondence.

Example 5.2. Consider the UVal6 value

in×;5 〈in⊎;4 (inl unk4), unk5〉

This value might be used by the approximate back-translation to
represent the λu term 〈inl 〈unit, true〉, λx. x〉. Our VJEmulDVn;pK�
specification will enforce that terms of the form in×;n 〈·, ·〉 or
in⊎;n (inl ·) represent the corresponding λu constructs, but terms

unk4 and unk5 can represent arbitrary terms (in this case: a pair of
base values and a lambda).

The limited size of the type UValn sometimes forces us to re-
sort to unkn values in the back-translation, making it approximate.
However, VJEmulDVn;pK� does not allow these unkn values to oc-
cur anywhere, because they could compromise the required preci-
sion of our approximate back-translation.

In fact, VJEmulDVn;pK� provides two different specifications for
the occurrence of unkn, depending on the value of p. The case
where p = imprecise is used when we are proving 〈〈C〉〉n . C,
which means roughly that termination of 〈〈C〉〉n in any number of
steps implies termination of C. In this case, VJEmulDVn;pK� allows
unkn values to occur everywhere in a back-translation term, and
they can correspond to arbitrary λu terms. These mild requirements
on the correspondence of λu terms place a large burden on the code
in a back-translation 〈〈C〉〉n. This code must be able to deal with
unkn values and produce behaviour for them that approximates the
behaviour of C for the arbitrary values that the unkns correspond
with. Luckily, when we are proving 〈〈C〉〉n . C, we can achieve
this by simply making all the functions in our back-translation
diverge whenever they try to use a UValn value that happens to be
an unkn. This is sufficient because the approximation 〈〈C〉〉n . C

trivially holds when 〈〈C〉〉n diverges: it essentially only requires that
C terminates whenever 〈〈C〉〉n does, but nothing needs to be shown
when the latter diverges.

Example 5.3 (Relatedness with imprecise). Consider the term
t ≡ in×;42 〈unk42, unk42〉. This term will be related to 〈t1, t2〉 at
pseudo-type EmulDV43;imprecise for any terms t1 and t2 and in any
world.

The increased index 43 is needed because t is tagged at 42, so
we need an additional step to unfold the tagging.

The case when p = precise specifies where values unkn are
allowed when we are proving that 〈〈C〉〉n &n C, meaning roughly
that termination of C in less than n steps implies termination of
〈〈C〉〉n. In this case, the requirements on the back-translation cor-
respondence are significantly stronger: unkn is simply ruled out
by the definition of VJEmulDVn;pK�. That does not mean, however,
that unkn cannot occur inside related terms, rather that unkn can
only occur at depths that cannot be reached using the number of
steps in the world.

Example 5.4 (Relatedness with precise). Consider again the

term t
def
= in×;42 〈unk42, unk42〉. This term will still be related by

EmulDV43;precise to t
def
= 〈t1, t2〉 for any terms t1 and t2, but only in

worlds W such that lev(W) = 0. More precisely, our specification
will state that (W, t, t) ∈ VJEmulDV43;preciseK� iff

(W, 〈unk42, unk42〉, t) ∈ VJEmulDV42;precise × EmulDV42;preciseK�.

By the definition in Fig. 7, this requires in turn that (W, unk42, t1)
and (W, unk42, t2) are in ⊲ VJEmulDV42,preciseK�. However if
lev(W) = 0, then this is true by definition of the ⊲ operator,
independent of the requirements of VJEmulDV42,preciseK�.

Intuitively, it is sufficient to only forbid unkn at depths lower
than the number of steps left in the world because we are proving
〈〈C〉〉n &n C (emphasis on the index n of &n). So, if C terminates
in less than n steps, then the evaluation of C cannot have used
values that are deeper than level n in any UValn. The corresponding
execution of 〈〈C〉〉n will also not have had a chance to encounter the
unkns. Therefore, the executions must have behaved identically.

With this approximation aspect explained, Fig. 11 presents the
definition of VJEmulDVn;pK�. For relating terms v and v in a world
W, the definition requires that v has the right type and that p =
imprecise if v is unkn. Additionally, the structure of the λτ

VJEmulDV0;pK�
def
= {(W,v, v) | v = unit and p = imprecise}

VJEmulDVn+1;pK�
def
=















































































(W,v, v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v ∈ oftype(UValn+1) and one of the following holds:






































































v = inunk;n and p = imprecise

∃v′.v = inUnit;n v′ and (W,v′, v) ∈ VJUnitK�

∃v′.v = inBool;n v′ and (W,v′, v) ∈ VJBoolK�

∃v′.v = in×n v′ and
(W,v′, v) ∈ VJEmulDVn;p × EmulDVn;pK�

∃v′.v = in⊎n v′ and
(W,v′, v) ∈ VJEmulDVn;p ⊎ EmulDVn;pK�

∃v′.v = in→n v′ and
(W,v′, v) ∈ VJEmulDVn;p → EmulDVn;pK�















































































Figure 11. Specifying the relation between λu values and their
emulation in VJEmulDVn;pK�.

toEmul(∅)n;p = ∅ toEmul(Γ, x)n;p = toEmul(Γ)n;p, (x : EmulDVn;p)

repEmul(∅) = ∅ repEmul(Γ, (x : τ̂)) = repEmul(Γ), (x : repEmul(τ̂))

repEmul(τ̂ × τ̂ ′) = repEmul(τ̂)× repEmul(τ̂ ′)

repEmul(τ̂ ⊎ τ̂ ′) = repEmul(τ̂) ⊎ repEmul(τ̂ ′)

repEmul(τ̂ → τ̂ ′) = repEmul(τ̂) → repEmul(τ̂ ′)

repEmul(EmulDVn;p) = UValn

repEmul(Bool) = Bool repEmul(Unit) = Unit

Figure 12. Helper functions for EmulDVn;p.

