
Fully Automated Deep Learning System for Bone Age Assessment

Hyunkwang Lee1 & Shahein Tajmir1 & Jenny Lee1 & Maurice Zissen1
&

Bethel Ayele Yeshiwas1 & Tarik K. Alkasab1
& Garry Choy1 & Synho Do1

Published online: 8 March 2017
# The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Skeletal maturity progresses through discrete phases,

a fact that is used routinely in pediatrics where bone age assess-

ments (BAAs) are compared to chronological age in the evalu-

ation of endocrine and metabolic disorders. While central to

many disease evaluations, little has changed to improve the

tedious process since its introduction in 1950. In this study, we

propose a fully automated deep learning pipeline to segment a

region of interest, standardize and preprocess input radiographs,

and perform BAA. Our models use an ImageNet pretrained,

fine-tuned convolutional neural network (CNN) to achieve

57.32 and 61.40% accuracies for the female and male cohorts

on our held-out test images. Female test radiographs were

assigned a BAA within 1 year 90.39% and within 2 years

98.11% of the time. Male test radiographs were assigned

94.18% within 1 year and 99.00% within 2 years. Using the

input occlusion method, attention maps were created which re-

veal what features the trained model uses to perform BAA.

These correspond towhat human experts look at whenmanually

performing BAA. Finally, the fully automated BAA systemwas

deployed in the clinical environment as a decision supporting

system for more accurate and efficient BAAs at much faster

interpretation time (<2 s) than the conventional method.
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Introduction

Skeletal maturity progresses through a series of discrete phases,

particularly in the wrist and hands. As such, pediatric medicine

has used this regular progression of growth to assign a bone age

and correlate it with a child’s chronological age. If discrepancies

are present, these help direct further diagnostic evaluation of

possible endocrine or metabolic disorders. Alternatively, these

examinations may be used to optimally time interventions for

limb-length discrepancies. While the process of bone age assess-

ment (BAA) is central to the evaluation of many disease states,

the actual process of BAAhas not changed significantly since the

publication of the groundbreaking atlas in 1950 by Greulich and

Pyle [1], which was developed from studying children in Ohio

from 1931 to 1942.

BAA can be performed either using the Greulich and Pyle

(GP) [1] or Tanner-Whitehouse (TW2) [2] methods. The GP
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method compares the patient’s radiograph with an atlas of repre-

sentative ages and determines the bone age. The TW2 system is

based on a scoring system that examines 20 specific bones. In

both cases, BAA requires a considerable time and contains sig-

nificant interrater variability, leading to clinical challenges when

therapy decisions are made based on changes in a patient’s BAA.

Attempts have been made to shorten the evaluation process by

defining shorthand methods to perform BAA more efficiently;

however, these still rely on human interpretation and reference to

an atlas [3].

BAA is the ideal target for automated image evaluation as

there are few images in a single study (one image of the left

hand and wrist) and relatively standardized reported findings

(all reports contain chronological and skeletal ages with rela-

tively standardized keywords, like Bbone age^ or Byear old^).

This combination is an appealing target for machine learning,

as it sidesteps many labor-intensive preprocessing steps such

as using Natural Language Processing (NLP) to process radi-

ology reports for relevant findings.

Deep learning has proven itself a powerful method for a

wide range of computer vision image tasks [4], leading to

growing interest in using the technique to replace convention-

al algorithms using manually crafted features. From using

deep CNNs to detect patterns of interstitial lung disease on

2D patches of chest CTs [5] to segmenting the vascular net-

work of the human eye on fundus photos [6], deep CNNs have

proven enormously successful since they enable learning

highly representative, layered, hierarchical abstractions from

image data [7]. In addition to segmentation and detection

tasks, many deep learning-based methods are well suited for

recognition and classification tasks in medical imaging [8, 9].

However, to the best of our knowledge, a large-scale, fully-

automated, data-driven, deep learning approach has not been

introduced to reduce human expert interobserver variability

and improve workflow efficiency of BAA in any published

works. We propose a fully automated deep learning platform

to perform BAA using deep CNNs for detection and classifi-

cation with the deployed system able to automatically gener-

ate structured radiology reports as in Fig. 1.

