
https://doi.org/10.1007/s00158-020-02742-w

EDUCATIONAL PAPER

Fully and semi-automated shape differentiation in NGSolve

Peter Gangl1 · Kevin Sturm2
·Michael Neunteufel2 · Joachim Schöberl2

Received: 14 April 2020 / Revised: 10 September 2020 / Accepted: 11 September 2020

© The Author(s) 2020, corrected publication 2021

Abstract

In this paper, we present a framework for automated shape differentiation in the finite element software NGSolve. Our

approach combines the mathematical Lagrangian approach for differentiating PDE-constrained shape functions with the

automated differentiation capabilities of NGSolve. The user can decide which degree of automatisation is required, thus

allowing for either a more custom-like or black-box–like behaviour of the software. We discuss the automatic generation

of first- and second-order shape derivatives for unconstrained model problems as well as for more realistic problems that

are constrained by different types of partial differential equations. We consider linear as well as nonlinear problems and

also problems which are posed on surfaces. In numerical experiments, we verify the accuracy of the computed derivatives

via a Taylor test. Finally, we present first- and second-order shape optimisation algorithms and illustrate them for several

numerical optimisation examples ranging from nonlinear elasticity to Maxwell’s equations.

Keywords Shape optimisation · Shape derivative · Automated differentiation · Shape Newton method

1 Introduction

Numerical simulation and shape optimisation tools to solve

the problems have become an integral part in the design

process of many products. Starting out from an initial

design, non-parametric shape optimisation techniques based

on first- and second-order shape derivatives can assist

in finding shapes of a product which are optimal with

respect to a given objective function. Examples include the

optimal design of aircrafts (Schmidt et al. 2013; 2011),

optimal inductor design (Hömberg and Sokolowski 2003),

optimisation of microlenses (Paganini et al. 2015), the

optimal design of electric motors (Gangl et al. 2015),

applications to mechanical engineering (Allaire et al. 2004;

Laurain 2018), multiphysics problems (Feppon et al. 2019),

Responsible Editor: Gregoire Allaire

� Peter Gangl
gangl@math.tugraz.at

1 TU Graz, Steyrergasse 30, 8010 Graz, Austria

2 TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

or electrical impedance tomography (EIT) in medical

sciences to name only a few (Hintermüller and Laurain

2008).

Shape optimisation algorithms are based on the concept

of shape derivatives. Let P(Rd) denote the set of all subsets

of R
d . Furthermore, let A ⊂ P(Rd) be a set of admissible

shapes and J : A → R be a shape function. Given an

admissible shape Ω ∈ A and a sufficiently smooth vector

field V , we define the perturbed domain Ωt := (Id +

tV)(Ω) for a small perturbation parameter t > 0. The shape

derivative is defined as:

DJ (Ω)(V) :=

(

d

dt
J (Ωt)

)∣

∣

∣

∣

t=0

= lim
t→0

J (Ωt)−J (Ω)

t
. (1)

Remark 1 We remark that a frequently used definition of

shape differentiability is to require the mapping V �→

J ((Id + V)(Ω)) being Fréchet differentiable in V = 0; see

(Allaire 2007; Henrot and Pierre 2005; Murat and Simon

1976). This stronger notion of differentiability implies that

the limit defined in (1) exists.

In most practically relevant applications, the objective

functional depends on the shape of a (sub-)domain via the

solution to a partial differential equation (PDE). Thus, one

Structural and Multidisciplinary Optimization (2021) 63:1579–1607

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02742-w&domain=pdf
http://orcid.org/0000-0001-8906-821X
mailto: gangl@math.tugraz.at

P. Gangl et al.

is facing a problem of PDE-constrained shape optimisation

of the form:

min
(Ω,u)∈A×Y

J (Ω, u)

s.t. (Ω, u) ∈ A × Y : e(Ω; u, v) = 0 for all v ∈ Y .

(2)

Here, the second line represents the constraining boundary

value problem posed on a Hilbert space Y , which we assume

to be uniquely solvable for all admissible Ω ∈ A. Denoting

the unique solution for a given Ω ∈ A by uΩ , we introduce

the notation for the reduced functional:

J (Ω) := J (Ω, uΩ).

In order to be able to apply a shape optimisation algorithm

to a given problem of this kind, the shape derivative (1)

has to be computed; see the standard literature Delfour

and Zolésio (2011a) and Sokołowski and Zolésio (1992) or

Sturm (2015a) for an overview of different approaches. In

the following, we focus on computing the so-called volume

form of the shape derivative which in a finite element

context is known to give a better approximation compared to

the boundary form; see Hiptmair et al. (2015) and Berggren

(2010).

The convergence of shape optimisation algorithms can

be speeded up by using second-order shape derivatives.

Given two sufficiently smooth vector fields V , W , and an

admissible shape Ω ∈ A, let Ωs,t := (Id + sV + tW)(Ω)

be the perturbed domain. Then, the second-order shape

derivative is defined as:

D2J (Ω)(V)(W) :=

(

d2

dsdt
J (Ωs,t)

)∣

∣

∣

∣

s,t=0

. (3)

Second-order information in Newton-type algorithms has

been explored in the articles Novruzi and Roche (2000),

Allaire et al. (2016), Paganini and Sturm (2019), Eppler

et al. (2007), and Schulz (2014). Since the computation

of second-order shape derivatives is more involved and

error prone, several authors have employed automatic

differentiation (AD) tools; see e.g. Schmidt (2018) and Ham

et al. (2019) for two approaches based on the Unified Form

Language (UFL) (Alnæs et al. 2014). In Ham et al. (2019),

the authors present a fully automated shape differentiation

software which uses the transformation properties on the

finite element level. In Schmidt (2018) (see also the

earlier work (Schmidt 2014)), the automated derivatives are

computed using UFL. The strategies of Ham et al. (2019)

and Schmidt (2018) differ in that, for the latter, the software

computes an unsymmetric shape Hessian since it involves

the term DJ (Ω)(∂V W). Optionally, the software allows to

make the shape Hessian symmetric by requiring ∂V W =

0. We will discuss the subtle difference and the relation

between the two possible ways of defining shape Hessians

in Remark 3 of Section 3.2. Let us also mention Dokken

et al. (2020) where automated shape derivatives for transient

PDEs in FEniCS and Firedrake are presented.

In this paper, we present an alternative framework for

AD of PDE-constrained problems of type (2). There exist

several approaches for the rigorous derivation of the shape

derivative of PDE-constrained shape functionals; see Sturm

(2015b) for an overview. The main idea, however, is always

similar. After transforming the perturbed setting back to

the original domain, shape differentiation in the direction

of a given vector field reduces to the differentiation with

respect to the scalar parameter t which now enters via the

corresponding transformation and its gradient. It is shown in

Sturm (2015a) that the shape derivative for a nonlinear PDE-

constrained shape optimisation problem can be computed

as the derivative of the Lagrangian with respect to the

perturbation parameter. We will illustrate this systematic

procedure for a number of different applications and utilise

symbolic differentiation provided by the finite element

software package NGSolve (Schöberl 2014) to obtain the

shape derivative for different classes of PDE-constrained

optimisation problems. NGSolve allows for the fast and

efficient numerical solution of a large number of different

boundary value problems. The aim of this paper is to extend

NGSolve by the possibility of semi-automatic and fully

automatic shape differentiation and optimisation.

Distinctly from previous approaches, we cover the

following two points:

– A fully automated setting requiring as input the weak

formulation of the constraint and the cost function,

– A semi-automated setting which offers a highly

customisable user interface, but requires mathematical

background knowledge.

Structure of the paper In Section 2, we give a brief

introduction on how to solve a PDE in NGSolve and

present its built-in auto-differentiation capabilities. The

introduced syntax will also lay the foundation for the

following sections. In Section 3, we present a first

unconstrained shape optimisation problem and show how

to solve it in NGSolve. For this purpose, we show how

to compute the first- and second-order shape derivative in

a semi-automated way. Section 4 extends the preceding

section by incorporating a PDE constraint. The strategy is

illustrated by means of a simple Poisson equation. We also

show how to treat the computation of shape derivatives

when the PDE is defined on surfaces. While the semi-

automated shape differentiation presented in Sections 3

and 4 requires mathematical background knowledge, in

1580

Fully and semi-automated shape differentiation in NGSolve

Section 5 we show how the shape derivatives can be

computed in a fully automated fashion. In the last

section of the paper, we verify the computed formulas

by a Taylor test, discuss optimisation algorithms and

present several numerical optimisation examples including

nonlinear elasticity, Maxwell’s equations and Helmholtz’s

equation.

2 A brief introduction to NGSolve

In this section, we give a brief overview of the main con-

cepts of the finite element software NGSolve (Schöberl

2014). We first describe the main principles for numeri-

cally solving boundary value problems in NGSolve before

focusing on its built-in automatic differentiation capabili-

ties. In the subsequent sections of this paper, these ingre-

dients will be combined to implement the shape derivative

of unconstrained and PDE-constrained shape optimisation

problems in an automated way.

2.1 Solving PDEs with finite elements in NGSolve

In this section, we illustrate the syntax of NGSolve
using the python programming language for the Poisson

equation with homogeneous Dirichlet conditions as a model

problem. We refer the reader to the online documentation

https://ngsolve.org/docu/latest/

for a more detailed description of the many features of

this package.

Given a domain Ω ⊂ R
d and a right-hand side f , we

consider the model problem to find u satisfying:

−�u = f in Ω,

u = 0 on ∂Ω .

The weak form of the model problem reads:

Find u ∈ H 1
0 (Ω) :

∫

Ω

∇u · ∇w dx

=

∫

Ω

f w dx ∀w ∈ H 1
0 (Ω). (4)

We consider a ball of radius 1
2 in two space dimensions cen-

tred at the point (0.5, 0.5)⊤, i.e. Ω = B((0.5, 0.5)⊤, 0.5),

and the right-hand side is defined by f (x1, x2) = 2x2(1 −

x2) + 2x1(1 − x1). We will go through the steps for numer-

ically solving this problem by the finite element method.

We begin by importing the necessary functionalities and

setting up a finite element mesh.

The first line imports all modules from the package

NGSolve. The second line includes the SplineGeometry

function which enables us to define a mesh via a geometric

description, in our case a circle centred at (0.5, 0.5)⊤ of

radius 0.5. Finally, the mesh is generated in line 7, and in

line 8 we specify that we want to use a curved finite element

mesh for a more accurate approximation of the geometry.

For that purpose, a projection-based interpolation procedure

is used, see e.g. (Demkowicz 2004).

Next in line 9 we define an H 1 conforming finite

element space of polynomial degree 3 and include Dirichlet

boundary conditions on the boundary of the domain ∂Ω

(referenced by the string ‘‘circle’’ that we assigned in

line 5). On this space, we define a trial function u in line 11

and a test function w in line 12. These are purely symbolic

objects which are used to define boundary value problems

in weak form.

For a more compact presentation later on, we define

a coefficient function X which combines the three spatial

components:

Now, the left- and right-hand sides of problem (4)

can be conveniently defined as a bilinear or linear form,

respectively, on the finite element space fes by the

following lines.

We assemble the system matrix coming from the bilinear

form a and the load vector coming from L and solve the

corresponding system of linear equations.

1581

https://ngsolve.org/docu/latest/

P. Gangl et al.

Here, gfu is defined as a GridFunction over the

finite element space fes. A GridFunction object is

used to save the results by containing the corresponding

finite element coefficient vectors. Furthermore, it can

evaluate the stored finite element solution at a given mesh

point. The Dirichlet conditions are incorporated into the

direct solution of the linear system and the numerical

solution is drawn in the graphical user interface. The

numerical solution is depicted in Fig. 1.