term stripped of its UValn tag and the structure of the λu term
must coincide. Formally, this is expressed by the following con-
ditions: (W,v′, v) are in VJBK�, VJEmulDVn;p × EmulDVn;pK�,
VJEmulDVn;p ⊎ EmulDVn;pK� or VJEmulDVn;p → EmulDVn;pK� if
v = inB;n v

′, v = in×;n v
′, v = in⊎;n v

′ or v = in→;n v
′

respectively.
In addition to EmulDVn;p, we still need to define two helper

functions (Fig. 12) related to it. The first, repEmul(·), was left open
in Fig. 7. It re-maps all variables of a Γ that are of type EmulDVn;p
to type UValn. A second function, toEmul(·)

n;p
, turns an untyped

Γ into one where all variables are mapped to EmulDVn;p.
The adequacy property of the logical relations (Lemma 1) hold

for the complete definition of the logical relations, including the
definition for VJEmulDVn;pK.

5.3 Upgrading and Downgrading Values

Figure 13 defines the functions downgraden;d : UValn+d → UValn
and upgraden;d : UValn → UValn+d (by induction on n) that
we talked about before. Most cases simply work structurally over
the type, but some are more interesting. There is a contravari-
ance in the cases for function values in both downgraden;d and
upgraden;d: a function UValn → UValn is turned into a func-
tion of type UValn+d → UValn+d by constructing a wrapper
that downgrades the argument and upgrades the result and vice
versa. Unknown values are always mapped to unknown values,
but additionally, the case for downgraden;d when n = 0 will
throw away the information contained in its argument of type
UVald and simply returns the single unknown value in UVal0.
Note that downgraden;d and upgraden;d are not inverse func-
tions, since downgraden;d throws away information that was pre-
viously there. While t ≡ downgraden;dupgraden;dt, the reverse

downgraden;d : UValn+d → UValn

downgrade0;d
def
= λv : UVald. unk0

downgraden+1;d
def
= λx : UValn+d+1. case x of

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

inunk;n+d 7→ inunk;n

inUnit;n+d y 7→ inUnit;n y

inBool;n+d y 7→ inBool;n y

in×;n+d y 7→ in×;n 〈downgraden;d y.1, downgraden;d y.2〉

in⊎;n+d y 7→ in⊎;n case y of

∣

∣

∣

∣

∣

inl x 7→ inl (downgraden;d x)

inr x 7→ inr (downgraden;d x)

in→;n+d y 7→
in→;n (λz : UValn. downgraden;d

(y (upgraden;d z)))

upgraden;d : UValn → UValn+d

upgrade0;d
def
= λx : UVal0. unkd

upgraden+1;d
def
= λx : UValn+1. case x of

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

inunk;n 7→ inunk;n+d;

inUnit;n y 7→ inUnit;n+d y;

inBool;n y 7→ inBool;n+d y;

in×;n y 7→ in×;n+d 〈upgraden;d y.1, upgraden;d y.2〉

in⊎;n y 7→ in⊎;n+d case y of

∣

∣

∣

∣

∣

inl x 7→ inl (upgraden;d x)

inr x 7→ inr (upgraden;d x)

in→;n y 7→
in→;n+d (λz : UValn. upgraden;d

(y (downgraden;d z)))

Figure 13. Upgrade and downgrade for UValn.

(t ≡ upgraden;ddowngraden;dt) is not true, since applying down-
grade first reduces precision.

Example 5.5 (Downgrading terms). Suppose that we want to em-
ulate a λu term λx. 〈x, x〉 in UValn for a sufficiently-large n. We
would expect roughly the following λτ term:

in→;n−1 (λx : UValn−1. in×;n−2 〈x,x〉)

Indices n− 1 and n− 2 of the UValn constructors are imposed by
the well-typedness constraints. However, even this is not enough to
guarantee well-typedness. With a closer inspection, the variable x
of type UValn−1 is used where a term of type UValn−2 is required
(it is inside a pair tagged with in×;n−2). This is a problem of type
safety, not precision of approximation. Since x appears inside a
pair, inspecting x for any number of steps requires at least one
additional step to first project it out of the pair. In other words,
for the pair to be a precise approximation up to ≤ n − 1 steps, x
needs only to be precise up to n − 2 steps. It is then safe to throw
away one level of precision and downgrade x from type UValn−1

to UValn−2.

We will use the function downgrade for the situation of Exam-
ple 5.5 and similar ones in the next sections. In dual situations we
will need to upgrade terms from type UValn to UValn+d. This will
neither increase precision of the approximation, nor decrease it.

The correctness property for downgrade and upgrade is stated
in the following lemma.