Method

Data Preparation

Data Collection

IRB approval was obtained for this retrospective study. Using

an internal report search engine (Render), all radiographs and

radiology reports using the exam code BXRBAGE^were que-

ried from 2005 to 2015. Accession numbers, ages, genders,

and radiology reports were collected into a database. Using

the open source software OsiriX, DICOM images

corresponding to the accession numbers were exported. Our

hospital’s radiology reports include the patient’s chronological

age and the bone age with reference to the standards of

Greulich and Pyle, second edition [1].

Data Categorization

Radiographs from patients with chronological age of 5–18 years

and skeletally mature (18 years and up) were included in the

dataset. In this study, ages 0–4 years were excluded for two

reasons. First, there were only a limited amount of radiographs

for patients in the 0–4 year-old bracket (298 cases for females

and 292 cases for males), which significantly reduced the vol-

ume of images usable for training. Second, the overwhelming

indication for bone age assessment at our institution is for ques-

tions of delayed puberty, short stature, or precocious puberty.

These examinations are infrequently performed for patients less

than 5 years of age. The reported bone ages were extracted from

the radiologist report by determining bone age-related keywords

such as Bbone age^ and Bskeletal.^ The extracted bone ages

were calculated in the form of years, floored, and categorized

by year ranging from 5 to 18 years. Skeletally mature cases were

considered 18 years [10]. For cases where the reported bone

ages were given in a range, we assigned the arithmetic mean

of the range as the actual bone age. The total number of studies

originally retrieved was 5208 for the female cohort and 5317 for

the male cohort. After excluding ages 0–4 years and aberrant

cases—right hands, deformed images, and uninterpretable re-

ports—4278 radiographs for females and 4047 radiographs for

males were labeled by skeletal age as in Fig. 2.

We randomly selected 15% of the total data for use as a

validation dataset and 15% for use as a test dataset. The remain-

der (70%) was used as training datasets for the female and male

cohorts. The validation datasets were utilized to tune

hyperparameters to find the best model out of several trained

models during each epoch. The best network was evaluated

using the test datasets to determine whether the top 1 prediction

matched the ground truth, was within 1 year or 2 years. In order

to make a fair comparison, we used the same split datasets for

each test as new randomdatasetsmight prevent fair comparisons.

Preprocessing Engine

Input DICOM images vary considerably in intensity, contrast,

and grayscale base (white background and black bones or

black background and white bones) as shown in Fig. 3. This

variance of the training radiographs prevents algorithms from

learning salient features. As such, a preprocessing pipeline

that standardizes images is essential for the model’s accuracy

by eliminating as much unnecessary noise as possible. For this

application, bones are the most important features to be pre-

served and enhanced as they are central to BAAs. Therefore,

we propose a novel preprocessing engine that consists of a
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detection CNN to identify/segment the hand/wrist and create a

corresponding mask followed by a vision pipeline to standard-

ize and maximize the invariant features of images.

Normalization

The first step of the preprocessing engine is to normalize ra-

diographs for a grayscale-base and image size before feeding

them to the detection CNN. Some images have black bones

with white backgrounds and others have white bones with

black backgrounds (Fig. 3). Image size varies considerably from

a few thousand to a few hundred pixels. To normalize the differ-

ent grayscale bases, we calculated the pixel-means of 10 × 10

image patches in the four corners of each image and compared

themwith the half value of themaximumvalue for a given image

resolution (e.g., 128 for 8-bit resolution). This effectively deter-

mines whether an image has a white or black background,

allowing us to normalize them all to black backgrounds. The

next step normalizes sizes of input images. Almost all hand ra-

diographs are height-wise rectangles. Accordingly, we resized

Fig. 1 Overview of a the conventional GP-BAA methodology and b our proposed fully automated BAA deep learning system

Fig. 2 Bone age distribution for radiographs of female and male left hands
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the heights of all images to 512 pixels, then through a combina-

tion of preserving their aspect ratios and using zero-padding; the

widthswere all made 512 pixels, ultimately creating standardized

512 × 512 images. We chose this size for two reasons: it needed

to be larger than the required input size (224 × 224) for the neural

network, and this size is the optimal balance for the performance

of the detection CNN and the speed of preprocessing. Larger

squares improve the detection CNN performance at the cost of

slower deployment time, while smaller squares accelerate the

testing time, but they result in worse image preprocessing.