2.2 Automatic differentiation in NGSolve

In NGSolve, symbolic expressions are stored in expression

trees; see Fig. 2 for an example. It is possible to differentiate

an expression expr with respect to a variable var appearing

in expr into a direction dir by the command

expr.Diff(var, dir).

Mathematically, this line corresponds to the directional

derivative of g:=expr at x := var in direction v := dir , that

is,

Dg(x)(v). (5)

When calling the Diff command for expr, the expression

tree of expr is gone through node by node, and for each

node the corresponding differentiation rules such as product

rule or chain rule are applied. When a node represents the

variable with respect to which the differentiation is carried

out, it is replaced by the direction dir of differentiation.

Figure 2 shows the differentiation of the expression

expr= 2x*x+3y with respect to x into the direction given by

v:

The output of print(expr) reads:

coef binary operation ’+’, real

coef binary operation ’*’, real

coef scale 2, real

coef coordinate x, real

coef coordinate x, real

coef scale 3, real

coef coordinate y, real

which translates to 2x ∗ x + 3y and corresponds to

the expression tree depicted in Fig. 2a. The output of

print(dexpr) reads:

coef binary operation ’+’, real

coef binary operation ’+’, real

coef binary operation ’*’, real

coef scale 2, real

coef N5ngfem28ParameterCoefficient

FunctionE, real

coef coordinate x, real

coef binary operation ’*’, real

coef scale 2, real

coef coordinate x, real

coef N5ngfem28ParameterCoefficient

FunctionE, real

coef scale 3, real

coef 0, real

Fig. 1 Solution of problem (4)
by code fragments of
Section 2.1 with 29 nodes, 40
(curved) triangular elements and
polynomial order 3

1582

Fully and semi-automated shape differentiation in NGSolve

(b)(a)

Fig. 2 Illustration of Diff command for example expr= 2x*x+3y. a

Expression tree for expr. b Expression tree for expression obtained by
call of expr.Diff(x, v)

which translates to (2v ∗x +2x ∗v)+3∗0 and corresponds

to the expression tree depicted in Fig. 2b. The coefficient

N5ngfem28ParameterCoefficientFunctionE

appearing therein is the C++ internal class name of the

Python object Parameter.

NGSolve trial and test functions are purely symbolic

objects used for defining bilinear and linear forms.

Therefore, they do not depend on the spatial variables x,

y, z as can be seen by differentiating them. NGSolve
GridFunctions on the other hand represent functions in

the finite element space. However, also for these objects,

the space dependency is omitted when performing symbolic

differentiation. The code segments

will give the following output:

Diff u w.r.t. x: ConstantCF, val = 0

Diff w w.r.t. x: ConstantCF, val = 0

Diff gf w.r.t. x: ConstantCF, val = 0

Here, the GridFunction.Set method takes a

CoefficientFunction object and performs a (local)

L2 best approximation into the underlying finite element

space with respect to its natural norm and stores the

resulting coefficient vector.

3 Semi-automatic shape differentiation
without constraints

We will illustrate the steps to be taken in order to obtain

the shape derivative of a shape function in a semi-automatic

way for a simple shape optimisation problem. For Ω ⊂

R
d bounded and open and a continuously differentiable

function f ∈ C1(Rd), we consider the shape differentiation

of the shape function:

J (Ω) =

∫

Ω

f (x) dx. (6)

Clearly, the minimiser of J over all measurable sets in R
d

is given by Ω∗ = {x ∈ R
d : f (x) < 0}. We also refer to

Schiela and Ortiz (2017) for the computations of first- and

second-order variations of functions of type (6) where Ω is

a submanifold of R
d .

3.1 First-order shape derivative

Henceforth, we denote by C0,1(Rd)d the space of bounded

and Lipschitz continuous vector fields V : R
d → R

d .

In view of Rademachers’ theorem (Evans 2010, Thm.6, p.

296), the space C0,1(Rd)d corresponds to the Sobolev space

W 1,∞(Rd)d .

Given a vector field V ∈ C0,1(Rd)d , we define the

transformation:

Tt (x) := (Id + t V)(x), x ∈ R
d , t ≥ 0.

Definition 1 The first-order shape derivative of a shape

function J at Ω in direction V ∈ C0,1(Rd)d is defined by:

DJ (Ω)(V) = lim
t→0

J (Tt (Ω)) − J (Ω)

t
. (7)

3.1.1 Shape differentiation of unconstrained volume

integrals

Using the transformation y = Tt (x) and the notation Ft :=

∂Tt = I + t∂V for the Jacobian of the transformation Tt ,

we get for J as in (6):

J (Ωt) =

∫

Ωt

f (x′) dx′=

∫

Ω

(f ◦ Tt)(x) det(Ft (x)) dx. (8)

Now, let us explain how to compute the shape derivative

of J . Denoting

G(Tt , Ft) :=

∫

Ω

(f ◦ Tt)(x) det(Ft (x)) dx, (9)

the chain rule gives (formally)

d

dt
J (Ωt)

∣

∣

∣

∣

t=0

= d
dt

G(Tt , Ft)
∣

∣

t=0

=
(

dG
dTt

dTt

dt
+ dG

dFt

dFt

dt

)∣

∣

∣

t=0
. (10)

1583

P. Gangl et al.

Using that dTt

dt
(x) = V (x) and dFt

dt
(x) = ∂V (x), we get for

the shape derivative:

DJ (Ω)(V) =
d

dt
J (Ωt)

∣

∣

∣

∣

t=0

=

(

dG

dTt

V +
dG

dFt

∂V

)∣

∣

∣

∣

t=0

.

This is the form we use for defining the first-order shape

derivative in NGSolve. Note that a Lipschitz vector field

is differentiable almost everywhere and hence ∂V (x) is

defined almost everywhere and bounded.

Given the function f (x1, x2) = (x1 − 0.5)2/a2 + (x2 −

0.5)2/b2 − R2 with a = 1.3, b = 1/a and R = 0.5, we

implement the transformed cost function (8) as follows:

Here, we introduce the symbol F and assign to it the

value of the identity matrix in line 42. This allows us to

differentiate with respect to F. Then, we define the function

G of (9) in line 43. The shape derivative is a bounded

linear functional on a space of vector fields. We introduce

a vector-valued finite element space VEC and define the

object representing the shape derivative dJOmega f as a

linear functional on VEC. In line 48, we differentiate with

respect to the spatial variables in the direction given by V.

Note that X is the coefficient function we introduced in line

13. In line 49, we deal with the differentiation with respect

to F.

Remark 2 Defining ξt := det(Ft) and using d
dt

ξt |t=0 =

divV , it holds:

dG

dFt

dFt

dt

∣

∣

∣

∣

t=0

= dG
dξt

dξt

dFt

dFt

dt

∣

∣

∣

t=0
= dG

dξt

dξt

dt

∣

∣

∣

t=0

= dG
dξt

divV

∣

∣

∣

t=0
=

∫

Ω
f divV dx.

Therefore, we obtain for the first-order shape derivative the

well-known formula:

DJ (Ω)(V) =

∫

Ω

∇f · V + f divV dx. (11)

Finally, if Ω is smooth enough (for instance C1), it follows

by integration by parts in (11) that the shape derivative is

given by:

DJ (Ω)(V) =

∫

∂Ω

f V · n ds, (12)

where n denotes the outward pointing normal along ∂Ω .

3.1.2 Shape differentiation of unconstrained boundary

integrals

For Ω and f as in the previous section, we consider:

Jbnd(Ω) =

∫

∂Ω

f (x) dx. (13)

Then, we get:

Jbnd (Ωt) =

∫

∂Ωt

f (x′) dsx′ (14)

=

∫

∂Ω

(f ◦ Tt)(x) det(Ft (x))|Ft (x)−⊤n(x)| dsx , (15)

see e.g. (Sokołowski and Zolésio 1992, Prop. 2.47), with the

outer unit normal vector n and | · | denoting the Euclidean

norm. It is shown in (Sokołowski and Zolésio 1992, Prop.

2.50) that the shape derivative of (13) is given by:

DJbnd(Ω)(V) =

∫

∂Ω

∇f · V + f (divV − n⊤∂V n)dsx .

Again, we can compute the shape derivative in NGSolve
as the total derivative of expression (15) with respect to the

parameter t . In NGSolve, the only difference lies in the

necessity to use the trace of the gradient of a test vector field

V.

Note that the trace operator for gradients on the boundary

is obligatory in NGSolve, whereas for direct evaluation of

H 1 trial and test functions itself it is optional.

3.2 Second-order shape derivatives

For second-order shape derivatives, we consider perturba-

tions of the form:

Ts,t (x) = (Id + sV + tW)(x), x ∈ R
d ,

for s, t ≥ 0 and define Ωs,t := Ts,t (Ω).

1584

Fully and semi-automated shape differentiation in NGSolve

Definition 2 The second-order shape derivative of a shape

function J at Ω in direction (V , W) ∈ C0,1(Rd)d ×

C0,1(Rd)d is defined by:

D2J (Ω)(V)(W) =
d2

dsdt
J (Ωs,t)

∣

∣

∣

∣

s=t=0

. (16)

Remark 3 We remark that if J is smooth enough, the

second-order derivative as defined in (16) is symmetric by

definition:

D2J (Ω)(V)(W) = D2J (Ω)(W)(V). (17)

We stress that this derivative is not the same as the shape

derivative obtained by repeated shape differentiation, that

is, it does not coincide with (see, e.g., (Delfour and Zolésio

2011b, Chap. 9, Sec. 6)):

d2J (Ω)(V)(W) := lim
t→0

DJ (T W
t (Ω))(V) − DJ (Ω)(V)

t

(18)

which is in general asymmetric.

The derivative defined in (18) is only symmetric if

∂V W = 0 since it holds:

d2J (Ω)(V)(W) = D2J (Ω)(V)(W) + DJ (Ω)(∂V W),

(19)

see also the early work of Simon (1989) on this

topic. However, in NGSolve, when repeating the shape

differentiation procedure introduced in Section 3.1, we

compute directly the second-order shape derivative as

defined in (16). Here, we exploit the fact that trial

functions are independent of the spatial coordinates; see also

Section 2.2 and the example below.

Let us now exemplify the computation of the second-

order shape derivative for the shape function J defined in

(6). Similarly to the computations of the first derivative, we

use the notation Fs,t := ∂Ts,t = I + s∂V + t∂W . Then, we

get:

d2

dsdt
J (Ωs,t)

∣

∣

∣

∣

s=t=0

=
d2

dsdt

∫

Ωs,t

f (x) dx

∣

∣

∣

∣

∣

s=t=0

=
d2

dsdt

∫

Ω

(f ◦ Ts,t)(x) det(Fs,t (x)) dx

∣

∣

∣

∣

s=t=0

.

Again, using the notation

G(Ts,t , Fs,t) =

∫

Ω

(f ◦ Ts,t)(x) det(Fs,t (x)) dx,

we get

d2

dsdt
J (Ωs,t)

∣

∣

∣

∣

s=t=0

= d2

dsdt
G(Ts,t , Fs,t)

∣

∣

∣

s=t=0

= d
ds

(

dG
dTs,t

dTs,t

dt
+ dG

dFs,t

dFs,t

dt

)∣

∣

∣

s=t=0
.

