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Abstract—Volumetric placental measurement using 3D ultra-1

sound has proven clinical utility in predicting adverse pregnancy2

outcomes. However, this metric can not currently be employed3

as part of a screening test due to a lack of robust and real-time4

segmentation tools. We present a multi-class convolutional neural5

network (CNN) developed to segment the placenta, amniotic fluid6

and fetus. The ground truth dataset consisted of 2,093 labelled7

placental volumes augmented by 300 volumes with placenta,8

amniotic fluid and fetus annotated. A two pathway, hybrid9

model using transfer learning, a modified loss function and10

exponential average weighting was developed and demonstrated11

the best performance for placental segmentation, achieving a12

Dice similarity coefficient (DSC) of 0.84 and 0.38 mm average13

Hausdorff distance (HDAV). Use of a dual-pathway architecture,14

improved placental segmentation by 0.03 DSC and reduced15

HDAV by 0.27mm when compared with a naïve multi-class model.16

Incorporation of exponential weighting produced a further small17

improvement in DSC by 0.01 and a reduction of HDAV by18

0.44mm. Per volume inference using the FCNN took 7-8 seconds.19

This method should enable clinically relevant morphometric20

measurements (such as volume and total surface area) to be21

automatically generated for the placenta, amniotic fluid and22

fetus. Ready availability of such metrics makes a population-23

based screening test for adverse pregnancy outcomes possible.24

25

Index Terms—Medical Diagnostic Imaging, Ultrasonic Imag-26

ing, Image Segmentation, Pregnancy, Sonogram, Convolutional27

Neural Networks, Deep Learning, Transfer Learning.28

I. INTRODUCTION29

P
LACENTAL insufficiency is the most common cause of30

stillbirth [1] as well as other adverse pregnancy outcomes31
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such as fetal growth restriction [2] and pre-eclampsia [3]. 32

The consequences of a poorly functioning placenta last well 33

beyond pregnancy for the fetus, conferring them with an 34

increased risk of developing obesity, diabetes and high blood 35

pressure in adulthood [4]. A robust early screening test which 36

can reliably predict those pregnancies destined to develop pla- 37

cental insufficiency would allow increased monitoring of fetal 38

growth with early delivery if the baby becomes compromised 39

thereby prevent a stillbirth occurring. It could also facilitate 40

targeted treatment strategies such as low-dose aspirin which, 41

if started in the first trimester, has been shown to reduce the 42

incidence of preeclampsia and improved triage of perinatal 43

care. This could have far reaching, long-term health benefits 44

globally [4]. 45

A. Clinical Motivation 46

Placentas destined to fail later in pregnancy already show 47

signs of sub-optimal performance in the first trimester, (11– 48

14 weeks) such as reduced volume and vascularity [5]. A 49

systematic literature review concluded that placental volume, 50

measured by 3D ultrasound (3D-US), could have value when 51

integrated into a multivariable screening method for fetal 52

growth restriction in the first trimester [6]. However, volume 53

estimation currently requires off-line manual annotation by 54

a trained sonographer which is time-consuming and cannot 55

be performed within the 15 minutes in which a standard 56

scan takes place [6]. Furthermore, manual labelling is highly 57

operator dependent, inter-observer reproducability studies have 58

demonstrated very different intra-class correlation coefficients 59

(ICC; 95% CI)) of 0.59 (0.33-0.80) [7] and 0.81 (0.68-0.91) 60

[8]. 61

There is a clinical need for a precise, fully automated, 62

method for real-time 3D-US image segmentation which can 63

be used to provide an estimation of placental volume and 64

demarcate its boundaries (enable identification of the interface 65

between placenta and uterus, thereby providing the basis for 66

automated perfusion assessment [9], [10]). These imaging 67

biomarkers could then be incorporated into a multi-factorial 68

population-based screening test to improve early prediction of 69

adverse pregnancy outcomes. 70

B. Related Works 71

Real-time volume estimation has been achieved using fully 72

convolutional neural networks (FCNNs) [11] to produce state- 73
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of-the-art performance in a range of medical imaging modali-74