Lemma 6 (Compatibility lemma for upgraden;d and downgraden;d).
Suppose that either (n < m and p = precise) or (� =. and
p = imprecise). Then

• If Γ ⊢ t �n t : EmulDVm+d;p, then Γ ⊢ downgradem;d t �n

t : EmulDVm;p.

emulaten(t) : UValn

emulaten(unit)
def
= downgraden;1 (inUnit;n unit)

emulaten(true)
def
= downgraden;1 (inBool;n true)

emulaten(false)
def
= downgraden;1 (inBool;n false)

emulaten(x)
def
= x

emulaten(λx. t)
def
= downgraden;1 (in→;n (λx : UValn. emulaten(t)))

emulaten(t1 t2)
def
= case→;n (upgraden;1 (emulaten(t1))) emulaten(t2)

emulaten(〈t1, t2〉)
def
= downgraden;1 (in×;n 〈emulaten(t1), emulaten(t2)〉)

emulaten(inl t)
def
= downgraden;1 (in⊎;n (inl emulaten(t)))

emulaten(inr t)
def
= downgraden;1 (in⊎;n (inr emulaten(t)))

emulaten(t.1)
def
= (case×;n (upgraden;1 (emulaten(t)))).1

emulaten(t.2)
def
= (case×;n (upgraden;1 (emulaten(t)))).2

emulaten(t; t
′)

def
= (caseUnit;n (upgraden;1(emulaten(t)))); emulaten(t

′)

emulaten(wrong)
def
= omega

emulaten(case t1 of inl x 7→ t2 | inr x 7→ t3)
def
=

case case⊎;n (upgraden;1 (emulaten(t1))) of

inl x 7→ emulaten(t2) | inr x 7→ emulaten(t3)

emulaten(if t then t1 else t2)
def
=

if (caseBool;n(upgraden;1(emulatent))) then emulaten(t1) else

emulaten(t2)

Figure 14. Emulating λu terms in UValn.

• If Γ ⊢ t �n t : EmulDVm;p, then Γ ⊢ upgradem;d t �n t :
EmulDVm+d;p.

This lemma covers both situations that we discussed previously.
It requires that either n < m (so that the results only hold in worlds
W with lev(W) ≤ n < m), in which case p = precise, or � =.
and p = imprecise. If that is the case, the lemma says that if a
term t is related to t by EmulDVm+d;p (or EmulDVm;p) then it stays
related to t after upgrading or downgrading.

5.4 Emulation

Having defined downgrade and upgrade, Fig. 14 defines the
emulaten function. That function maps arbitrary λu terms to their
approximate back-translation: λτ terms of type UValn. emulaten
is defined by induction on t. The different cases follow the same
pattern: every term t is mapped to a λτ term constructed recur-
sively from the emulation of sub-terms, producing and consuming
UValn terms wherever t works with untyped terms. Additionally,
the definitions use upgraden;1 and downgraden;1 to make the re-
sulting term type-check, as discussed in the previous section. For
example, the case for pairs applies in×;n to a pair constructed from
the emulations of its components. Since this produces a UValn+1,
downgraden;1 is used to downgrade this to a UValn term. Finally,
the untyped term wrong is back-translated to a divergent term.

The back-translation produced by emulaten is necessarily
approximate, as the type UValn is not large enough for back-
translating arbitrary terms. Inaccuracies in the back-translation are
introduced in the calls to downgraden;1 in several of the cases. The
approximation is accurate enough for the following lemma to hold.

extractτ ;n : UValn → τ

extractτ ;0
def
= λx : UVal0. omega

extractUnit;n+1
def
= λx : UValn+1. caseUnit;n x

extractBool;n+1
def
= λx : UValn+1. caseBool;n x

extractτ1→τ2;n+1
def
=

λx : UValn+1. λx : τ1. extractτ2;n
(case→;n x (injectτ1;n x))

extractτ1×τ2;n+1
def
=

λx : UValn+1. 〈extractτ1;n (case×;n x).1,

extractτ2;n (case×;n x).2〉

extractτ1⊎τ2;n+1
def
=

λx : UValn+1. case case⊎;n x of
∣

∣

∣

∣

∣

inl y → inl (extractτ1;n y)

inr y → inr (extractτ2;n y)

injectτ ;n : τ → UValn

injectτ ;0
def
= λx : τ. omega

injectUnit;n+1
def
= λx : Unit. inUnit;n x

injectBool;n+1
def
= λx : Bool. inBool;n x

injectτ1→τ2;n+1
def
=

λx : τ1 → τ2. in→;n (λx : UValn.
injectτ2;n (x (extractτ1;n x)))

injectτ1×τ2;n+1
def
=

λx : τ1 × τ2. in×;n〈injectτ1;n x.1,

injectτ2;n x.2〉

injectτ1⊎τ2;n+1
def
=

λx : τ1 ⊎ τ2. in⊎;n (case x of
∣

∣

∣

∣

∣

inl y 7→ inr (injectτ1;n y)

inr y 7→ inr (injectτ2;n y)

)

Figure 15. Injecting λτ values into UValn.

Lemma 7 (Emulate relates at EmulDV). If Γ ⊢ t, and if (m > n
and p = precise) or (� =. and p = imprecise), then we have
that toEmul(Γ)

m;p
⊢ emulatem(t) �n t : EmulDVm;p.

Like Lemma 6, Lemma 7 requires that either n < m (so that
the results only hold in worlds W with lev(W) ≤ n < m), in
which case p = precise, or � =. and p = imprecise. This
again covers what we need for the two logical approximations of
〈〈C〉〉n in Fig. 3. The lemma states that the back-translation of any
well-scoped term is related to the term by EmulDVm;p, as intended.

An analogous result holds for contexts.