Using that
d2Ts,t

dsdt
= 0 and

d2Fs,t

dsdt
= 0, we get further:

d2

dsdt
J (Ωs,t)

∣

∣

∣

s=t=0

= d
ds

(

dG
dTs,t

)

dTs,t

dt
+ d

ds

(

dG
dFs,t

)

dFs,t

dt

∣

∣

∣

s=t=0

=

(

d2G

dT 2
s,t

dTs,t

ds
+ d2G

dFs,tdTs,t

dFs,t

ds

)

dTs,t

dt

+

(

d2G
dTs,tdFs,t

dTs,t

ds
+ d2G

dF 2
s,t

dFs,t

ds

)

dFs,t

dt

∣

∣

∣

s=t=0
. (20)

Formula (20) is used for the automatic derivation of
the second-order shape derivative in NGSolve. Using
dTs,t

ds
(x) = V (x),

dTs,t

dt
(x) = W(x) and

dFs,t

ds
(x) = ∂V (x),

dFs,t

dt
(x) = ∂W(x), we get:

d2

dsdt
J (Ωs,t)

∣

∣

∣

∣

s=t=0

=

(

d2G

dT 2
s,t

V +
d2G

dFs,tdTs,t

∂V

)

W

+

(

d2G

dTs,tdFs,t

V +
d2G

dF 2
s,t

∂V

)

∂W

∣

∣

∣

∣

s=t=0

.(21)

Remark 4 We remark that the formula (21) can be evaluated
explicitly and reads:

D2J (Ω)(V, W) =

∫

Ω

∇2f V · W + ∇f · W divV + ∇f · V divW

+ f divV divW − f ∂V ⊤ : ∂W dx.

Formula (21) can be implemented in NGSolve as

follows:

Notice that since W is a trial function, it is not affected

by the differentiation with respect to X; see Section 2.2.

Therefore, the terms coming from differentiating W with

respect to the spatial coordinates X into the direction of V
disappear and thus, although code lines 58–59 look like the

“derivative of the derivative”, we actually compute formula

(16) and not (18).

In the same fashion, second-order derivatives of bound-

ary integrals of the form (13) can be computed.

1585

P. Gangl et al.

Again note that the trace operator is necessary when

dealing with gradients on the boundary.

4 Semi-automatic shape differentiation with
PDE constraints

In this section, we describe the automatic computation of

the shape derivative for the following type of equality-

constrained shape optimisation problems:

min
(Ω,u)

J (Ω, u) (22)

subject to (Ω, u) ∈ A × Y solves

e(Ω, u) = 0, (23)

where e : A × Y → Y ∗ with e(Ω, ·) : Y (Ω) → Y (Ω)∗

represents an abstract PDE constraint with Y = ∪Ω∈AY (Ω)

being the union of Banach spaces Y (Ω) and A a set of

admissible shapes. For any given Ω ∈ A, we assume the

PDE constraint (23) to admit a unique solution which we

denote by uΩ . Moreover, let J (Ω) := J (Ω, uΩ) denote

the reduced cost functional. By introducing a Lagrangian

function, we can henceforth deal with an unconstrained

shape function L rather than a shape function J and a PDE

constraint. We introduce the Lagrangian:

L(Ω, u, p) := J (Ω, u) + 〈e(Ω, u), p〉. (24)

Now, an initial shape Ω is perturbed by a family of

transformations Tt , resulting in a new shape Ωt := Tt (Ω).

Transforming back to the initial shape Ω leads to the

Lagrangian:

G(t, u, p) := L(Tt (Ω), �t (u), �t (p)), u, p ∈ Y (Ω),

(25)

where �t : Y (Ω) → Y (Ωt) is a bijective mapping. Here,

the transformation �t depends on the differential operator

involved. For instance:

– If Y (Ω) = H 1
0 (Ω), then �t (u) = u ◦ T −1

t ,

– If Y (Ω) = H(curl, Ω), then �t (u) = ∂T −⊤
t (u◦T −1

t),

– If Y (Ω) = H(div, Ω), then �t (u) = 1
det(∂Tt)

∂Tt (u ◦

T −1
t).

Intuitively, the transformations �t are chosen in such a

way that the transformed function �t (u) still belongs to

the same space, but on a different domain. For the above

three examples, this essentially requires to check how the

differential operators ∇, curl and div transform under the

change of variables Tt , respectively. In fact, one can check

that:

(∇u) ◦ Tt = ∂T −⊤
t ∇(u ◦ Tt), u ∈ H 1

0 (Ω),

(curlu) ◦ Tt =
1

ξ(t)
∂Tt curl

(

∂T ⊤
t (u ◦ Tt)

)

, u ∈ H(curl, Ω),

(divu) ◦ Tt =
1

ξ(t)
div

(

ξ(t)∂T −1
t (u ◦ Tt)

)

, u ∈ H(div, Ω),

where ξ(t) := det(∂Tt); see also (Monk 2003, Section

3.9). The transformation rules are precisely given by the

respective �t . We also note that for smooth functions this

can be checked by direct computation.

Now the shape differentiability of (22–23) is reduced to

proving that (see Sturm (2015b)):

DJ (Ω)(V) =
d

dt
G(t, ut , 0)|t=0 = ∂tG(0, u, p), (26)

where ut := ut ◦ Tt and ut ∈ Y (Ωt) solves e(Ωt , ut) = 0

and p is the solution to the adjoint equation:

p ∈ Y (Ω), ∂uG(0, u, p)(ϕ) = 0 for all ϕ ∈ Y (Ω).

(27)

We stress that the choice of p as the solution of the adjoint

equation is important in order for the second equality in

(26) to hold. The verification of this equality depends on the

specific PDE under consideration and can be accomplished

by different methods. We refer the reader to Sturm (2015b)

for an overview and remark that (26) holds for a large class

of nonlinear PDE-constrained shape optimisation problems;

see Sturm (2015a).

The rest of this section is organised as follows: We

introduce a model problem, which is the minimisation of a

tracking-type cost functional subject to Poisson’s equation

in Section 4.1. We illustrate how the first- and second-order

shape derivative for this PDE-constrained model problem

can be obtained in NGSolve in Sections 4.2 and 4.3.

Finally, we also briefly discuss the extension to partial

differentiation equations on surfaces.

4.1 PDE-constrainedmodel problem

We will illustrate the derivation of the first- and second-

order shape derivative for the minimisation of a tracking-

type cost functional subject to Poisson’s equation on the

unknown domain Ω . Let d = 2 or 3, f, ud ∈ H 1(Rd) and

A ⊂ P(Rd) be a set of admissible shapes. Here, P(Rd)

denotes the power set of all subsets of R
d . We consider the

problem:

min
(Ω,u)

J (Ω, u) =
∫

Ω
|u − ud |2 dx (28a)

subject to (Ω, u) ∈ A × H 1
0 (Ω) solves

〈e(Ω, u), ψ〉 :=
∫

Ω
∇u · ∇ψ dx −

∫

Ω
f ψ dx = 0 (28b)

1586

Fully and semi-automated shape differentiation in NGSolve

for all ψ ∈ H 1
0 (Ω). The Lagrangian is given by:

L(Ω, ϕ, ψ) :=

∫

Ω

|ϕ−ud |2 dx+

∫

Ω

∇ϕ·∇ψ dx−

∫

Ω

f ψ dx.

(29)

Given an admissible shape Ω , a vector field V ∈ C0,1(Rd)d

and t > 0 small, let Ωt := (Id + tV)(Ω) be the perturbed

domain. Therefore, the parametrised Lagrangian is given

by:

G(t, ϕ, ψ) :=L(Tt (Ω), ϕ◦T −1
t , ψ◦T −1

t), ϕ, ψ ∈H 1
0 (Ω).

(30)

Changing variables yields:

G(t, ϕ, ψ) =

∫

Ω

|ϕ − ut
d |2 det(Ft)dx

+

∫

Ω

(F−⊤
t ∇ϕ) · (F−⊤

t ∇ψ) det(Ft) dx −

∫

Ω

f tψ

det(Ft) dx (31)

=: G̃(Tt , Ft , ϕ, ψ),

where ut
d = ud ◦ Tt and f t = f ◦ Tt . Here, we

also transformed the gradient according to (∇w) ◦ Tt =

F−⊤
t ∇(w ◦ Tt) for w ∈ H 1

0 (Ω). Recall that, for a given

Ω ∈ A, uΩ denotes the corresponding unique solution

to (28b) and J (Ω) the reduced cost functional, J (Ω) :=

J (Ω, uΩ). Let ut ∈ H 1
0 (Ω) be the solution of the perturbed

state equation brought back to the original domain Ω , that

is, ut ∈ H 1
0 (Ω) is the unique solution to:

∂ψG(t, ut , 0)(ψ) = 0 for all ψ ∈ H 1
0 (Ω). (32)

Note that, for ut defined by (32), it holds J (Ωt) =

G(t, ut , ψ) for all ψ ∈ H 1
0 (Ω) and therefore also

DJ (Ω)(V) = d
dt

G(t, ut , ψ) for all ψ ∈ H 1
0 (Ω).

It can easily be shown that (26) holds and thus the shape

derivative in the direction of a vector field V ∈ C0,1(R)d is

given by:

DJ (Ω)(V) = ∂tG(0, u, p),

where p ∈ H 1
0 (Ω) denotes the adjoint state and is defined

as the unique solution p ∈ H 1
0 (Ω) to

∂ϕG(0, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ H 1
0 (Ω), (33)

or explicitly
∫

Ω

∇ϕ̂ · ∇p dx = −2

∫

Ω

(u − ud)ϕ̂ dx for all ϕ̂ ∈ H 1
0 (Ω). (34)

4.2 First-order shape derivative

By the discussion above, the first-order shape derivative is

given by ∂tG(0, u, p) with G defined in (31) and u and p

the unique solutions to the boundary value problems (28b)

and (34), respectively.

Writing G̃(Tt , Ft) := G̃(Tt , Ft , u, p) = G(t, u, p), we

obtain in analogy to the unconstrained problem:

DJ (Ω)(V) =
d

dt
J (Ωt)

∣

∣

∣

∣

t=0

=

(

dG̃

dTt

V +
dG̃

dFt

∂V

)∣

∣

∣

∣

∣

t=0

.

We can compute explicitly:

dG̃

dFt

|t=0∂V =

∫

Ω

div(V)(u − ud)2 − (∂V + ∂V ⊤)∇u · ∇p

− div(V)∇u · ∇p − fpdiv(V) dx, (35)

dG̃

dTt

|t=0V =

∫

Ω

−2(u − ud)∇ud · V − ∇f · Vp dx. (36)

Now, we are in a position to compute the first-order shape

derivative for the PDE-constrained shape optimisation

problem (28) in NGSolve. After solving the state equation

as shown in Section 2.1, the adjoint equation can be solved

as follows.

We can now define the Lagrangian (31) such that the

shape derivative can be obtained by the same procedure as

in the unconstrained setting. Note that lines 82–83 coincide

with lines 48–49.