ties [12]. FCNNs are particularly suited to segmentation since75

the parameters are shared and independent of image size. Seg-76

mentation accuracy of FCNNs can be further improved with77

technical enhancements such as loss function modification,78

which has demonstrated improved performance in segmenting79

the prostate in MRI images [13]. Use of multiple pathways, to80

increase the context of an FCNN, has improved accuracy [14]81

and has been successfully applied to placental segmentation82

in both MRI [15] and 3D-US [16].83

Image analysis in feto-placental ultrasound imaging is rela-84

tively understudied compared to other areas of medical image85

analysis. A recent review [17] describes the unique challenges86

of placental segmentation. The placenta has a heterogeneous87

appearance and can implant on any of the uterine walls.88

Placentas that implant on the posterior uterine wall present a89

significant segmentation challenge as the overlying fetus can90

attenuate and scatter the US signal causing shadows and image91

artefact.92

Attempts at placental MRI segmentation have shown93

promise. A semi-automated technique combining multiple94

volumes and a single annotated slice, with learned random95

forest and random field features combined with a 4D graph96

cut, demonstrated a mean Dice similarity coefficient (DSC) in97

16 cases of 0.89 ± 0.02 (std. dev) [18]. An FCNN method98

applied to placental MRI data using a V-Net architecture99

in 12 patients provided a mean DSC of 0.75 ± 0.11 [19].100

Using 3D-US, automated methods of segmenting first trimester101

placentas (n = 13) in an anterior position using a joint label102

fusion and majority vote technique achieved a mean DSC103

of 0.83 ± 0.05 [20], [21]. Yang et al in [22] used a U-Net104

style encoder/decoder FCNN to perform automatic multi-class105

segmentation of the placenta, amniotic fluid and fetus: 104106

cases were used to develop the FCNN incorporating a recurrent107

neural network, of which 50 volumes were used to train, 10108

to validate and 44 were tested. This achieved a mean DSC of109

0.64 for the placenta, 0.89 for the amniotic fluid, and 0.88 for110

the fetus, while variability was not reported.111

C. Contributions112

Previously using 2,393 cases, an FCNN segmented placental113

volumes to predict small for gestational age (SGA) babies114

[23] which obtained a mean DSC of 0.82 ± 0.10 (std. dev)115

for placental segmentation. The size of the dataset, being ~20116

times of that used by Yang et al. [22], indicates the obvious117

benefits of dataset size in improving segmentation accuracy118

when our previous work is compared to a multi-class FCNN119

trained on a smaller set of data.120

This work aims to exploit the strong performance of this121

large-scale FCNN network and incorporate it into a framework122

that can solve the problem of multi-class labelling. We present123

a number of technical enhancements to solve this problem and124

present a full evaluation of the performance of the new FCNN,125

which are summarized as follows:126

• The use of multiple pathway FCNNs trained on single127

and multi-class datasets, which by addition of a modified128

loss function, exponential averaging (EA) and transfer129

learning improved average DSC to segment the placenta, 130

amniotic fluid and fetus. 131

• By combining pathways from different models and using 132

these features, our previous state of the art segmentation 133

performance on the placenta was combined with segmen- 134

tation of the amniotic fluid and fetus that was comparable 135

to the state of the art as measured by DSC and Hausdorff 136

distance (HD) and compared to other works and to more 137

classical U-Net based FCNNs the features of which are 138

listed in Table I. 139

• An evaluation technique to test real-world performance 140

using a comparative Turing test indicated that automated 141

segmentation was highly comparable to human perfor- 142

mance (<50% positive prediction rate; i.e. the automated 143

segmentation was selected blindly as better quality more 144

often than the human.). Repeatability measured by intra- 145

class correlation coefficients (ICC), showed good to ex- 146

cellent repeatability (measured by ICC) for respective 147

organs. 148

II. METHOD 149

The data used was from a research study conducted at 150

a large UK tertiary referral hospital with local ethical ap- 151

proval (NHSREC ID: 02-03-033). Following signed, informed 152

consent, a 3D ultrasound scan containing the placenta was 153

recorded for singleton pregnancies in women at 11+0 to 13+6 154

weeks of gestation. The 3D-US volume was acquired by trans- 155

abdominal sonography using a GE Voluson™ 730 Expert 156