Lemma 8 (Emulate relates contexts at EmulDV). If ⊢ C : Γ′ → Γ,
if (m > n and p = precise) or (� =. and p = imprecise),
then ⊢ emulatem(C) �n C : toEmul(Γ′)

m;p
, EmulDVm;p →

toEmul(Γ)
m;p

, EmulDVm;p

5.5 Injection and Extraction of Terms

One final thing is missing to construct a back-translation 〈〈C〉〉n of
an untyped program context C. While emulaten(C) produces a λτ

context that expects a UValn value (just like C expects an arbi-
trary λu value), the back-translation should accept values of a given
type τ (the type of the terms t1 and t2 that we are compiling).
To bridge this difference, Fig. 15 defines a λτ function injectτ ;n
of type τ → UValn which injects values of an arbitrary type τ
into UValn. We define it mutually recursively with a dual function
extractτ ;n : UValn → τ which is needed for contravariantly con-
verting UValn arguments to the appropriate type in the injectτ ;n
case for function types.

Generally, injectτ ;n converts a value v of type τ to a value
of type UValn that behaves like the compilation JvK. The cases
for base values use the related tagging and case (e.g., inUnit;n and
caseBool;n) to achieve this. For pair and sum values, injectτ ;n and

extractτ ;n simply recurse over the structure of the values, respec-
tively applying in×;n, in⊎;n and case×;n, case⊎;n to construct and
destruct UValns of a certain expected form. Note that when UValn
values do not have the form expected for type τ , then extractτ ;n
will diverge by definition of the case··· ;n functions. This diver-
gence corresponds to the wrong that we get when an untyped con-
text attempts to use λu values as pairs, disjunct sum values or base
values when those values are of a different form.

For function types, injectτ ;n and extractτ ;n produce lamb-
das that contravariantly extract and inject the argument and covari-
antly inject and extract the result. Finally, when n = 0, then the
size of our type is insufficient for extractτ ;n and injectτ ;n to
accurately perform their intended function. Luckily, to obtain the
necessary precision of our approximate back-translation, it is suf-
ficient for them to simply diverge in this case: they simply return
omega terms of the expected type.

For a value v of type τ , injectτ ;n will produce a value UValn
that behaves as the compilation of v, JvK. More precisely and more
generally, the following lemma states that if a term t is related to
a term t at type τ (intuitively if t behaves as t when used in a
way that is valid according to type τ), then injectτ ;n t behaves
as the emulation of protectτ t. A dual result about extractτ ;n and
confineτ states (intuitively) that if a term t behaves as an emulation
of value t, then confineτ t will behave as extractτ ;n t when used
in ways that are valid according to type τ .

Lemma 9 (Inject is protect and extract is confine). If (m ≥ n
and p = precise) or (� =. and p = imprecise) and if

Γ̂ ⊢ t �n t : τ , then

Γ̂ ⊢ injectτ ;m t �n protectτ t : EmulDVm;p.

If (m ≥ n and p = precise) or (� =. and p = imprecise)

and if Γ̂ ⊢ t �n t : EmulDVm;p then

Γ̂ ⊢ extractτ ;m t �n confineτ t : τ .

Example 5.6. Consider again Example 4.1. We have that

∅ ⊢ λx : Unit.x � λx. x : Unit → Unit.

λx : Unit.x behaves like λx. x, when the latter is used in ways that
are valid for a value of type Unit → Unit. Lemma 9 then yields:

∅ ⊢ injectτ ;n (λx : Unit.x) �n

protectUnit→Unit (λx. x) : EmulDVm;n.

For n sufficiently large and modulo some simplifications, these
terms become:

injectτ ;n (λx : Unit.x) =
in→;n−1 (λx : UValn−1.

inUnit;n−2 (caseUnit;n−2 x))

protectUnit→Unit (λx. x) = λx. x; unit

We invite the reader to verify that both expressions behave appro-
priately when applied to any values v and v that are related by
EmulDVn;p: for example (v = inUnit;n−1 unit and v = unit),
(v = in→;n−1 (λx : UValn−1.x) and v = λx. x) or (v = unkn, v
is any λu term and � =.).

5.6 Approximate Back-Translation

We are now ready to define the approximate back-translation
〈〈C〉〉τ ;n of an arbitrary untyped context C with a hole of type τ .
However, before we do, we need to correct a few simplifications
that were made in Fig. 3.

First, as we have already explained, the back-translation 〈〈C〉〉n
does not just depend on n but also on the type τ of the terms t1 and
t2 that we are compiling. As such, we define the back-translation
with τ as an additional parameter.

�n �n �n

emulaten(C)[injectτ ;n t]

〈〈C〉〉τ ;n

C[protectτ erase(t)]

JtK

〈〈C〉〉τ ;n[t]

�n

C[JtK]

Terms related by Lemma 2 Terms related by Lemma 9
Terms related by Lemma 8

expands to thisThis statement

Figure 16. A more accurate picture of related components of com-
piled term t, program context C, compilation JtK and emulation
〈〈C〉〉τ ;n than in the simplified Fig. 3.

Definition 2 (n-approximate back-translation 〈〈·〉〉τ ;n). The n-
approximate back-translation of a context C with a hole of type

τ is defined as follows. 〈〈C〉〉τ ;n
def
= emulaten+1(C)[injectτ ;n ·]

A second simplification in Fig. 3 was the fact that we claimed
〈〈C〉〉n &n C and 〈〈C〉〉n . C. Fig. 16 shows a more accurate
picture of the relations that we have. As we will see in the next
section, this more accurate picture still allows us to conclude the
facts that ∅ ⊢ 〈〈C〉〉τ ;n[t1] &n C[Jt1K] : EmulDVn;precise and
∅ ⊢ 〈〈C〉〉τ ;n[t2] .n′ C[Jt2K] : EmulDVn;imprecise so that the proof
goes through unchanged.

The correctness of 〈〈·〉〉τ ;n is captured in Lemma 10.