4.3 Second-order shape derivative

Let us introduce the notation:

〈EV,W (s, t)ϕ, ψ〉 :=

∫

Ω

(F−⊤
s,t ∇ϕ) · (F−⊤

s,t ∇ψ) det(Fs,t) dx

−

∫

Ω

f ◦ Ts,tψ det(Fs,t) dx (37)

JV,W (s, t;ϕ) :=

∫

Ω

|ϕ − ud ◦ Ts,t |
2 det(Fs,t)dx (38)

and

GV,W (s, t, u, p) := 〈EV,W (s, t)u, p〉 + JV,W (s, t; u), (39)

1587

P. Gangl et al.

where Ts,t (x) = x + sV (x) + tW(x) and Fs,t := ∂Ts,t . We

observe that

J (Ts,t (Ω)) = GV,W (s, t, us,t , ps,t) (40)

with (us,t , ps,t) ∈ H 1
0 (Ω) × H 1

0 (Ω) being the solution to

∂pGV,W (s, t, us,t , 0)(ϕ) = 0 for all ϕ ∈ H 1
0 (Ω), (41)

∂uGV,W (s, t, us,t , ps,t)(ψ) = 0 for all ψ ∈ H 1
0 (Ω) (42)

for s, t ≥ 0. In case, t = 0 we write us := us,t |t=0 and

ps := ps,t |t=0 and similarly for t = s = 0 we write

u := us,t |s=t=0 and p := ps,t |s=t=0. Therefore, consecutive

differentiation of (40) first with respect to t at 0 and then

with respect to s at 0 yields:

D2J (Ω)(V)(W) =
d2

dsdt
GV,W (s, t, us,t , ps,t)|s=t=0

=
d

ds
∂tGV,W (s, 0, us, ps)|s=0

= ∂s∂tGV,W (0, 0, u, p) + ∂u∂tGV,W (0, 0, u, p)(∂su
0)

+∂p∂tGV,W (0, 0, u, p)(∂sp
0), (43)

where ∂su
0 ∈ H 1

0 (Ω) solves the material derivative
equation:

∂u∂pGV,W (0, 0, u, 0)(ψ)(∂su
0) = −∂s∂pGV,W (0, 0, u, 0)(ψ) (44)

for all ψ ∈ H 1
0 (Ω) or, equivalently

〈∂uEV,W (0, 0)(∂su
0), ψ〉 = −〈∂sEV,W (0, 0)u, ψ〉 (45)

for all ψ ∈ H 1
0 (Ω). Note that (45) is obtained by

differentiating (41) with respect to s and setting s = t = 0.

Similarly, the function ∂sp
0 ∈ H 1

0 (Ω) solves the material

derivative equation obtained by differentiating (42) with

respect to s for s = t = 0,

∂p∂uGV,W (0, 0, u, p)(ψ)(∂sp
0) = −∂2

uGV,W (0, 0, u, p)(ψ)(∂su
0)

− ∂s∂uGV,W (0, 0, u, p)(ψ) (46)

for all ψ ∈ H 1
0 (Ω). The introduction of the adjoint variable

p is analogous to the computation of the first-order shape

derivative. However, in contrast to the first-order derivative,

the evaluation of D2J (Ω)(V)(W) requires the computation

of the material derivatives ∂su
0 and ∂sp

0.
Formally, (44) and (46) can be written as an operator

equation with x = (0, 0, u, p):
(

∂2
uGV,W (x) ∂p∂uGV,W (x)

∂u∂pGV,W (x) 0

)(

∂su
0

∂sp
0

)

= −

(

∂s∂uGV,W (x)

∂s∂pGV,W (x)

)

.

(47)

So to evaluate the second derivative (43) in some direction

(V , W), we have to solve the system (47).

This is realised in NGSolve by setting up a combined

finite element space which we denote by X2. We define trial

and test functions as well as grid functions representing the

deformation vector fields V and W , which we initialise with

some functions.

We define a 2×2 block bilinear form as well as a 2×1

block linear form which will represent the left- and right-

hand sides of (47), respectively. The operator equation in

(47) can be conveniently defined by differentiating the

Lagrangian with respect to the corresponding variables.

We can solve this combined system for ∂su
0 and ∂sp

0 and

access and visualise the two components in the following

way:

In order to obtain the second-order shape derivative in

the direction given by (V , W), it remains to evaluate the

term (43). We define the three terms of (43) as bilinear

forms, assemble them, and perform vector-matrix-vector

multiplications:

1588

Fully and semi-automated shape differentiation in NGSolve

4.4 PDEs on surfaces

The automated shape differentiation is not restricted to

partial differential equations on domains Ω , but is readily

extended to surface PDEs. We consider a two-dimensional

closed surface M ⊂ R
3 and denote by n the normal field

along M . Let ud ∈ H 1(R3) be given and define:

J (M, u) =

∫

M

|u − ud |2 ds, (48)

where u ∈ H 1(M) solves the surface equation

∫

M

∇Mu·∇Mψ+uψ ds =

∫

M

f ψ ds for all ψ ∈H 1(M),

(49)

where ∇Mψ denotes the tangential gradient of ψ ; see
(Delfour and Zolésio 2011b, p. 493, Def.5.1). We assume

that the function f ∈ H 1(R3) is given. The Lagrangian is
given by:

L(M, ϕ, ψ) :=

∫

M

|ϕ − ud |2 ds +

∫

M

∇Mϕ · ∇Mψ + ϕψ ds

−

∫

M

f ψ ds.

As in the previous section, we fix an admissible shape M

and let Mt := (Id + tV)(M) be a small perturbation of M

by means of a vector field V ∈ C1(R3)3 for t > 0 small.

The parametrised Lagrangian is given by:

G(t, ϕ, ψ) :=L(Tt (M), ϕ◦T −1
t , ψ◦T −1

t), ϕ, ψ ∈H 1(M).

(50)

Define the density ω(Ft) := det(Ft)|F
−⊤
t n|. Changing

variables and using

(∇Mt ϕ) ◦ Tt = B(Ft)∇
M(ϕ ◦ Tt),

B(Ft) =

(

I −
F−⊤

t n

|F−⊤
t n|

⊗
F−⊤

t n

|F−⊤
t n|

)

F−⊤
t , (51)

yields

G(t, ϕ, ψ) =

∫

M

|ϕ − ut
d |2 ω(Ft) ds

+

∫

M

((B(Ft)∇ϕ) · (B(Ft)∇ψ) + ϕψ) ω(Ft) ds

−

∫

M

f tψ ω(Ft) ds, (52)

where ut
d = ud ◦ Tt and f t = f ◦ Tt .

Writing G̃(Tt , Ft) := G(t, u, p), we obtain in analogy to

the domain case:

DJ (Ω)(V) =

(

dG̃

dTt

V +
dG̃

dFt

∂V

)∣

∣

∣

∣

∣

t=0

. (53)

We can compute explicitly:

dG̃

dFt

|t=0V =

∫

M

divM (V)(u − ud)2

−(∂MV + ∂MV ⊤)∇Mu · ∇Mp

+divM (V)(∇Mu · ∇Mp + up)

−fpdivM (V) ds, (54)

dG̃

dTt

|t=0∂V =

∫

M

−2(u − ud)∇ud · V − ∇f · Vp ds, (55)

where ∂MV denotes the tangential Jacobian of V defined

by (∂MV)ij := (∇MVi)j for i, j = 1, . . . , d, and

divM(V) := ∂MV : I the tangential divergence, which is

defined as the trace of the tangential Jacobian; see (Delfour

and Zolésio 2011b, p. 495).

The implementation is analogous to the previous

sections. We will only illustrate first-order derivatives here.

We first define the geometry of the unit sphere, create a

surface mesh, and define a finite element space on the

surface mesh:

1589

P. Gangl et al.

Next, we define the transformed cost function and partial

differential equation needed for setting up the Lagrangian

(52). Here, we again make use of a symbolic object F
to which we assign the identity matrix. We define the

tangential determinant ω and the matrix B defined in (51)

as functions of the deformation gradient Ft .

Now, we can define the bilinear form and solve the

state equation. Here, the right-hand side of the equation

is included in the bilinear form and the boundary value

problem—although linear—is solved by Newton’s method

(which terminates after only one iteration) for convenience.

Using Newton’s method for solving the linear boundary

value problem allows us to define both the left- and right-

hand sides of the PDE using only one BilinearForm
a (which, strictly speaking, is not bilinear anymore). This

way, we can reuse Equation surf as defined in lines

160–161 to define the boundary value problem in line 168.

The adjoint equation is solved as usual:

The shape derivative is obtained as in the case of PDEs

posed on volumes by the evaluation of (53):

5 Fully automated shape differentiation

In the previous sections, we used the automatic differentia-

tion capabilities of NGSolve to alleviate the shape differ-

entiation procedure. However, so far, we still had to include

some knowledge about the problems at hand. So far, it was

necessary to define the objective function or Lagrangian G

in the correct way, accounting for the correct transformation

rules between perturbed and unperturbed domains. In this

section, we will show that also this step can be automated

since all necessary information are already included in the

functional setting. The fully automated shape differentiation

is incorporated by the command:

DiffShape(...).

In particular, in the fully automated setting, it is enough

to set up the cost function or Lagrangian for the unperturbed

setting. For a shape function of the type (6), we can define

the shape derivative of the cost function in the following

way:

Note that there is no term of the form Det(F) showing up

in line 186. Here, the transformation of the domain is taken

care of automatically. It can be checked that this really gives

the same result as dJOmega f defined in lines 48–49.

The above code gives the output:

|dJOmega_f - dJOmega_f_0| =

1.571008573810619e-17

which confirms our claim. The same holds true for second-

order shape derivatives. The lines 58–59 can be replaced by

a repeated call of DiffShape(...):

1590

Fully and semi-automated shape differentiation in NGSolve

Again, it can be verified that d2JOmega f 0 coincides

with the previously defined quantity d2JOmega f. Note

that slightly different results may occur due to different

integration rules used. This can be cured by enforcing

an integration rule of higher order for G f, i.e. by

replacing the symbol dx in the definition of G f with

dx(bonus intorder=2).

In the more general setting of PDE-constrained shape

optimisation, the procedure is very similar. Here, the

idea exploited in the implementation of the command

DiffShape(...) is to just differentiate the general

expression (25) with respect to the parameter t . The

transformations �t appearing in (25), which depend on the

functional setting of the PDE, are identified automatically

from the finite element space from which the corresponding

functions originate. The shape derivative of lines 82–83 can

be obtained by the following code.

Here, gfu and gfp represent the solutions to the state

and adjoint equations, respectively, and must have been

computed previously. The bilinear form shapeHess11
used in Section 4.3 (see lines 121–122) can be obtained

similarly:

The same holds true for boundary integrals

and surface PDEs

as well as their respective second-order derivatives.

Remark 5 We remark that the fully automated differentia-

tion using DiffShape(...) should be seen to comple-

ment the semi-automated shape differentiation techniques

introduced in Sections 3 and 4 rather than to replace

them. Using the semi-automated differentiation, the user

has the possibility to, on the one hand, keep control over

the involved terms, and on the other hand also to adjust

the shape differentiation to their custom problems which

may be non-standard. As an example where the semi-

automated differentiation may be beneficial compared with

the fully automated differentiation, we mention the case of

time-dependent PDE constraints considered in a space-time

setting when a shape deformation is only desired in the spa-

tial coordinates; see Section 7.8. Of course, when one is

interested in the shape derivative for a more standard prob-

lem, the fully automated way appears to be more convenient

and less error prone.

Remark 6 We have seen that the command

DiffShape(...) allows computing the shape deriva-

tive of unconstrained shape optimisation problems in a

fully automated way without specifying any transformation

rules; see line 188. For the practically more relevant case

of PDE-constrained shape optimisation problems, the state

and adjoint equations have to be solved beforehand also

in the fully automated context using DiffShape(...).

We remark that this can be easily achieved by defining a

custom function solvePDE() as it is done for the case

of a linear PDE in lines 227–234. Since the purpose of this

paper is to illustrate a convenient way of computing shape

derivatives and performing shape optimisation rather than

to provide a tool for black-box optimisation, this step is left

to the user and is not automated, leaving more freedom in

the choice of e.g. solvers for the arising linear systems.

6 Optimisation algorithms

In this section, we discuss how to use optimisation

algorithms in conjunction with the automated shape

differentiation explained in the previous sections. The

starting point of our discussion is a fixed initial shape Ω .

Then, we consider the mapping:

V �→ g(V) := J ((Id + V)(Ω)) (56)

defined on a suitable space of vector fields Θ ⊂ C0,1(D)d .