system (GE Healthcare, Milwaukee, WI, USA) using a 3D 157

RAB4/8L transducer [24]. All 2,392 participants went on to 158

deliver a chromosomally normal baby. Data were exported for 159

off-line analysis to hard drive by USB and converted from 160

scan-line representation into a 3D Cartesian volume [25] with 161

an 0.6 mm isotropic voxel spacing. A complete digest of 162

ultrasound settings used can be found in the original clinical 163

paper [26]. 164

Segmentation of the placenta used as label map was per- 165

formed using the semi-automated Random Walker algorithm, 166

as described in our previous study [9]. Initialisation or ‘seed- 167

ing’ of the placental segmentation was performed by a clinical 168

expert (SN). These “seedings” then underwent quality control 169

with each one being examined by a second, independent, 170

clinical expert (MM) and “re-seeded” where mistakes were 171

evident. A third clinical expert (SC) examined cases where 172

there was uncertainty or dispute regarding the boundaries of 173

the placenta. From the available 2,393 3D-US volumes with an 174

existing placental segmentation, 300 volumes were randomly 175

selected for multi-class segmentation. The amniotic fluid and 176

the fetus were “seeded” (PL and YY) and combined with 177

the placental “seeding” performed from the previous study. 178

Initialisation of the amniotic fluid and fetus is much easier 179

than the placenta because the edges of the structures are 180

easier to discriminate but any cases where there was ambiguity 181

were examined by a clinical expert (SC). These three different 182

classes were then segmented as a multi-class label map using 183

the Random Walker algorithm [9], [27]. Mean time (± std. 184

dev) to “seed” the two new features in a single volume was 185

30 ± 10 min. 186
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(a)

(b)

Fig. 1. Convolutional neural network architecture of the models: (a) placental segmentation (PS) model; (b) the dual pathway (T - top; B - bottom pathway)
hybrid (HB) model, where T encodes the PS model. The architectures of the multi-class (MC) and multi-class transfer learning (MCTL) models are not
shown as they are identical to Fig 1a except for having four channels instead of two in the layer before softmax.

A. Placenta segmentation (PS) model187

The remaining 2,093 cases were partitioned into 1,893 train-188

ing cases, 150 validation cases and 50 test cases. These were189

used to train an FCNN, similar in architecture to the U-Net190

[28], extended to 3D and shown in Figure 1a. Image volumes191

varied in size but were typically had dimensions of 200 x 300192

x 300 voxels. The volume was decomposed into patches that193

overlapped such that the output of the convolutional neural194

network that used convolutions without padding was non-195

overlapping to avoid edge effects. Input patches with isotropic196

dimensions of 863 voxels were passed through three down-197

sampling blocks, three up-sampling blocks, two convolutional198

layers and a final classification layer. A down-sampling block199

used convolution followed by convolution with a stride of 2200

voxels wide and a 2x2x2 kernel. An up-sampling block used201

convolution followed by transpose convolution of stride 2 and202

a 2x2x2 kernel. All other kernels had size 3x3x3. Features203

from layers with the same resolution were forwarded from 204

earlier layers to later layers. 205

The FCNN was trained for 30 epochs (373 steps per epoch), 206

where a single epoch was defined as all the patches for the 207

whole dataset. The placenta segmentation (PS) model was 208

chosen by selecting the highest mean DSC on the validation set 209

that was not improved upon by ten percent within the next five 210

epochs. The parameters: Adam optimizer learning rate, β1, β2 211

and ǫ were set as 0.001, 0.9, 0.999 and 1×10−8, respectively. 212

The learning rate decayed at a rate of 0.92 every 1000 213

steps. Variance scaling was used to initialise the parameters 214

of the model. L2 regularisation was used with a coefficient 215

of 0.0001. A batch size of 40 was used while training the 216

model. Full validation was performed every 1000 steps. An 217

averaged version of the PS model (PSEA) was created using 218

an exponential moving average during training. Exponential 219

moving averaging reduces noise by averaging the weights 220
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TABLE I
SUMMARY OF THE FEATURES OF EACH FULLY CONVOLUTIONAL NEURAL

NETWORK (FCNN) DESCRIBING CLASS (S - SINGLE; M - MULTIPLE), USE

OF EXPONENTIAL AVERAGING (EA), APPLICATION OF TRANSFER

LEARNING (TL) FROM OTHER MODELS AND NUMBER OF PATHWAYS USED.