Lemma 10 (Correctness of 〈〈·〉〉τ ;n). If (m ≥ n and p = precise)
or (� =. and p = imprecise), then Γ ⊢ t �n t : τ implies
Γ ⊢ 〈〈C〉〉τ ;m[t] �n C[protectτ t] : EmulDVm;p.

Proof. Follows from Lemmas 8 and 9

6. Compiler Full-Abstraction

This section presents the proof that the compiler J·K is fully-abstract
(Theorem 3) in terms of the logical relations of Fig. 7. As pre-
viously mentioned, this results in proving equivalence reflection
(Theorem 1) and preservation (Theorem 2). As suggested by Fig. 1
in Section 1, the lemmas presented in Section 4 are enough to prove
equivalence reflection for J·K. Dually, as suggested by Fig. 3 in
Section 1, the lemmas presented in Section 5 are enough to prove
equivalence preservation for J·K.

Recall from Definition 1 that JtK is protectτ (erase(t)).

Theorem 1 (J·K is correct). If ∅ ⊢ t1 : τ and ∅ ⊢ t2 : τ and
∅ ⊢ Jt1K ≃ctx Jt2K, then ∅ ⊢ t1 ≃ctx t2 : τ .

Proof. Take C so that ⊢ C : ∅, τ → ∅, τ ′. By definition of ≃ctx ,
we need to prove that C[t1]⇓ iff C[t2]. By symmetry, it suffices to
prove the ⇒ direction.
So, assume that C[t1]⇓. We need to prove that C[t2]⇓.

Define C
def
= erase(C), Lemma 3 yields ⊢ C � C : ∅, τ → ∅, τ ′.

By Lemma 5, we get ∅ ⊢ t1 � Jt1K : τ and ∅ ⊢ t2 � Jt2K : τ .
By definition of ⊢ C � C : ∅, τ → ∅, τ ′, we get (specifically) that
∅ ⊢ C[t1] & C[Jt1K] : τ ′ and ∅ ⊢ C[t2] . C[Jt2K] : τ ′.
C[t1]⇓ and ∅ ⊢ C[t1] � C[Jt1K] : τ ′ imply C[Jt1K]⇓ by Lemma 1.
From Jt1K ≃ctx Jt2K and C[Jt1K]⇓, we get that C[Jt2K]⇓.
∅ ⊢ C[t2] � C[Jt2K] : τ ′ and C[Jt2K]⇓ yield C[t2]⇓ by Lemma 1.

Theorem 2 (J·K is secure). If ∅ ⊢ t1 : τ and ∅ ⊢ t2 : τ and
t1 ≃ctx t2 : τ , then Jt1K ≃ctx Jt2K.

Proof. Note that protectτ (erase(t1)) = Jt1K by definition and
similarly for t2.

Take a ⊢ C : ∅→∅ and suppose that C[protectτ (erase(t1))]⇓,
then we need to show that C[protectτ (erase(t2))]⇓.

Take n larger than the number of steps in the termination of
C[protectτ (erase(t1))]⇓.

By Lemma 2, we have that ∅ ⊢ t1 &n erase(t1) : τ .
By Lemma 10, we then have (taking m = n ≥ n, p = precise

and � = &) that

∅ ⊢ 〈〈C〉〉τ ;n[t1] &n C[protectτ (erase(t1))] : EmulDVn;precise.

Now by Lemma 1, by C[protectτ (erase(t1))]⇓, and by the
choice of n, we have that 〈〈C〉〉τ ;n[t1]⇓.

It now follows from ∅ ⊢ t1 ≃ctx t2 : τ and 〈〈C〉〉τ ;n[t1]⇓ that
〈〈C〉〉τ ;n[t2]⇓.

Now take n′ the number of steps in the termination of 〈〈C〉〉τ ;n[t2]⇓.
We have from Lemma 2 that ∅ ⊢ t2 .n′ erase(t2) : τ .

By Lemma 10, we then have (taking m = n, n = n′, p =
imprecise and � = .) that

∅ ⊢ 〈〈C〉〉τ ;n[t2] .n′ C[protectτ (erase(t2))] : EmulDVn;imprecise

Now by Lemma 1, by 〈〈C〉〉τ ;n[t2]⇓, and by the choice of n′, we
have that C[protectτ (erase(t2))]⇓ as required.

Theorem 3 (J·K is fully-abstract). If ∅ ⊢ t1 : τ , and ∅ ⊢ t2 : τ
then t1 ≃ctx t2 ⇐⇒ Jt1K ≃ctx Jt2K.

Proof. Theorem 1 provides the ⇐ direction while Theorem 2 pro-
vides the ⇒ one.

Note that extending the above theorem to open terms would
require the compiler to confine free variables to their type.

7. Discussion and Future Work

Our interest in fully-abstract compilation comes from a security
perspective. We think that a fully-abstract compiler from realis-
tic source languages to a form of assembly that is efficiently ex-
ecutable by processors has important security applications (com-
bining trusted and untrusted code at the assembly level and com-
partmentalising applications). So far, it remains unclear precisely
which security properties are preserved by fully abstract compilers,
although it seems that at least important security properties like
noninterference [Bowman and Ahmed, 2015] are. Unless targeting
typed assembly language [Morrisett et al., 1999], a crucial step of a
secure compiler is a form of secure type erasure. The contribution
of this paper is mostly the proof technique that proves the type era-
sure step secure. We intend to reuse this proof technique in other
settings.