Since the mapping g is defined on an open subset Θ of the

Banach space C0,1(D)d , we can employ standard algorithms

to minimise g over Θ . The only constraint we must impose

1591

P. Gangl et al.

is that Id + V remains invertible, which can be difficult in

practice. In view of g(V + tW) = J ((Id+V + tW)(Ω)) =

J ((Id + tW ◦ (Id + V)−1)((Id + V)(Ω))) for V, W ∈ Θ

and t small, we find by differentiating with respect to t at

t = 0, that:

∂g(V)(W) = DJ ((Id + V)(Ω))(W ◦ (Id + V)−1) (57)

for V, W ∈ Θ and Id + V invertible.

6.1 Gradient computation

The gradient of ∂g(V) in a Hilbert space H ⊂ C0,1(D)d is

defined by:

∂g(V)(W) = (∇H g(V), W)H for all W ∈ H . (58)

Typical choices for H are:

H = H 1
0 (D)d , (W, V)H :=

∫

D

∂W : ∂V + V · W dx,(59)

H = H 1
0 (D)d , (W, V)H :=

∫

D

ε(W) : ε(V) + V · W dx,

(60)

H = H 1
0 (D)d , (W, V)H :=

∫

D

ε(W) : ε(V) + V · W

+γCRBV · BW dx, (61)

where ε(V) := 1
2 (∂V + ∂V ⊤), γCR > 0 and

B :=

(

−∂x ∂y

∂y ∂x

)

. (62)

The last choice, which is restricted to the spatial dimension

d = 2, corresponds to a penalised Cauchy-Riemann

gradient and results in a gradient which is approximately

conformal and hence preserves good mesh quality. We refer

to Iglesias et al. (2018) for a detailed description. We also

refer to de Gournay (2006) and Burger (2002) and Allaire

et al. (2021) for the use of different inner products.

6.2 Basic algorithm

Let Ω be an initial shape and let H ⊂ C0,1(D)d be a Hilbert

space. Then, a basic shape optimisation algorithm reads as

follows.

We present and explain the numerical realisation of

Algorithm 1 in NGSolve for the case of a PDE-constrained

shape optimisation problem in two space dimensions.

The simpler case of an unconstrained shape optimisation

problem or the case of three space dimensions can be

realised by small modifications of the presented code.

First of all, we mention that we realise shape mod-

ifications in NGSolve by means of deformation vec-

tor fields without actually modifying the coordinates of

the underlying finite element grid. Recall the vector-

valued finite element space VEC over a given mesh as

introduced in code line 44. We define a vector-valued

GridFunction with the name gfset which will repre-

sent the current shape. We initialise it with some vector-

valued coefficient function V (x1, x2) = (x2
1 x2, x

2
2 x1)

⊤ and

obtain the deformed shape (Id + V)(Ω) by the command

mesh.SetDeformation(gfset):

Any operation involving the mesh such as integration or

assembling of matrices is now carried out for the deformed

configuration. To be more precise, a change of variables

is performed internally by accounting for the correspond-

ing Jacobi determinant and transforming the derivatives

accordingly with the Jacobian of the deformation. There-

1592

Fully and semi-automated shape differentiation in NGSolve

fore, all resulting coefficient vectors (which are stored in

GridFunctions) correspond to the shape functions in

reference configuration. The deformation can be unset by

the command mesh.UnsetDeformation(). Integrat-

ing the constant function over the mesh in the perturbed and

unperturbed settings,

gives the output

1.7924529046862627

0.7854072970684544

respectively.

In the course of the optimisation algorithm, the state

equation as well as the adjoint equation has to be solved

for every new shape. We define the following function,

which computes the state and adjoint state for a linear PDE

constraint:

The shape derivative dJOmega for some problem at

hand can be defined as illustrated in Sections 4.1 and

Section 5. Finally, we need to define the shape gradient,

which is the solution to a boundary value problem of the

form (58). We choose the bilinear form defined in (61) with

γCR = 10:

Now, we can run Algorithm 1 for problem (28):

Mesh movement and mesh optimisation As an

alternative to realizing the deformations via

mesh.SetDeformation(...), where the underlying

mesh is not modified, one could also just move every mesh

node in the direction of the given descent vector field by

changing its coordinates. This can be realised by invoking

the following method:

Here, the displacement vector field displ, which is of

type GridFunction, is evaluated for each mesh node

1593

P. Gangl et al.

and, subsequently, the mesh nodes are updated. At the end

of the procedure, the mesh structure needs to be updated; see

line 290. Note that GridFunctions can only be evaluated

at points inside the mesh (but not necessarily vertices of the

mesh). Therefore, in order to evaluate displ at the point

given by the coordinates p[0], p[1], we need to pass

mesh(p[0],p[1]) in line 287.

One advantage of this strategy is that an ill-shaped mesh

can easily be repaired by a call of the method mesh.
ngmesh.OptimizeMesh2d()followed by mesh.ng-
mesh.Update(). Figure 3 shows an ill-shaped mesh

and the result of a call of mesh.ngmesh.Optim-
izeMesh2d().

6.3 Newton’s method for unconstrained problems

The particular choice H = H 1
0 (D)d and

(V , W)H := D2J (Ω)(V)(W), (63)

for a given shape function J leads to Newton’s method. We

refer to Novruzi and Roche (2000), Allaire et al. (2016),

Paganini and Sturm (2019), and Eppler et al. (2007) where

shape Newton methods were used previously and to (Hinze

et al. 2009, Chapter 2) and (Ito and Kunisch 2008, Chapter

5) for Newton’s method in an optimal control setting. This

bilinear form is only positive semi-definite on H 1
0 (D)d since

D2J (Ω)(V)(W) = 0 for V, W with V = W = 0 on

∂Ω . Moreover, from the structure theorem for second shape

derivatives proved in Novruzi and Pierre (2002), we know

that at a stationary point Ω , that is, DJ (Ω)(V) = 0 for all

V ∈ C0,1(D)d , we have

D2J (Ω)(V)(W) = ℓΩ(V · n, W · n), (64)

where ℓΩ : C0(∂Ω) × C0(∂Ω) → R is a bilinear function.

Hence, we also have D2J (Ω)(V)(W) = 0 for all V, W

such that V · n = W · n = 0. As a result, the gradient

(∇J (Ω), V)H = DJ (Ω)(V) for all V ∈ H 1
0 (D)d (65)

according to (63) is not uniquely determined. To get around

this difficulty, the shape Hessian is often regularised by an

H 1 term, i.e. (63) is replaced by

D2J (Ω)(V)(W) + δ

∫

Ω

∂V : ∂W + V · W dx, (66)

see, e.g. Schmidt (2018), which, however, impairs the

convergence speed of Newton’s method.

Alternative regularisation strategy Here, we propose the

following strategy: We regularise the shape Hessian only on

the boundary ∂Ω and only in tangential direction, i.e. we

choose

(V , W)H := D2J (Ω)(V)(W) + δ

∫

∂Ω

(V · τ)(W · τ) (67)

with a regularisation parameter δ. To exclude the part of the

kernel corresponding to interior deformations, we solve the

(regularised) Newton (65) only on the boundary ∂Ω . This

is realised by setting Dirichlet boundary conditions for all

degrees of freedom except those on the boundary.

As a result, we get a shape gradient ˜∇J (Ω) which

is nonzero only on the boundary. We extend this vector

field to the interior by solving an additional boundary

value problem (of linearised elasticity type), where we use

the deformation given by ˜∇J (Ω) as Dirichlet boundary

conditions.

Fig. 3 Before and after mesh
optimisation by mesh.
ngmesh.OptimizeMesh2d()

1594

Fully and semi-automated shape differentiation in NGSolve

The Newton algorithm reads as follows.

6.4 Newton’s method for PDE-constrained problems

We consider the PDE-constrained model problem of

Section 4.1 which is subject to the Poisson equation. The

unregularised Newton system reads:

D2J (Ω)(V)(W) = −DJ (Ω)(V) for all V ∈ H 1
0 (Ω).

(68)

In Section 4.3, we discussed how the second-order shape

derivative can be evaluated along a fixed given direction. In

this section, we want to assemble the whole shape Hessian

and eventually solve a regularised version of (68). Recalling

that DJ (Ω)(V) = ∂sGV,0(x) with x = (0, 0, u, p), we see

that (47) and (43) lead to:

H

⎛

⎝

Ṽ

∂su
0

∂sp
0

⎞

⎠ = −

⎛

⎝

∂tGV,W (x)

0

0

⎞

⎠ . (69)

with

H(x) =

⎛

⎝

∂s∂tGV,W (x) ∂u∂tGV,W (x) ∂p∂tGV,W (x)

∂s∂uGV,W (x) ∂2
uGV,W (x) ∂p∂uGV,W (x)

∂s∂pGV,W (x) ∂u∂pGV,W (x) 0

⎞

⎠ .

(70)

The component Ṽ then represents the direction which we

use for the shape Newton optimisation step. The matrix

in (69) can be realised in NGSolve by using a combined

finite element space X3 consisting of three components as

follows:

The right-hand side of (69) can be defined as follows:

Recall that the system (65) has a nontrivial kernel as

discussed in Section 6.3. This problem can be circumvented

by proceeding like in the unconstrained case. We add a

regularisation only on the boundary,

and exclude the interior degrees of freedom in the first

row and column of the 3×3 block system. This can be

realised by setting Dirichlet boundary conditions for the

interior degrees of freedom, i.e. by dealing with the free

degrees of freedom,

1595

P. Gangl et al.

and solving the regularised system using these free dofs:

The Newton direction is then given as the first of the three

components of the obtained solution.

7 Numerical experiments

In this section, we first verify the computed shape deriva-

tives by performing a Taylor test, and then apply the auto-

mated shape differentiation and the numerical algorithms

introduced in the preceding sections in numerical examples.

7.1 Code verification

We verify the expressions that we obtained in a semi-

automatic or fully automatic way for the first- and second-

order shape derivatives by looking at the Taylor expansions

of the perturbed shape functionals. We illustrate our findings

in two examples in R
2. On the one hand, we consider

a shape function as introduced in (6) with an additional

boundary integral as in (13), henceforth denoted by J1;

on the other hand, we consider the PDE-constrained shape

optimisation problem defined by (28), the reduced form

of which will be denoted by J2(Ω). More precisely, we

consider:

J1(Ω) =

∫

Ω

f (x) dx +

∫

∂Ω

f (x) ds, (71)

J2(Ω) =

∫

Ω

|uΩ − ud |2 dx where uΩ solves (28b). (72)

In the case of J1, we used the function:

f (x1, x2) =

(

0.5 +

√

x2
1 + x2

2

)2 (

0.5 −

√

x2
1 + x2

2

)2

and for J2, we used ud(x1, x2) = x1(1 − x1)x2(1 − x2) and

f (x1, x2) = 2x2(1 − x2) + 2x1(1 − x1) for the function f

in the PDE constraint (28b).

For the test of the first-order shape derivatives

DJi(Ω)(V), we choose a fixed shape Ω and a vector field

V ∈ C0,1(R2)2 and observe the quantity:

δ1(Ji, t) := |Ji((Id + tV)(Ω))−Ji(Ω)−t DJi(Ω)(V)| ,

(73)

for t ց 0. Likewise, for the second-order shape derivative,

we consider the remainder:

δ2(Ji, t) :=

∣

∣

∣

∣

Ji((Id + tV)(Ω)) −Ji(Ω) − t DJi(Ω)(V)

− 1
2 t2D2Ji(Ω)(V)(V)

∣

∣

∣

as t ց 0. By the definition of first- and second-order shape

derivatives, it must hold that

δ1(Ji, t) = O(t2) and δ2(Ji, t) = O(t3) as t ց 0.

(74)

This behavior can be observed in Fig. 4a for J1

and in Fig. 4b for J2, where we used V (x1, x2) =

(x2
1x2e

x2 , x2
2x1e

x1) in both cases.