Acronym Model Class EA TL Pathways

PS
Placenta

Segmentation
S N N 1

PSEA
Placenta

Segmentation
with EA

S Y N 1

MC
Multi-class

Segmentation
M N N 1

MCTL
Multi-class

Segmentation
with TL

M N PS 1

HB Hybrid M N PS 2
HBEA Hybrid with EA M Y PSEA 2

of the model over the training process and favouring more221

recent values of the weights as well as providing computational222

efficiency, since it does not require the storage of all the223

weights [29].224

B. Multi-class (MC) models225

The 300 multi-class (MC) cases were sub-divided into 200226

training cases, 40 validation cases and 60 test cases. Four227

multi-class models were each trained for 40 epochs with a228

batch size of 30. Firstly, a MC model was trained using229

a network identical to the architecture in Fig. 1a but with230

four output classes in the layer before the softmax function231

with parameters initialised using variance scaling. Then, a232

multi-class transfer learning (MCTL) model, using the same233

architecture as the MC model, with the weights and biases234

for all layers except the last taken from the PS model, was235

trained. By initialising the weights and biases of the MCTL236

model using the PS model, the MCTL had effectively a larger237

training dataset of 1,893 cases in addition to the 200 cases238

of the MC model. Since the PS model was trained to detect239

placenta, we hypothesised that the MCTL model may better240

segment the placenta at the expense of fetal and amniotic fluid241

segmentation performance compared to the MC model, this242

will be discussed in later sections.243

C. Hybrid (HB) models244

To overcome the shortcomings of MC/MCTL models, two245

hybrid models were used. The hybrid model (HB) and hybrid246

model with exponential averaging (HBEA) both consisted of247

a dual pathway model which were implemented as shown248

in Fig. 1b. In the top pathway, which encoded the placental249

segmentation, parameters for HB model were initialised using250

the values from the large-scale PS model and the HBEA251

model were initialised using the PSEA model. In the bottom252

pathway, which encoded the remaining classes, parameters253

were initialised using variance scaling and then trained on254

the MC data. For both HB and HBEA models, parameters255

in the bottom pathway were allowed to change but for the256

top pathway were fixed, in order to encorporate the results257

for placental segmentation from the PS/PSEA models. The 258

Adam optimizer parameters were identical to those used in 259

the PS training. Batch size and number of epochs were altered 260

to accommodate the differences in number of parameters and 261

data used for each model evaluated. 262

The features of the two pathways were combined as follows: 263

let PBackground, PPlacenta, PAmniotic, and PFetus be the 264

confidences that a voxel belongs to the background, placenta, 265

amniotic fluid and fetus, respectively. For a given voxel i, the 266

softmax output of the top pathway (T ) was given as only 267

two values PT
Background and PT

Placenta that summed to 1. In 268

this case, the fetus and amniotic fluid were included in the 269

background. In the bottom pathway (B) , the softmax of the 270

final layer produced a confidence for membership of a given 271

voxel with scalar values of PB
Background, PB

Placenta, PB
Amniotic 272

and PB
Fetus that summed to 1. The PB

Background indicated the 273

confidence that a voxel is neither placenta, fetus or amniotic 274

fluid. 275

By design, the regions of the output layer that are charac- 276

terised as placenta cannot change through training. Placental 277

regions will still contribute to the loss but the neural network 278

will be unable to modify the parameters to reduce the loss 279

from these regions of the image. This motivates the use 280

of a modified loss function to ignore the contribution from 281

placental regions to the loss. The loss function L was defined 282

combining the outputs of two pathways as 283

L =
∑

i∈M

mi × sl(oi/ni), (1)

where M was a binary mask whose value mi was 0 for a voxel 284

i within the placental segmentation and 1 otherwise, oi was 285

the output of the bottom pathway B, sl was the softmax cross 286

entropy function and ni was the normalisation factor defined 287

as 1 minus PT
Placenta, the confidence of voxel i is placenta 288

from the output from softmax layer of the top pathway T . 289

Since the loss function was masked over the placental 290

region/segmentation, the placenta did not contribute to the 291

training of the model. The final confidence vector in the HB 292

model had scalar components given as: 293

PHB
Background = PT

Background ×

(

PB
Background

1− PB
Placenta

)

(2)

PHB
Placenta = PT

Placenta (3)

PHB
Amniotic = PT

Background ×

(

PB
Amniotic

1− PB
Placenta

)

(4)

PHB
Fetus = PT

Background ×

(

PB
Fetus

1− PB
Placenta

)

(5)

where the final segmentation of a voxel was the maximum of 294

the four values defined in Eq. 2-5. The sum of the terms in 295

Eq. 2,4 & 5 are equal to PT
Background. From Equation 3, the 296

placental segmentation of the HB model was set to the PS 297

model for all voxels where PHB
Placenta > 0.5. 298

For voxels where 0.25 < PHB
Placenta < 0.5, a voxel was 299

classified as placenta by the HB model but classified as back- 300

ground by the PS model if the remaining classes, PHB
Background, 301

PHB
Amniotic and PHB

Fetus, each had values < PHB
Placenta. 302
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D. Post-Processing, Implementation & Analysis303