There are a number of important problems that need to be
solved in order to develop a realistic fully-abstract compiler. Sev-
eral widely-implemented high-level language features present sig-
nificant challenges: parametric polymorphism, (higher-order) ref-
erences, exceptions etc. Generally, we believe that low-level as-
sembly languages should be defined that are not only efficiently
executable but also provide sufficient abstraction features to en-
able fully abstract compilation of such standard programming lan-
guage features. For now, it remains an open question whether this
is feasible. Let us zoom in on some of these features in more de-
tail. A long-standing open problem is fully-abstract compilation of
parametric polymorphism to a form of operational sealing primi-
tives [Sumii and Pierce, 2007, Matthews and Ahmed, 2008, Neis
et al., 2009]. More concretely, several researchers have developed

interesting results about fully-abstract compilation from System F
to λseal (an untyped lambda calculus with sealing primitives), but
a fully-abstract compiler in this setting has so far only been conjec-
tured. We believe that the problem is quite related to the one tackled
in this paper. Without providing details (for space reasons), an exact
back-translation from λseal to System F seems possible, but only if
we assume a form of generally recursive type constructors of kind
∗ → ∗, which we cannot add to System F without causing other
problems for the compilation. We conjecture an approximate back-
translation is what is needed to provide a fully-abstract compilation
in this setting and we hope to confirm it in future work.

In other settings, it is not clear whether it is even possible to
construct a fully-abstract compiler. For example, if we add typed,
higher-order references to λτ and untyped references to λu, it is
not clear if a fully-abstract compiler can be devised. The problem
is essentially to choose a representation for typed references and
a way of manipulating them that reconciles a number of require-
ments: (1) trusted code reading from a reference always produces a
type-correct value, (2) trusted code writing a type-correct value to a
reference always works, (3) untrusted code should be able to read-
/write type-correct values from references, (4) dynamic type checks
or wrappers may only be added where the context could also choose
to fail for other reasons (i.e. not at the time of reading/writing a ref-
erence by trusted code), (5) efficiency: we do not want to check the
contents of all references every time control is passed from trusted
code to the context. Several obvious solutions do not work: repre-
senting references as objects with read and write methods violates
requirement (4), just checking the contents of a reference when it
is received from the context is not enough to guarantee (1) and (2).
We intend to explore a solution based on trusted but abstract read-
/write/alloc methods (using sealing primitives as used for paramet-
ric polymorphism) but this remains speculation for the moment.

Another interesting problem when compiling to an assembly
language is the enforcement of well-bracketed control flow. The
question is essentially how to represent return pointers at the as-
sembly level. Even if we prevent functions from accessing parts
of the stack and only give them access to an opaque invokable re-
turn pointer, they still have ways to misuse them [Patrignani, 2015].
Imagine a trusted assembly function f invoking an untrusted g.
Additionally, assume that g in turn re-invokes f and f simply re-
invokes g again. Now g might attempt to invoke the wrong return
pointer, returning on its first invocation without first returning on
the second. Such an attack breaks the well-bracketedness of con-
trol flow that trusted code may rely on in languages without call/cc
primitives [Dreyer et al., 2010]. Ahmed and Blume [2011] have
demonstrated a solution for this problem which exploits parametric
polymorphism to enforce the invocation of the correct continua-
tion, and it is interesting to see if their work can be reused as an
intermediate step on the way to assembly language.

On a technical level, we expect few problems for applying our
technique of approximate back-translation to all of these settings.
The Hur-Dreyer-inspired cross-language logical relations can be
applied in diverse settings including ML and assembly and sup-
port references (through Kripke worlds), parametric polymorphism
(through quantification over abstract type interpretations as rela-
tions) and well-bracketed control flow guarantees (through pub-
lic/private transitions in the transition systems stored in the worlds).
We have also shown in this paper that they can be easily modified
to an asymmetric setting.

8. Related Work

Secure compilation through full-abstraction was pioneered by
Abadi [1999] and successfully applied to many different set-
tings [Patrignani et al., 2015, Fournet et al., 2013, Bowman and
Ahmed, 2015, Ahmed and Blume, 2011, 2008, Tse and Zdancewic,

2004, Shikuma and Igarashi, 2007, Abadi and Plotkin, 2012, Ja-
gadeesan et al., 2011, Riecke, 1993, Ritter and Pitts, 1995, Mitchell,
1993, McCusker, 1996, Smith, 1998]. Recently, Gorla and Nest-
man [2014] have argued against the use of the mere existence of
fully-abstract translations as a measure of language expressive-
ness, because very often fully abstract translations exist but are in
some sense degenerate, uninteresting and/or unrealistic. Recently,
Parrow [2014] has strengthened their case by showing that fully
abstract translations almost always exist (under a basic condition
on the cardinality of equivalence classes in source and target lan-
guage). Their argument is valid, but does not apply to applications
of fully abstract compilers for security, which is our motivation.

Some secure compilation works prove compiler full-abstraction
using logical relations. Ahmed and Blume [2011, 2008] proved that
typed closure conversion and CPS transformation are fully-abstract
when compiling from System F and the simply-typed λ-calculus
(respectively) to System F. Tse and Zdancewic [2004] started a line
of work to compile the dependency core calculus of Abadi et al.
[1999] (DCC) into System F, effectively proving that non inter-
ference can be encoded with parametricity. They achieve an anal-
ogous of fully-abstract compilation where contextual equivalence
is replaced with non-interference. Due to an imprecision in their
proof, the result of Tse and Zdancewic does not hold; Shikuma and
Igarashi [2007] refined their result for a weaker form of DCC. A
fully-abstract translation from DCC to System F was provided by
Bowman and Ahmed [2015], and that is the closest work to what
is presented here. While they prove an important result, we believe
the formal machinery adopted by Bowman and Ahmed is heavier
than the one presented here. Specifically, we do not need a new log-
ical relation to prove well-foundedness of the back-translation. The
secure compilation of DCC to System F is quite different from our
setting, since our target language is untyped.