The experiments for shape function J1 were conducted

on a mesh consisting of 13,662 vertices, 26,946 elements,

and with polynomial order 2 (resulting in 54,269 degrees of

freedom), and the experiment for J2 with 95,556 vertices

and 190,062 elements and polynomial degree 1 (95,556

degrees of freedom). We conducted these experiments for a

number of different problems with different vector fields V ,

in particular with different PDE constraints and boundary

conditions, and obtained similar results in all instances

provided a sufficiently fine mesh was used.

7.2 A first shape optimisation problem

In this section, we revisit problem (6) introduced in

Section 3, i.e. the problem of finding a shape Ω such that

the cost function J (Ω) =
∫

Ω
f (x) dx is minimised.

7.2.1 First-order methods

We illustrate our first-order methods in a problem which

was also considered in Iglesias et al. (2018) and reproduce

the results obtained there. We choose the function:

f (x1, x2) =

(

√

(x1 − a)2 + bx2
2 − 1

) (

√

(x1 + a)2 + bx2
2 − 1

)

·

(

√

bx2
1 + (x2−a)2−1

) (

√

bx2
1 + (x2 + a)2−1

)

−ǫ (75)

with a = 4
5 , b = 2 and ǫ = 0.001. Recall that the

optimal shape is given by {(x1, x2) ∈ R
2 : f (x1, x2) < 0}

which is depicted in Fig. 5 (right). We start our optimisation

1596

Fully and semi-automated shape differentiation in NGSolve

10
-3

10
-2

10
-1

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-3

10
-2

10
-1

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(b)(a)

Fig. 4 Taylor test for functions J1 and J2

algorithm with the unit disk, Ω0 = B1(0) as an initial

design. Note that the optimal design cannot be reached by

means of shape optimisation using boundary perturbations.

However, we expect the outer curve of the optimal shape to

be reached very closely.

We apply Algorithm 1 with the shape gradient ∇J

associated to the H 1 inner product (59), to the bilinear form

of linearised elasticity (60) and including the additional

Cauchy-Riemann term (61). We chose the algorithmic

parameters γ = 1e − 4, ǫ = 1e − 7, a mesh consisting of

2522 vertices and 4886 elements and a globally continuous

vector-valued finite element space VEC of order 3. The

results can be seen in Figs. 6, 7 and 8, respectively.

7.2.2 Second-order method

Since Newton’s method converges quadratically only in a

neighborhood of the optimal solution, we choose a simpler

optimal design here. We choose:

f (x1, x2) =
x2

a2
+

y2

b2
− 1 (76)

which yields an ellipse with the lengths of the two semi-

axes a and b. We choose a = 1.3 and b = 1/a and again

start the optimisation with the unit disk as an initial shape.

Figure 9 shows the initial and optimised design after only

six iterations of Algorithm 2 with (·, ·)H chosen as in (67)

with δ = 100. A comparison of the convergence histories

between the choice (67) with δ = 100 and (66) with δ =

0.5 is shown in the right picture of Fig. 9. In both cases,

we tested a range of different values for δ and compared

the convergence histories for the values which yielded the

fastest convergence. The experiments were conducted on

a finite element mesh consisting of 2522 nodes and 4886

Fig. 5 Initial domain Ω0 and
optimal domain Ω∗ for problem
(6) with f chosen according to
(75)

1597

P. Gangl et al.

Fig. 6 Results of problem (6)
with f as in (75) and the shape
gradient associated to the H 1

inner product (59)

Fig. 7 Results of problem (6)
with f as in (75) and the shape
gradient associated to the
elasticity bilinear form (60)

Fig. 8 Results of problem (6)
with f as in (75) and the shape
gradient associated to the
elasticity bilinear form with
Cauchy-Riemann term (61)

Fig. 9 Numerical results for problem (67) with f as in (76) using
second-order method. Left: Initial design. Centre: Optimised design
after six iterations using (65)/(67). Right: Objective value J and

norm of shape gradient ‖∇J (Ω)‖ in the course of second-order
optimisation using (66) with δ = 0.5 and (67) with δ = 100

1598

Fully and semi-automated shape differentiation in NGSolve

triangular elements with a finite element space VEC of order

3, with the algorithmic parameter ǫ = 10−7.

7.3 Shape optimisation subject to the Poisson
equation

In this section, we revisit the model problem introduced in

Section 4.1 with f (x1, x2) = 2x2(1 − x2) + 2x1(1 − x1)

and ud(x1, x2) = x1(1 − x1)x2(1 − x2). Note that the data

is chosen in such a way that, for Ω∗ = (0, 1)2 it holds

J (Ω∗) = 0 and thus Ω∗ is a global minimiser of J .

We show results obtained by first- and second-order shape

optimisation methods exploiting automated differentiation.

We ran the optimisation algorithm in three versions. On

the one hand, we applied a first-order method with constant

step size α = 1. On the other hand, we applied two

second-order methods with the two different regularisation

strategies for the shape Hessian in (65) introduced in

(66) and (67). We chose the regularisation parameters δ

empirically such that the method performs as well as

possible. In the case of (66), we chose δ = 0.001 and in

the case of (67) δ = 1. The experiments were conducted

on a finite element mesh consisting of 4886 elements with

2522 vertices and polynomial degree 1. In Fig. 10, we can

observe the decrease of the objective function as well as of

the norm of the shape gradient over 200 iterations for these

three algorithmic settings.

Figure 11 shows the initial design as well as the

design after 200 iterations of the second-order method with

regularisation strategy (67). Note that the improved design

is very close to Ω∗ = (0, 1)2, which is a global solution.

The initial design was chosen as the disk of radius 1
2 centred

at the point
(

1
2 , 1

2

)⊤
. The objective value was reduced from

5.297 · 10−5 to 1.0317 · 10−9.

7.4 Nonlinear elasticity

Here, we illustrate the applicability of the automated shape

differentiation and optimisation in the more realistic and

more complicated setting of nonlinear elasticity in two

space dimensions using a Saint Venant–Kirchhoff material

with Young’s modulus E = 1000 and Poisson ratio ν = 0.3.

We consider a two-dimensional cantilever which is clamped

on the upper and lower left parts of the boundary, Ŵ1
l =

{0} × (0.88, 1) and Ŵ2
l = {0} × (0, 0.12), respectively,

and is subject to a surface force gN = (0, −100)⊤ on

Ŵr = {1} × (0.45, 0.55). The initial geometry with 3 holes

is depicted in Fig. 12a. Let Ŵl := Ŵ1
l ∪ Ŵ2

l and H 1
Ŵl

(Ω)2

the subspace of H 1(Ω)2 with vanishing trace on Ŵl . The

displacement u ∈ H 1
Ŵl

(Ω)2 under the surface force gN is

given as the solution to the boundary value problem:

∫

Ω

S(u) : ∇v dx =

∫

Ŵr

gN · v ds (77)

for all v ∈ H 1
Ŵl

(Ω)2. Here, S(u) denotes the Saint Venant–

Kirchhoff stress tensor:

S(u)=(I2+∇u)

[

λTr

(

1

2
(C(u)−I2)

)

I2+μ(C(u)−I2)

]

,

(78)

where C(u) = (I2 + ∇u)⊤(I2 + ∇u) and I2 is the identity

matrix (see also (Allaire et al. 2004, Sec. 8)), and λ and μ

0 50 100 150 200

Iterations

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

J

0 50 100 150 200

Iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(b)(a)

Fig. 10 Convergence behaviour for shape optimisation problem (28) with proposed regularisation strategies (67) and (66) as well as first-order
method with constant step size α = 1. a Behaviour of objective function J . b Behaviour of norm of shape gradient ‖∇J (Ω)‖

1599

P. Gangl et al.

Fig. 11 Shape optimisation for problem (28). Left: Initial design.
Right: Improved design after 200 iterations of second-order algo-
rithm with regularisation as proposed in (67). Objective value was

reduced from 5.297 · 10−5 to 1.0317 · 10−9. Colour shows solution of
constraining PDE (28b)

denote the Lamé constants:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (79)

We minimise the functional

J (Ω, u) =

∫

Ω

S(u) : ∇u dx + α

∫

Ω

1 dx (80)

with α = 2.5 subject to (77) which amounts to maximising

the structure’s stiffness while bounding the allowed amount

of material used.

We remark that the well-posedness of (77) is not

clear (see also the discussion in (Allaire et al. 2004,

Sec. 8)). Nevertheless, application of the automated

shape differentiation and optimisation yields a significant

improvement of the initial design. The highly nonlinear

PDE constraint (77) is solved by Newton’s method. In order

to have good starting values, a load stepping strategy is

employed, i.e. the load on the right-hand side is gradually

increased, the PDE is solved and the solution is used as an

initial guess for the next load step. This is repeated until

the full load is applied. With these ingredients at hand,

Algorithm 1 (i.e. code lines 244–284) can be run. We chose

the algorithmic parameters alpha = 0.1 (as an initial

value), alpha incr factor = 1 (i.e. no increase),

gamma = 1e-4 and epsilon = 1e-7. Moreover, we

used (59) with an additional Cauchy-Riemann term as in

(61) with weight γCR = 10. The objective value was

reduced from 3.125 to 2.635 (volume term from 1.290 to

1.096) in 15 iterations of Algorithm 1. The results were

obtained on a mesh consisting of 10,614 elements and 5540

vertices using piecewise linear, globally continuous finite

elements.

7.5 Helmholtz equation

In this section, we consider the problem of finding the

optimal shape of a scattering object. More precisely, we

consider the minimisation of the functional:
∫

Ŵr

uū ds (81)

subject to the Helmholtz equation with impedance boundary

conditions on the outer boundary: Find u ∈ H 1(Ω, C) such

that
∫

Ω

[∇u · ∇w̄ − ω2uw̄
]

dx − i ω

∫

Ŵ

uw̄ ds =

∫

Ω

f w̄ (82)

for all w ∈ H 1(Ω, C). Here, w̄ denotes the complex

conjugate of a complex-valued function w, ω denotes the

Fig. 12 Initial and optimised
geometry of cantilever under
vertical force on right-hand side
using St. Venant–Kirchhoff
model in nonlinear elasticity. a

Initial geometry. b Optimised
geometry (reference
configuration). c Optimised
geometry (deformed
configuration)

1600

Fully and semi-automated shape differentiation in NGSolve

Fig. 13 a Geometry with the right-hand side f . b Initial shape of scatterer (zoom of geometry in a). c Optimised shape of scatterer (zoom)

wave number, i denotes the complex unit and the function

f on the right-hand side is chosen as

f (x1, x2) = 103 · e−9((x1−0.2)2+(x2−0.5)2) (83)

(see Fig. 13a). Furthermore,

Ω = B((0.5, 0.5)⊤, 1) \ B((0.75, 0.5)⊤, 0.15)

denotes the domain of interest, Ŵ = {(x1, x2) : x2
1 +x2

2 = 1}

the outer boundary and Ŵr = {(x1, x2) : x2
1 + x2

2 = 1, x1 ≥

0} the right half of the outer boundary. Here, only the inner

boundary ∂Ω \Ŵ is subject to the shape optimisation. Thus,

the aim of this model problem is to find a shape of the

scattering object such that the waves are reflected away from

Ŵr .

Figure 13b and c show the initial and final shape of the

scattering object, respectively. Figure 14 shows the norm

of the state for the initial configuration (circular shape of

scattering object) and for the optimised configuration. The

objective value was reduced from 3.44 · 10−3 to 3.31 · 10−3.

The forward simulations were performed using piecewise

linear finite elements on a triangular grid consisting of

34,803 degrees of freedom. The optimisation stopped after

12 iterations.