The predictions for test data were post processed using304

morphological filters using the same process as described305

in [23] but performed on each of the three classes. Region306

fragments of the placenta < 40% of the size of the largest307

region were omitted. Only the largest continuous region of308

amniotic fluid and fetus were retained as part of the final309

segmentation. The segmentation was then grayscale closed310

using a 3D kernel (3 voxel radii) and a hole filling filter311

was applied. This removed small regions separated from the312

largest, contiguous placental segmented regions, smoothed the313

boundary of the placenta, amniotic fluid and fetus and filled314

any holes. Ultrasound volumes were processed and visualised315

using SimpleITK (version 1.2.4) [30], ITK [30] and VTK316

(version 8.2) [31]. R (version 3.3.2) [32] was used for data317

analysis and hypothesis testing and ggplot2 (version 2.2) [33]318

for plotting. The models were implemented in Python (version319

3.6) using the open-source OxNNet [34] library developed320

for 3D-US segmentation and Tensorflow (version 1.12) [35].321

Training and inference was performed on a Linux PC (Intel i7322

5820) using a Titan X GPU (NVidia Corporation, Santa Clara,323

CA) with 12Gb VRAM. The CNN models are fully available324

online [36].325

E. Evaluation326

Comparison between model generated volumetric binary327

volumes was assessed by similarity metrics: Dice similarity328

coefficient (DSC), Hausdorff Distance (HD) and the average329

Hausdorff distance (HDAV) defined for two segmentations330

X and Y and a Euclidean distance metric d reported in331

millimetres [23]. The significance threshold was set at P < .05.332

Pairwise comparison between DSC measurements between333

models were assessed using Student’s paired t-test.334

Reproducibility of the final placenta, fetus and amniotic335

fluid volume in millilitres was assessed using the ICC (2,1)336

[37], [38] for inter-observer repeatability between the semi-337

automated Random Walker results, regarded as the ground-338

truth used for performance evaluation, and the newly generated339

FCNN outputs. Finally, a blinded comparison was performed340

to assess an experienced operator’s (GS) ability to discriminate341

between the manual and automated outputs using a side-by-342

side comparison, akin to a comparative Turing test [39] for343

the 60 multi-class test cases. The user was presented with344

two B-Mode volumes sliced in 2D and scrolling between345

both volumes linked using a mouse, the contours of each346

segmentation class were displayed with the Random Walker347

result presented in one randomly assigned viewport and the348

FCNN contours in the other. The operator used the arrow349

keys to denote which contours deemed ’best’ once viewed350

each image within the volume through scrolling through.351

This viewer and test is available online [40]. The positive352

recognition rate (%) or percentage that the operator selected353

a Random Walker based contour set for each model was354

reported.355

III. RESULTS 356

A. Placental segmentation (PS) model 357

The PS model obtained the best mean DSC (std. dev) on 358

the validation set of 0.85 (0.09) after 17,000 training steps. 359

The performance of the model is shown in Fig. 3. On the 50 360

test cases, the PS model had a mean DSC (std. dev) of 0.85 361

(0.05) and the PSEA model had a mean DSC of 0.85 (0.05)). 362

The data publicly available and published by [21] was 363

also used to evaluate the performance of the PS model. The 364

available images were resampled to the same isotropic spacing 365

and the same pre-processing, PS model application and post- 366

processing was applied as described in Section II. The mean 367

DSC (std. dev) on this data set was 0.67 (0.24), mean HD was 368

21.28 (14.18) mm and mean HDAV was 1.59 (2.27) mm. 369

B. Multi-class (MC) and Hybrid Models 370

To compare performance to a reduced dataset size, as per 371