Many other secure compilation works prove full-abstraction by
replacing target-level contextual equivalence with another equiva-
lent equivalence (most times it is trace equivalence or bisimilar-
ity) [Fournet et al., 2013, Abadi and Plotkin, 2012, Jagadeesan
et al., 2011, Patrignani et al., 2015]. These works rely on additional
results of the equivalence used for full-abstraction to hold, and this
can complicate and lengthen proofs relying on this other technique.
Earlier, McCusker [1996] has previously shown that proving full
abstraction of a compiler can be simplified by limiting the back-
translation to contexts that are in a certain sense compact. This is
related to our approximate back-translations, though not quite the
same. A downside of McCusker’s approach is that it does not al-
ways seem clear how to characterize the compact elements in a
language.

As mentioned in Section 1, the presented proof technique bor-
rows from recent results in compiler correctness [Hur and Dreyer,
2011, Benton and Hur, 2010, 2009]. These results build cross-
language logical relation based on a common language specifica-
tion in order to prove compiler correctness. Benton and Hur [2009]
provided a correct compiler from a call-by-value λ-calculus as well
as for System F with recursion to to a SECD machine [Benton
and Hur, 2010]. Hur and Dreyer [2011] devised a correct com-
piler between an idealised ML to assembly. The techniques devised
in these works were further developed into Relational Transition
Systems (RTS) in order to prove both vertically- and horizontally-
composable compiler correctness [Hur et al., 2012, Neis et al.,
2015]. A different approach to cross-language relations could have
been adopting a Matthews and Findler-style multi-language seman-
tics, where source and target language are combined [Matthews and
Findler, 2009]. For example, Perconti and Ahmed [2014] devised a
two-step correct compiler for System F with existential and recur-
sive types to typed assembly language using multi-language logi-
cal relations. As compiler full-abstraction does scale to multi-pass

compilers (i.e., it is vertically composable), there was no necessity
to use RTS nor multi-language systems.

Some elements of our proof technique are reminiscent of tech-
niques from the field of denotational semantics. First, our family
of types UValn can be seen as a kind of syntactical version of an
iteratively constructed Scott model for the untyped lambda calcu-
lus [Scott, 1976]. In fact, in future work, we hope to extend this
correspondence to languages with effects, where the effects would
be encoded with a state-passing model. We note also that using a
family of finite approximations (like our UValn types) to interpret
a recursive type (like the type UVal discussed in the introduction) is
quite standard in denotational semantics [MacQueen et al., 1984].

9. Conclusion

This paper presented a novel proof technique for proving compiler
full-abstraction based on asymmetric, cross-language logical rela-
tions. The proof technique revolves around an approximate back-
translations from target terms (and contexts) to source terms (and
contexts). The back-translation is approximate in the sense that the
context generated by the back-translation may diverge when the
target-level counterpart would not, but not vice versa. The proof
technique is demonstrated for a compiler from a simply-typed λ-
calculus without recursive types to the untyped λ-calculus; that
compiler is proven to be fully-abstract. Although logical relations
have been used for full-abstraction proofs, this is the first usage of
cross-language logical relations for compiler full-abstraction tar-
geting an untyped language. We believe the techniques developed
in this paper scale to languages with more advanced functionalities
and they can be used to prove compiler full-abstraction in richer
settings.

Acknowledgments

Dominique Devriese holds a Postdoctoral mandate from the Re-
search Foundation Flanders (FWO). Marco Patrignani held a Ph.D.
fellowship from the Research Foundation Flanders (FWO) during
the development of this work. This research is partially funded by
project grants from the Research Fund KU Leuven, and from the
Research Foundation Flanders (FWO).

References

M. Abadi. Protection in programming-language translations. In
Secure Internet programming, pages 19–34. Springer-Verlag,
1999. ISBN 3-540-66130-1.

M. Abadi and G. D. Plotkin. On protection by layout randomiza-
tion. ACM Transactions on Information and System Security, 15:
8:1–8:29, July 2012. ISSN 1094-9224. doi: 10.1145/2240276.
2240279.

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core cal-
culus of dependency. In Principles of Programming Languages,
pages 147–160. ACM, 1999. doi: 10.1145/292540.292555.

P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compila-
tion to modern processors. In Computer Security Foundations,
pages 171–185, 2012.

A. Ahmed and M. Blume. Typed closure conversion preserves ob-
servational equivalence. In International Conference on Func-
tional Programming, pages 157–168. ACM, 2008. doi: 10.1145/
1411204.1411227.

A. Ahmed and M. Blume. An equivalence-preserving CPS transla-
tion via multi-language semantics. In International Conference
on Functional Programming, pages 431–444. ACM, 2011. doi:
10.1145/2034773.2034830.

N. Benton and C.-K. Hur. Biorthogonality, step-indexing and com-
piler correctness. In International Conference on Functional
Programming, volume 44, pages 97–108. ACM, 2009. doi:
10.1145/1596550.1596567.

N. Benton and C.-K. Hur. Realizability and compositional compiler
correctness for a polymorphic language. Technical report, MSR,
2010.