7.6 Application to an electric machine

In this section, we consider the setting of three-dimensional

nonlinear magnetostatics in H(curl,D) as it appears in

the simulation of electric machines. Let D ⊂ R
3 denote

the computational domain, which consists of ferromagnetic

material, air regions and permanent magnets (see Fig. 15).

Our aim is to minimise the functional

∫

Ωg

|curlu · n − Bn
d |2 dx, (84)

where Ωg denotes the air gap region of the machine, n

denotes an extension of the normal vector to the interior of

Ωg , Bn
d : Ωg → R

3 is a given smooth function and u ∈

Fig. 14 a Absolute value of state u for initial configuration. b Absolute value of state u for optimised configuration

1601

P. Gangl et al.

Fig. 15 Geometry of electric motor with subdomains in 2D cross
section. The ferromagnetic subdomains Ω are depicted in red, Ωm

corresponds to the permanent magnets. The rest of the computational
domain represents air. Furthermore, Ωg represents the air gap region
that is relevant for the cost function (84)

H0(curl,D) is the solution to the boundary value problem

∫

D

νΩ(|curlu|)curlu·curlw+δu·w dx =

∫

Ωm

M ·curlw dx

(85)

for all w ∈ H0(curl,D). Here, Ω ⊂ D denotes the union of

the ferromagnetic parts of the electric machine, Ωm denotes

the permanent magnets subdomain and

νΩ = χΩ(x)ν̂(|curlu|) + χD\Ω(x)ν0 (86)

denotes the magnetic reluctivity, which is a nonlinear

function ν̂ inside the ferromagnetic regions and equal to

a constant ν0 elsewhere. Furthermore, δ > 0 is a small

regularisation parameter and M : D → R
3 denotes the

magnetisation in the permanent magnets. The nonlinear

function ν̂ satisfies a Lipschitz condition and a strong

monotonicity condition such that problem (85) is well-

posed. The goal of minimising the cost function (84) is to

obtain a design which exhibits a smooth rotation pattern.

Note that in this particular example we do not consider

rotation of the machine, but rather a fixed rotor position, and

there are no electric currents present. We refer the reader

to (Gangl and Sturm 2019, Sec. 6) for a more detailed

description of the problem and to (Gangl et al. 2015) for a

2D version of the same problem.

As mentioned in Section 4, the transformation �t used

in (25) depends on the differential operator. For the curl-

operator, we have

�t (u) = ∂T −⊤
t (u ◦ T −1

t) and

(curl(�t (u))) ◦ Tt = 1
det(∂Tt)

∂Ttcurl(u),

see e.g. (Monk 2003, Section 3.9). Thus, the variational (85)

can be defined as follows.

Here, the computational domain consists of a subdo-

main representing the ferromagnetic part of the machine

(‘‘iron’’) and a subdomain comprising the permanent

magnets (‘‘magnets’’); the union of all air subdomains,

including the air gap between rotating and fixed part of the

machine, is given by ‘‘air|airgap’’ (see Fig. 15).

Moreover, nuIron denotes the nonlinear reluctivity

function ν̂ and magn contains the magnetisation direction

of the permanent magnets. Likewise, the objective function

can be defined as follows:

where n2D and Bd represent the extension of the normal

vector to the interior of the air gap and the desired curve,

respectively. For the definition of all quantities, we refer

the reader to Online Resource 1. The shape differentiation

as well as the optimisation loop now works in the same

way as in the previous examples. Figure 16 shows the

initial design of the motor as well as the optimised design

obtained after 11 iterations of Algorithm 1 with γ = 0. The

experiment was conducted using a tetrahedral finite element

mesh consisting of 13,440 vertices, 57,806 elements and

Nédélec elements of order 2 (resulting in a total of 323,808

degrees of freedom). The objective value was reduced from

2.5944 · 10−8 to 4.565 · 10−10 in the course of the first

order optimisation algorithm after 11 iterations. It can be

seen from Fig. 17 that the difference between the quantity

curl(u) · n and the desired curve Bn
d inside the air gap

decreases significantly.

1602

Fully and semi-automated shape differentiation in NGSolve

Fig. 16 a Initial design of electric machine. b Optimised design

7.7 Surface PDEs

Next, we also show the application of a shape optimisation

algorithm to a problem constrained by a surface PDE. We

solve problem (48–49) with ud = 0, f (x1, x2, x3) = x1x2x3

and initial shape M = S2 the unit sphere in R
3. We

applied a first-order algorithm with a line search. Figure 18

shows the initial geometry as well as the decrease of the

objective function and of the norm of the shape gradient.

The objective value was reduced from 7.08 · 10−4 to 9.88 ·

10−9. Figure 19 shows the final design which was obtained

after 575 iterations from two different perspectives. The

experiment was conducted using a surface mesh with 332

vertices and 660 faces and polynomial degree 3 (resulting in

2972 degrees of freedom).

7.8 Time-dependent PDE using space-timemethod

In this section, we illustrate a non-standard situation

where the fully automated shape differentiation using the

command .DiffShape() fails, but the semi-automated

way can be used to compute the shape derivative.

The situation is that of a parabolic PDE constraint in a

space-time setting where the time variable is considered as

just another space variable. Let T > 0 and Ω ⊂ R
d be

given and define the space-time cylinder Q := Ω×(0, T) ⊂

R
d+1. For given smooth functions ud and f defined on Q,

we consider the problem:

min
Ω

∫

Q
|u − ud |2 d(x, τ) (87)

s.t.

∫

Q

∂τuv +∇xu · ∇xv d(x, τ) =
∫

Q
f v d(x, τ) (88)

for all v in the Bochner space L2(0, T ; H 1
0 (Ω)) where

the state u is to be sought in the Bochner space

L2(0, T ; H 1
0 (Ω)) ∩ H 1(0, T ; H−1(Ω)) with the initial

condition u(x, 0) = 0. Here, ∇x = (∂x1 , . . . , ∂xd
)⊤ denotes

the spatial gradient and ∂τ the time derivative. Note that

we denote the time variable by τ in order not to interfere

with the shape parameter t . We refer the interested reader to

(Steinbach 2015) for details on this space-time formulation

of the PDE constraint. As it is outlined there, the PDE can

be solved numerically by choosing the same ansatz and test

space consisting of piecewise linear and globally continuous

finite element functions on Q.

For simplicity, we restrict ourselves to the case where

d = 1, i.e. to the case where the spatial domain Ω is an

Fig. 17 Improvement of curlu ·n as a function of z and the angle ϕ for
a fixed radius r inside Ωg compared to desired curve Bn

d . a curlu · n

for initial configuration. b curlu · n for optimised configuration after

10 iterations. c Desired curve Bn
d in polar coordinates as function of z

and the angle ϕ for a fixed radius r

1603

P. Gangl et al.

0 100 200 300 400 500 600

Iterations

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

J

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

History of surface Laplacian

(b)(a)

Fig. 18 a Initial geometry for shape optimisation with respect to surface PDE (48–49). b History of objective value and norm of shape gradient
using a first-order algorithm with line search

interval. We are interested in the shape derivative of problem

(87) with respect to spatial perturbations, i.e., with respect

to transformations of the form:

Tt (x, τ) =

(

x + tV (x, τ)

τ

)

where V ∈ C0,1(Q, R
d) and t ≥ 0. We recall the notation

Ft (x, τ) = ∂Tt (x, τ). By this choice of transformation

Tt we exclude an unwanted deformation of the space-time

cylinder into the time direction as the time horizon T > 0 is

assumed to be fixed.

Following the lines of the previous examples, we can

define the cost function, the PDE and the Lagrangian:

Here, gfu denotes the solution to the state (88) and

gfp the solution to the adjoint equation, which is posed

Fig. 19 a Final design after 575 iterations. b Different view of a

1604

Fully and semi-automated shape differentiation in NGSolve

Fig. 20 Space-time cylinder in initial configuration. a Solution to state (88). b Time-dependent descent vector field W̃ obtained by solving (91)

backward in time and reads in its strong form:

−∂τp − �p = −2(u − ud)(x, τ) ∈ Q,

p(x, τ) = 0(x, τ) ∈ ∂Ω × (0, T),

p(x, T) = 0x ∈ Ω .

We can compute the shape derivative similarly to the

previous examples by means of formula (10), i.e.,

d

dt
J (Ωt)

∣

∣

∣

∣

t=0

=
(

dG
dTt

dTt

dt
+ dG

dFt

dFt

dt

)∣

∣

∣

t=0
. (89)

However, it must be noted that in this special situation we

have

dTt

dt
=

(

V

0

)

and
dFt

dt
=

(

∂xV ∂τV

0 0

)

. (90)

The shape derivative can now be obtained as follows: Given

a mesh of the space-time cylinder Q, we define an R
d -

valued H 1-space to represent the vector field V (here we

assumed d = 1, thus we are facing a scalar-valued space).

The shape derivative is a linear functional on this space and

is obtained by plugging in (90) into (89):

Remark 7 The fully automated shape differentiation com-

mand .DiffShape(V) cannot be used here because the

vector field V has fewer components than the dimen-

sion of the mesh. On the other hand, if V was chosen

as a vector field with d + 1 components, the command

Fig. 21 Space-time cylinder in initial and final configurations. a Time-independent descent vector field W obtained by averaging W̃ . b Solution
to state (88) on final design

1605

P. Gangl et al.

.DiffShape(V) would evaluate formula (89), but would

assume dTt

dt
= V = (Vx, Vτ)

⊤ and

dFt

dt
= ∂V =

(

∂xVx ∂τVx

∂xVτ ∂τVτ

)

and could not take into account the special situation at hand

as shown in (90). This example is meant to illustrate the

greater flexibility of the semi-automated compared with the

fully automated shape differentiation.

Code lines 388–391 show the computation of the shape

derivative in the direction of an R
d -valued function V =

V (x, τ) (recall d = 1 here). However, using τ -dependent

vector fields would result in time-dependent optimal shapes,

which is often not desired. Rather, one is interested in vector

fields of the form V = V (x) �= V (x, τ) which still yield

a descent, i.e. DJ (Ω)(V) < 0. This can be achieved as

follows:

1. Compute a time-dependent shape gradient W̃ by

solving

∫

Q

∂W̃ : ∂Ṽ + W̃ · Ṽ = DJ (Ω)(Ṽ) for all Ṽ , (91)

2. Set W(x, τ) = 1
T

∫ T

0 W̃ (x, s)ds.

Note that W(x, τ) is constant in τ . Then we see by plugging

in Ṽ = −W in (91) that

DJ (Ω)(−W) < 0,

thus −W is a descent direction.

We used this strategy to solve problem (87) for d = 1

with the data ud(x, τ) = x(1−x)τ , f (x, τ) = x(1−x)+2τ

numerically starting out from the initial domain Ωinit =

(0.2, 0.8) and the fixed time interval (0, T) = (0, 1). Note

that the data is chosen such that the domain Ω⋆ = (0, 1) is

a global solution to problem (87).

Figure 20 shows the initial design together with the

solution to the state equation and the time-dependent

descent vector field W̃ obtained as solution of (91).

Figure 21a shows the averaged vector field W which is

independent of τ and yields a uniform deformation of the

space-time cylinder. The final design after 293 iterations can

be seen in Fig. 21b. The cost function was reduced from

4.65 · 10−3 to 9.95 · 10−9.

For more details on the implementation of this example,

we refer to Online Resource 1 and for more details on shape

optimisation in a space-time setting, we refer the interested

reader to Köthe (2020).