Yang et al, using 50 training data the model was trained over 372

40 epochs. Placental DSC was 0.73 (0.1), amniotic fluid DSC 373

was 0.90 (0.06) and fetus DSC was 0.83 (0.08) for the HBEA 374

model. For HD (mm), the placenta was 22.48 (8.78), amniotic 375

fluid was 14.20 (9.25) and fetus was 21.74 (11.79). For HDAV 376

(mm), the placenta was 1.23 (1.16), amniotic fluid was 0.36 377

(0.84) and fetus was 21.74 (11.79). 378

Comparing the same HB model using the modified loss 379

function defined in Eq. 1 to standard cross entropy loss, 380

similarity metrics improved. DSC for placenta increased by 381

0.01 and remained the same for the fetus and amniotic 382

fluid. For surface similarity metrics, small increases in HD 383

(mm) (placenta +0.44; amniotic fluid -0.01; fetus 1.4) and 384

decreases in HDAV (placenta -0.04mm; amniotic fluid -0.01; 385

fetus 0.0mm) were observed. 386

For the multi-class models, when trained on the fullest set 387

of data, compared to the dataset of 50, results improved for all 388

metrics. The mean DSC of the segmentation of the placenta, 389

amniotic fluid and fetus on the validation set during training 390

are shown in Fig. 4. After 40 epochs, the MC model obtained 391

the lowest placenta DSC of 0.78 (0.09). The MCTL model was 392

better at 0.80 (0.09). Both hybrid models were at 0.81 (0.09) 393

for the HB and the HBEA model was 0.82 (0.08). Similiar 394

values for amniotic fluid DSC were obtained for the MC model 395

at 0.93 (0.04), 0.92 (0.04) for the MCTL model, 0.92 (0.04) 396

for HB and 0.93 (0.04) for the HBEA model. The DSC of the 397

fetus was 0.88 (0.05) for the MC model, 0.87 (0.05) for the 398

MCTL model, 0.87 (0.05) for the HB model and 0.88 (0.04) 399

for the HBEA model. Fig. 4 shows the expected behaviour 400

for the hybrid models incorporating the PS model, where in 401

the DSC did not alter for the placenta over the epochs, as 402

compared to the other classes segmented. 403

The comparison of the performance of the models on the 404

test set after post processing is shown in Table II and Fig. 5. 405

The mean (std. dev) of the placenta DSC for the MC, MCTL 406

HB and HBEA models were 0.78 (0.09), 0.80 (0.09), 0.81 407

(0.09) and 0.82 (0.08) respectively. The HDAV of the placenta 408

segmentation was lowest for the HBEA model at 0.58 (0.70) 409

mm. The mean of the amniotic fluid DSC for the MC, MCTL, 410

HB and HBEA models were 0.93 (0.04), 0.92 (0.04), 0.92 411
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Fig. 2. Visualization of multi-class 3D ultrasound (3D-US) segmentation of the placenta , amniotic fluid and fetus in three subjects (each outlined in
black) performed using the Random Walker (RW; top) and Hybrid Averaged model (HBEA; bottom) shown as three orthogonal views and a semi-opaque 3D
rendering (left to right).
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TABLE II
MEAN (STD. DEV) OF THE DICE SIMILARITY COEFFICIENT (DSC), HAUSDORFF DISTANCE (HD) AND AVERAGE HD (HDAV) AND TIME TO INFER

SEGMENTATION PERFORMANCE FOR THE MULTI-CLASS (MC) MODEL, MULTI-CLASS MODEL WITH TRANSFER LEARNING (MCTL), THE HYBRID MODEL

(HB) AND THE EXPONENTIAL MOVING AVERAGED HYBRID MODEL (HBEA) ON THE MC TEST SET AFTER POST PROCESSING.

Placenta Amniotic Fluid Fetus Time
Model DSC HD HDAV DSC HD HDAV DSC HD HDAV (s)

MC 0.78 (0.09) 19.43 (8.22) 0.86 (0.93) 0.93 (0.04) 11.80 (6.85) 0.15 (0.22) 0.88 (0.05) 16.88 (10.48) 0.25 (0.36) 8.13 (1.86)
MCTL 0.80 (0.09) 17.71 (8.12) 0.70 (0.92) 0.92 (0.04) 11.68 (5.27) 0.12 (0.14) 0.87 (0.05) 17.83 (10.77) 0.29 (0.47) 7.75 (1.94)

HB 0.81 (0.09) 15.38 (7.75) 0.59 (0.74) 0.92 (0.04) 11.00 (5.58) 0.13 (0.17) 0.87 (0.05) 15.59 (9.32) 0.21 (0.24) 8.46 (2.54)
HBEA 0.82 (0.08) 16.22 (8.11) 0.58 (0.70) 0.93 (0.04) 10.86 (5.28) 0.13 (0.17) 0.88 (0.04) 16.57 (10.22) 0.22 (0.25) 8.46 (2.54)

Fig. 3. Error plot of median (interquartile range) Dice similarity coefficient
(DSC) on the 150 PS validation cases during training for the PS model to
segment the placenta.