W. J. Bowman and A. Ahmed. Noninterference for free. In
International Conference on Functional Programming. ACM,
2015.

P.-L. Curien. Definability and full abstraction. Electron. Notes
Theor. Comput. Sci., 172:301–310, 2007. ISSN 1571-0661. doi:
10.1016/j.entcs.2007.02.011.

D. Devriese, M. Patrignani, and F. Piessens. Fully abstract compila-
tion by approximate back-translation: Technical appendix. Tech-
nical Report CW 687, Dept. of Computer Science, KU Leuven,
2016.

D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order
state and control effects on local relational reasoning. In Interna-
tional Conference on Functional Programming, pages 143–156,
2010. doi: 10.1145/1863543.1863566.

C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In Princi-
ples of Programming Languages, pages 371–384. ACM, 2013.
doi: 10.1145/2429069.2429114.

D. Gorla and U. Nestman. Full abstraction for expressiveness:
History, myths and facts. Math. Struct. Comp. Science, 2014.

C.-K. Hur and D. Dreyer. A Kripke logical relation between ML
and assembly. In Principles of Programming Languages, pages
133–146. ACM, 2011. doi: 10.1145/1926385.1926402.

C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage
of bisimulations and Kripke logical relations. In Principles
of Programming Languages, pages 59–72. ACM, 2012. doi:
10.1145/2103656.2103666.

R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory
via layout randomization. In Computer Security Foundations
Symposium, pages 161–174. IEEE Computer Society, 2011. doi:
10.1109/CSF.2011.18.

A. Kennedy. Securing the .NET programming model. Theor.
Comput. Sci., 364(3):311–317, Nov. 2006. ISSN 0304-3975.
doi: 10.1016/j.tcs.2006.08.014.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for
recursive polymorphic types. In Principles of Programming
Languages, pages 165–174. ACM, 1984. doi: 10.1145/800017.
800528.

J. Matthews and A. Ahmed. Parametric polymorphism through
run-time sealing or, theorems for low, low prices! In Pro-
gramming Languages and Systems, volume 4960 of LNCS,
pages 16–31. Springer Berlin Heidelberg, 2008. doi: 10.1007/
978-3-540-78739-6_2.

J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. ACM Transactions on Programming Lan-
guages and Systems, 31:12:1–12:44, Apr. 2009. ISSN 0164-
0925. doi: 10.1145/1498926.1498930.

G. McCusker. Full abstraction by translation. Advances in Theory
and Formal Methods of Computing, 1996.

J. C. Mitchell. On abstraction and the expressive power of program-
ming languages. Science of Computer Programming, 21(2):141

– 163, 1993. ISSN 0167-6423. doi: 10.1016/0167-6423(93)
90004-9.

G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. In Second Workshop on
Compiler Support for System Software, pages 25–35, 1999.

G. Neis, D. Dreyer, and A. Rossberg. Non-parametric parametric-
ity. In International Conference on Functional Programming,
pages 135–148. ACM, 2009. doi: 10.1145/1596550.1596572.

G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis. Pilsner: A compositionally verified compiler for a
higher-order imperative language. In International Conference
on Functional Programming. ACM, 2015.

J. Parrow. General conditions for full abstraction. Math. Struct.
Comp. Science, 2014.

M. Patrignani. The Tome of Secure Compilation: Fully Abstract
Compilation to Protected Modules Architectures. PhD thesis,
KU Leuven, Leuven, Belgium, May 2015.

M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens. Secure compilation to protected module architec-
tures. ACM Trans. Program. Lang. Syst., 37(2):6:1–6:50, Apr.
2015. ISSN 0164-0925. doi: 10.1145/2699503.

J. T. Perconti and A. Ahmed. Verifying an open compiler using
multi-language semantics. In ESOP, volume 8410 of Lecture
Notes in Computer Science, pages 128–148, 2014.

B. C. Pierce. Types and programming languages. MIT press, 2002.

G. D. Plotkin. LCF considered as a programming language. The-
oretical Computer Science, 5:223–255, 1977. doi: 10.1016/
0304-3975(77)90044-5.

J. G. Riecke. Fully abstract translations between functional
languages. Mathematical Structures in Computer Science,
3:387–415, 12 1993. ISSN 1469-8072. doi: 10.1017/
S0960129500000293.

E. Ritter and A. M. Pitts. A fully abstract translation between a
Îż-calculus with reference types and standard ml. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Typed Lambda Calculi and
Applications, volume 902 of LNCS, pages 397–413. Springer
Berlin Heidelberg, 1995. ISBN 978-3-540-59048-4. doi: 10.
1007/BFb0014067.

D. Scott. Data types as lattices. SIAM Journal on Computing, 5(3):
522–587, 1976. doi: 10.1137/0205037.

N. Shikuma and A. Igarashi. Proving noninterference by a
fully complete translation to the simply typed λ-calculus. In
M. Okada and I. Satoh, editors, Advances in Computer Science -
ASIAN 2006. Secure Software and Related Issues, volume 4435
of LNCS, pages 301–315. Springer Berlin Heidelberg, 2007. doi:
10.1007/978-3-540-77505-8_24.

S. F. Smith. The coverage of operational semantics. In Higher
Order Operational Techniques in Semantics, Publications of the
Newton Institute, pages 307–346. Cambridge University Press,
1998.

E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing.
Theor. Comput. Sci., 375(1-3):169–192, Apr. 2007. ISSN 0304-
3975. doi: 10.1016/j.tcs.2006.12.032.

S. Tse and S. Zdancewic. Translating dependency into parametric-
ity. In International Conference on Functional Programming,
pages 115–125. ACM, 2004. doi: 10.1145/1016850.1016868.