8 Conclusion

We showed how to obtain first- and second-order shape

derivatives for unconstrained and PDE-constrained shape

optimisation problems in a semi-automatic and fully

automatic way in the finite element software package

NGSolve. We verified the proposed method numerically

by Taylor tests and by showing its successful application to

several shape optimisation problems. We believe that this

intuitive approach can help research scientists working in

the field of shape optimisation to further improve numerical

methods on the one hand, and product engineers working

with NGSolve to design devices in an optimal fashion on

the other hand.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00158-020-02742-w.

Acknowledgements Open access funding provided by Graz Univer-
sity of Technology. We would like to thank Christian Köthe for his
contribution to Section 7.8.

Funding Michael Neunteufel has been funded by the Austrian Science
Fund (FWF) project W1245.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results The python scripts which were used for the
results presented in this paper are available in Online Resource 1. All
computations were performed using NGSolve version V6.2.2004.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

Allaire G (2007) Conception optimale des structures. Springer, New
York

Allaire G, Cancès E, Vié JL (2016) Second-order shape derivatives
along normal trajectories, governed by Hamilton-Jacobi equations.
Struct Multidiscip Optim 54(5):1245–1266. https://doi.org/10.10
07/s00158-016-1514-2

Allaire G, Dapogny C, Jouve F (2021) Shape and topology optimiza-
tion. to appear in Handbook of Numerical Analysis, 22. https://www.
elsevier.com/books/geometric-partial-differential-equations-part-
2/nochetto/978-0-444-64305-6

1606

https://doi.org/10.1007/s00158-020-02742-w
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/s00158-016-1514-2
https://doi.org/10.1007/s00158-016-1514-2
https://www.elsevier.com/books/geometric-partial-differential-equations-part-2/nochetto/978-0-444-64305-6
https://www.elsevier.com/books/geometric-partial-differential-equations-part-2/nochetto/978-0-444-64305-6
https://www.elsevier.com/books/geometric-partial-differential-equations-part-2/nochetto/978-0-444-64305-6

Fully and semi-automated shape differentiation in NGSolve

Allaire G, Jouve FJ, Toader A-M (2004) Structural optimization
using sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393. https://doi.org/10.1016/j.jcp.2003.09.032. http://
www.sciencedirect.com/science/article/pii/S002199910300487X

Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014)
Unified form language. ACM Transactions on Mathematical
Software 40(2):1–37. https://doi.org/10.1145/2566630

Berggren M (2010) A unified discrete-continuous sensitivity analysis
method for shape optimization. In: Applied and numerical partial
differential equations, 15 of Comput. Methods Appl. Sci., pp 25–
39, Springer, New York

Burger M (2002) A framework for the construction of level set
methods for shape optimization and reconstruction. Interfaces and
Free Boundaries 5:301–329

de Gournay F (2006) Velocity extension for the level-set method
and multiple eigenvalues in shape optimization. SIAM J Control
Optim 45(1):343–367. https://doi.org/10.1137/050624108

Delfour MC, Zolésio J-P (2011) Shapes and geometries, volume 22 of
Advances in Design and Control, 2nd edn. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia

Delfour MC, Zolésio JP (2011) Shapes and geometries. Society for
Industrial and Applied Mathematics

Demkowicz L (2004) Projection-based interpolation. ICES Report
4(3):1–22

Dokken JS, Mitusch SK, Funke SW (2020) Automatic shape
derivatives for transient PDEs in FEniCS and Firedrake. arXiv
e-prints, arXiv:2001.10058

Eppler K, Harbrecht H, Schneider R (2007) On convergence in elliptic
shape optimization. SIAM Journal on Control and Optimization
46(1):61–83. https://doi.org/10.1137/05062679x

Evans L (2010) Partial differential equations. American Mathematical
Society, Providence. With the collaboration of Marc Schoenauer
(INRIA) in the writing of Chapter 8

Feppon F, Allaire G, Bordeu F, Cortial J, Dapogny C (2019) Shape
optimization of a coupled thermal fluid-structure problem in
a level set mesh evolution framework. SeMA 76(3):413–458.
https://doi.org/10.1007/s40324-018-00185-4

Gangl P, Langer U, Laurain A, Meftahi H, Sturm K (2015)
Shape optimization of an electric motor subject to nonlin-
ear magnetostatics. SIAM J Sci Comput 37(6):B1002–B1025.
https://doi.org/10.1137/15100477X

Gangl P, Sturm K (2019) Asymptotic analysis and topological
derivative for 3D quasi-linear magnetostatics. arXiv:1908.10775

Ham DA, Mitchell L, Paganini A, Wechsung F (2019) Automated
shape differentiation in the unified form language. Struct Mul-
tidiscip Optim 60(5):1813–1820. https://doi.org/10.1007/s00158-
019-02281-z

Henrot A, Pierre M (2005) Variation et optimisation de formes : une
analyse géométrique. Springer, Berlin

Hintermüller M, Laurain A (2008) Electrical impedance tomography:
from topology to shape. Control Cybern 37(4):913–933

Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with
pde constraints. Springer, New York

Hiptmair R, Paganini A, Sargheini S (2015) Comparison of approxi-
mate shape gradients. BIT 55(2):459–485. https://doi.org/10.1007/
s10543-014-0515-z

Hömberg D, Sokolowski J (2003) Optimal shape design of inductor
coils for surface hardening. SIAM J Control Optim 42(3):1087–
1117. https://doi.org/10.1137/s0363012900375822

Iglesias JA, Sturm K, Wechsung F (2018) Two-dimensional shape opti-
mization with nearly conformal transformations. SIAM Journal
on Scientific Computing 40(6):A3807–A3830. https://doi.org/10.
1137/17m1152711

Ito K, Kunisch K (2008) Lagrange multiplier approach to variational
problems and applications. Society for Industrial and Applied
Mathematics, Philadelphia

Köthe C (2020) PDE-constrained shape optimization for coupled
problems using space-time finite elements. Master’s Thesis, Graz
University of Technology

Laurain A (2018) A level set-based structural optimization code
using FEniCS. Struct Multidiscip Optim 58(3):1311–1334.
https://doi.org/10.1007/s00158-018-1950-2

Monk P (2003) Finite element methods for maxwell’s equations.
Numerical Mathematics and Scientific Computation. Clarendon
Press

Murat F, Simon J (1976) Sur le contrôle par un domaine géométrique.
Rapport 76015, Université Pierre et Marie Curie, Paris

Novruzi A, Pierre M (2002) Structure of shape derivatives. J Evol Equ
2(3):365–382. https://doi.org/10.1007/s00028-002-8093-y

Novruzi A, Roche JR (2000) Newton’s method in shape optimisation:
A three-dimensional case. Bit Numerical Mathematics 40(1):102–
120. https://doi.org/10.1023/a:1022370419231

Paganini A, Sargheini S, Hiptmair R, Hafner C (2015) Shape
optimization of microlenses. Opt Express 23(10):13099.
https://doi.org/10.1364/oe.23.013099

Paganini A, Sturm K (2019) Weakly normal basis vector fields in
RKHS with an application to shape Newton methods. SIAM J
Numer Anal 57(1):1–26. https://doi.org/10.1137/17m1131623

Schiela A, Ortiz J (2017) Second order directional shape derivatives.
https://epub.uni-bayreuth.de/3251/

Schmidt S (2014) A two stage CVT / eikonal convection mesh
deformation approach for large nodal deformations. arXiv e-prints,
arXiv:1411.7663

Schmidt S (2018) Weak and strong form shape Hessians and their
automatic generation. SIAM Journal on Scientific Computing
40(2):C210–C233. https://doi.org/10.1137/16m1099972

Schmidt S, Ilic C, Schulz V, Gauger N (2013) Three-dimensional
large-scale aerodynamic shape optimization based on shape calcu-
lus. AIAA J 51(11):2615–2627. https://doi.org/10.2514/1.J052245

Schmidt S, Ilic C, Schulz V, Gauger NR (2011) Airfoil design for
compressible inviscid flow based on shape calculus. Optim Eng
12(3):349–369. https://doi.org/10.1007/s11081-011-9145-3

Schöberl J (2014) C++11 implementation of finite elements in
NGSolve. Institute for Analysis and Scientific Computing, Vienna
University of Technology, 30

Schulz VH (2014) A riemannian view on shape optimization. Found
Comput Math 14(3):483–501. https://doi.org/10.1007/s10208-014-
9200-5

Simon J (1989) Second variations for domain optimization problems.
Control theory of distributed parameter systems and applications
91:361–378

Sokołowski J, Zolésio J-P (1992) Introduction to shape optimization,
volume 16 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin. Shape sensitivity analysis

Steinbach O (2015) Space-Time Finite Element Methods for Parabolic
Problems. Computational Methods in Applied Mathematics
15(4):551–566. https://doi.org/10.1515/cmam-2015-0026

Sturm K (2015) Minimax Lagrangian approach to the differentiability
of nonlinear PDE constrained shape functions without saddle
point assumption. SIAM Journal on Control and Optimization
53(4):2017–2039. https://doi.org/10.1137/130930807

Sturm K (2015) Shape differentiability under non-linear PDE
constraints. In: New trends in shape optimization, 166 of Internat.
Ser. Numer. Math., pp 271–300, Birkhäuser/Springer, Cham

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1607

https://doi.org/10.1016/j.jcp.2003.09.032
http://www.sciencedirect.com/science/article/pii/S002199910300487X
http://www.sciencedirect.com/science/article/pii/S002199910300487X
https://doi.org/10.1145/2566630
https://doi.org/10.1137/050624108
http://arxiv.org/abs/2001.10058
https://doi.org/10.1137/05062679x
https://doi.org/10.1007/s40324-018-00185-4
https://doi.org/10.1137/15100477X
http://arxiv.org/abs/1908.10775
https://doi.org/10.1007/s00158-019-02281-z
https://doi.org/10.1007/s00158-019-02281-z
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1007/s10543-014-0515-z
https://doi.org/10.1137/s0363012900375822
https://doi.org/10.1137/17m1152711
https://doi.org/10.1137/17m1152711
https://doi.org/10.1007/s00158-018-1950-2
https://doi.org/10.1007/s00028-002-8093-y
https://doi.org/10.1023/a:1022370419231
https://doi.org/10.1364/oe.23.013099
https://doi.org/10.1137/17m1131623
https://epub.uni-bayreuth.de/3251/
http://arxiv.org/abs/1411.7663
https://doi.org/10.1137/16m1099972
https://doi.org/10.2514/1.J052245
https://doi.org/10.1007/s11081-011-9145-3
https://doi.org/10.1007/s10208-014-9200-5
https://doi.org/10.1007/s10208-014-9200-5
https://doi.org/10.1515/cmam-2015-0026
https://doi.org/10.1137/130930807

	Fully and semi-automated shape differentiation in NGSolve
	Abstract
	Introduction
	Structure of the paper

	A brief introduction to NGSolve
	Solving PDEs with finite elements in NGSolve
	Automatic differentiation in NGSolve

	Semi-automatic shape differentiation without constraints
	First-order shape derivative
	Shape differentiation of unconstrained volume integrals
	Shape differentiation of unconstrained boundary integrals

	Second-order shape derivatives

	Semi-automatic shape differentiation with PDE constraints
	PDE-constrained model problem
	First-order shape derivative
	Second-order shape derivative
	PDEs on surfaces

	Fully automated shape differentiation
	Optimisation algorithms
	Gradient computation
	Basic algorithm
	Mesh movement and mesh optimisation

	Newton's method for unconstrained problems
	Alternative regularisation strategy

	Newton's method for PDE-constrained problems

	Numerical experiments
	Code verification
	A first shape optimisation problem
	First-order methods
	Second-order method

	Shape optimisation subject to the Poisson equation
	Nonlinear elasticity
	Helmholtz equation
	Application to an electric machine
	Surface PDEs
	Time-dependent PDE using space-time method

	Conclusion
	Compliance with ethical standards
	References