(0.04) and 0.93 (0.04) respectively. The mean of the fetus412

DSC for the MC, HB and HBEA models were all 0.88 (0.04)413

but was 0.87 (0.04) for the MCTL model. Examples showing414

segmentations using the Random Walker and HBEA model415

are shown in Fig. 2. DSC was 0.85, 0.85 and 0.71 for the416

placenta; 0.96, 0.96 and 0.95 for the amnion and 0.94, 0.92417

and 0.90 for the fetus, in the three subjects shown. Timings for418

the inference of each model indicate an average inference of419

7-8 seconds per image. Statistical comparison of the DSC for420

all models using a paired t-test showed significant differences421

for the placenta (P < 0.001) and fetus (P < 0.005). There422

was no significant difference for amniotic fluid (P > 0.3).423

C. Repeatability424

Repeatability as assessed by ICC (95 CI%) for each seg-425

mentation across the four models is provided in Table III. ICC426

values for the placenta were lower than for those for the fetus427

and amniotic fluid which reported excellent reproducability.428

For the placenta, ICC was increased for the HB models over429

the MC models. Using the lower end of the CI reported, it430

was shown the HBEA model was significantly better than431

the MC model in terms of repeatability as reported by ICC.432

For the other classes, no significant differences were observed433

although. There were small increases in ICC when the HBEA434

model was compared to the others. The positive recognition435

rates for the Random Walker based ground-truth data when436

Fig. 4. Median Dice similarity coefficient (DSC) on the 40 MC validation
cases during training for the placenta, amniotic fluid and fetus, showing the
performance difference between the multi-class models defined in Table I.

compared to the four different models were: MC 52.5%, 437

MCTL 44.0%, HB 56.0% and HBEA 45.8%. 438

TABLE III
INTRA-CLASS CORRELATION COEFFICIENTS (95% CI) FOR EACH ORGAN

VOLUME FROM A GIVEN MULTI-CLASS FCNN DEFINED IN TABLE I TO

THE RANDOM WALKER ESTIMATE.

Model Placenta Amniotic Fluid Fetus

MC 0.52 (0.31 – 0.69) 0.98 (0.96 – 0.99) 0.850 (0.76 – 0.91)
MCTL 0.56 (0.36 – 0.71) 0.98 (0.96 – 0.99) 0.839 (0.75 – 0.90)

HB 0.64 (0.45 – 0.77) 0.98 (0.96 – 0.99) 0.831 (0.73 – 0.90)
HBEA 0.69 (0.53 – 0.80) 0.98 (0.96 – 0.99) 0.863 (0.78 – 0.91)

IV. DISCUSSION 439

In this work, we demonstrated improved performance of 440

a FCNN for segmentation of anatomical structures in early 441

pregnancy using 3D ultrasound. By using a combined dataset 442

of images, with both single and multi-class label maps gen- 443

erated by Random Walker as ground truth, a state-of-the-art 444

performance was achieved for segmentation of the placenta. 445
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Fig. 5. Histograms of the Dice similarity coefficient (DSC) for the placenta,
amniotic fluid and fetus for all four FCNN models on 60 MC test cases. The
median and mean values are shown as red and blue vertical lines, respectively.

Our results show that there are differences in the perfor-446

mance of each multi-class FCNN model. The MC and MCTL447

models have identical architectures but the performance of448

the MC model in segmenting the placenta is reduced in449

comparison to the MCTL model although the amniotic fluid450

and fetus segmentation is improved. As the MCTL model451

parameters were initialised using the PS model it is unsur-452

prising that it appears to be biased towards segmenting the453

placenta. Additionally, the MC model was trained using only454

200 MC training cases which confirms previous findings that455

performance is related to the size of the training dataset456

[23]. By adding the PS model as an extra pathway, the457

performance gained from training on 2,093 placentas is added,458

giving the hybrid model improved placental segmentation459

when compared to a single pathway model which is only460

trained on 300 cases. The HB and HBEA models have an461

almost constant performance in the placenta segmentation, as462

shown in Fig. 4, reflecting the fixed nature of the parameters of463

the top pathway which we used to exploit the more accurate464

PS model that has been trained on the largest set of cases.465

Small differences between the PS and HB models can occur,466

when some background voxels can be classified as placenta if467

their background probability was distributed among the other468

classes such that the placental probability was maximum. We469

also showed that the modified loss function allows for the470

bottom pathway to focus on segmenting the fetus and amniotic 471

fluid. The exponential moving averaged reduced volatility in 472

the weights which we propose improved model inference. This 473

is reflected in the HBEA model yielding the best performance 474

of the four models. 475

The performance of the PS model on the publicly available 476

data set in [21] were reduced compared to data used for this 477

study. The data used to train our model was translated from 478

a toroidal coordinate system [25] while the publicly available 479

data was already in a Cartesian geometry and was resampled to 480

have isotropic spacing of 0.6 mm and did not contain the full 481

scan region. We speculate that the reduced performance maybe 482

due to error introduced from the resampling or the effect on 483

the normalisation due to the cropping of the volume. With 484

the availability of multi-class prediction results of placenta, 485

amniotic fluid and fetus on this public data set online and 486

the models we would expect that improvements can be made 487

by interested researchers [41]. The only other multi-class 488

segmentation work in this field by Yang et al. [22] obtained 489

DSC values of 0.64, 0.89 and 0.88 to segment the placenta, 490

amniotic fluid and fetus, respectively, using 104 3D-US scans. 491

They also used a 3D extension of U-Net [28] and combined the 492

output with a recurrent neural network. This strategy uses four 493

times the number of features compared to the FCNN models 494

used in our work. Other differences in the implementation 495

included patch size, batch normalisation and image spacing. 496

These differences as well as the greater number of training 497

cases used may account for the increased performance in this 498

study, particularly in segmenting the placenta (DSC of 0.82 499

compared with 0.64) . The ground truths in [22] were obtained 500

using manual segmentation. Whilst it has been demonstrated 501

that the much faster Random-Walker technique has equivalent 502

performance to manual segmentation in terms of both inter 503

and intra-operator variability [9], the same has not been 504

demonstrated for segmentation of the fetus or amniotic fluid. 505

Having shown that performance based on similarity metrics 506

leads to good estimation of the organs, we applied clinically 507

used statistics for reproducability assessment. These provide 508

a measure of performance from medical studies where human 509

operators have compared their performance where commercial 510

software would not allow voxel-wise comparison. As shown 511

in Table III, the ICC for amniotic and fetal estimation were 512

excellent based on standard interpretations for ICC > 0.75. 513

For the placenta, ICC values increased with the HBEA model 514

providing best performance at a moderate level of reported 515

ICC. We went further in this assessment, given that the nature 516

of placental segmentation combined with ultrasound imaging 517

is a hard task. The standard for evaluation of the performance 518

of the automated detection is an operator defined ground truth 519

and the ’human eye’ is not necessarily always accurate. In this 520

problem, the border between the placenta and the surrounding 521

tissue often appears very diffuse making it difficult for even 522

highly experienced sonographers to distinguish the boundary 523

between placenta and the uterine myometrium. However, 524

where there is a low DSC, trying to ascertain whether the 525

ground truth or the predicted segmentation more closely repre- 526

sents the ’true’ anatomy is extremely difficult. As such, using a 527

comparative Turing test we showed < 50% positive prediction 528
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rate for the original Random Walker labelled result versus the529

MCTL and HBEA models. This indicates that for a blinded530

observer, the automated labelling would seem be considered531

more “human” over 60 cases. This result is encouraging532

and with additional analysis using multiple observers and an533

increased size of dataset will bolster these findings.534

As discussed, this work does have limitations. The 3D-535

US data were collected a number of years ago using an US536

machine that has been superseded by two newer generations537

of hardware. It is hoped that the image quality will be in-538

creased in future studies facilitating easier segmentation since539

signal-to-noise ratio and spatial resolution have significantly540

improved. The use of methods of ultrasound reconstruction541

such as spatial averaging [42] may change the texture of542

the image and impact the performance of our FCNN which543

would need to be considered. However, in future studies useful544

features learned by our models could still be used with transfer545

learning on newer modalities. The effect of the many param-546

eters within the model have not been investigated with full547

ablation studies nor full evaluation of other post-processing548

strategies. However, suitable choices of the parameters have549

been suggested and the effect of patch size has previously550

been studied by other authors [14], [43] and we would foresee551

these only provide minor increases in performance compared552

to increasing the dataset trained on which we have previously553

shown [23].554

The HBEA model had a median segmentation time of555

8.46 seconds compared to the 30 minutes required for semi-556

automated segmenation. Hence, the model realised in this557

work will allow rapid calculation of not only placental volume558

but other important morphometrics such as shape and surface559

area of the utero-placental interface since these can now also560

be calculated using the MC segmentation. When combined561

with power Doppler ultrasound this will allow for automated562

measurement of perfusion of the utero-placental interface [10],563

[44]. These measurements when combined with blood serum564

and maternal characteristics, [45] should improve population-565

based screening algorithms for the prediction of adverse preg-566

nancy outcomes in early pregnancy.567

V. CONCLUSION568

We present an automated method based on deep learning569

that achieves state-of-the-art performance, measured using570

DSC, HD, and HDAV in segmenting the placenta while571

obtaining similar values to the state-of-the-art performance for572

the amniotic fluid and fetus. This was possible by combining573

a multi-class dataset labelled by a semi-automatic technique574

with a multiple pathway FCNN using a modified loss function.575

This image analysis technique demonstrates a FCNN can now576

provide estimates of placental volume, surface area of the577

utero-placental interface and other morphometric measure-578

ments in real-time to facilitate population-based ultrasound579

screening. These measures, combined with maternal charac-580

teristics and serum biomarkers, can now be used to develop a581

first trimester screening tool aimed at improving identification582

of pregnancies at-risk of later complications.583
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