Detection CNN

There are five different types of objects on hand radiographs:

bone, tissue, background, collimation, and annotation markers

(Fig. 3). In order to segment the hand and wrist from

radiographs, we utilized a CNN to detect bones and tissues,

construct a hand/wrist mask, and apply a vision pipeline to

standardize images. As shown in Fig. 4, image patches for the

five classes were sampled in the normalized images through

the use of ROIs. The sampled patches are a balanced dataset

with 1 M samples from each class. We used 1000 unique

radiographs, which randomly selected from the training

dataset, to generate diverse object patches. We used LeNet-5

[11] as the network topology for the detection CNN because

the network is an efficient model for coarse-grained recogni-

tion of obviously distinctive datasets and used in applications

such as MNIST digit recognition [12]. In addition, the net-

work requires small amount of computations and trivial mem-

ory space for trainable parameters at deployment time. We

trained the model with the set of the sampled patches for

100 epochs using a stochastic gradient descent (SGD)

Fig. 3 Examples of input radiographs utilized in this work. All images have varying sizes, but they were resized for the purposes of this figure
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algorithm with 0.01 of the base learning rate decreased as a

factor of ten by three steps based on convergence to loss of

function. The 25% of training images per class were held out

as a validation dataset to select the best model out of epochs.

Reconstruction

The next step is to construct a label map which contains hand

and non-hand regions. For each input radiograph, the detec-

tion system slides across the entire image, sampling patches,

and records all class scores per pixel using the trained detec-

tion CNN. Based on the score records, the highest-score class

is labeled to each pixel. After that, a label map is constructed

by assigning pixels labeled as bone and tissue classes to a

hand label and other pixels to a non-hand label.

Mask Generation

Most label maps have clearly split regions of hand and non-hand

classes, but like an example in Fig. 4, false-positive regions were

sometimes assigned to the hand class. As a result, we extracted

the largest contiguous contour, filled it, and then created a clean

mask for the hand and wrist shown in Fig. 4.

Vision Pipeline

After creating the mask, the system passes it to the vision pipe-

line. The first stage uses themask to remove extraneous artifacts

from the image. Next, the segmented region is centered in the

new image to eliminate translational variance. Subsequently,

histogram equalization for contrast enhancement, denoising,

and sharpening filters are applied to enhance the bones. A final

preprocessed image is shown in Fig. 4.

Image Sample Patch Size and Stride Selection

Preprocessing performance depends on the size of an image

sample patch and the stride by which the detection system

moves. We conducted a regressive test to find the optimal

image patch size and stride by comparing varying strides (2,

4, 8, 16) and image patch sizes (16 × 16, 24 × 24, 32 × 32,

40 × 40, 48 × 48, 56 × 56, 64 × 64) as shown in Fig. 5a. For

this experiment, 280 images representing 10 images per class

for females and males were randomly selected from the test

dataset to evaluate the preprocessing engine’s performance by

calculating the arithmetic mean of Intersection over Union

values (mIoU) between the predicted and ground truth binary

maps. Based on the results in Fig. 5, a 32 × 32 image patch

size and a stride of 4 are the optimal configuration with a

mIoU of 0.92.

Classification CNN

Deep CNNs consist of alternating convolution and pooling

layers to learn layered hierarchical and representative abstrac-

tions from input images, followed by fully connected classifi-

cation layers which are then trainable with the feature vectors

extracted from the earlier layers. They have achieved consider-

able success in many computer vision tasks including object

classification, detection, and semantic segmentation. Many in-

novative deep neural networks and novel trainingmethods have

demonstrated impressive performance for image classification

Fig. 4 Overview of a deep CNN-based preprocessing engine to automatically detect a hand, generate a handmask, and feed that into the vision pipeline

to standardize images, making the trained automated BAA model invariant to differences in input images
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tasks, most notably in the ImageNet competition [13–15]. The

rapid advance in classification of natural images is due to the

availability of large-scale and comprehensively annotated

datasets such as ImageNet [16]. However, obtaining medical

datasets on such scale and with equal quality annotation as

ImageNet remains a challenge. Medical data cannot be easily

accessed due to patient privacy regulations, and image annota-

tion requires an onerous and time-consuming effort of highly

trained human experts. Most classification problems in the

medical imaging domain are fine-grained recognition tasks

which classify highly similar appearing objects in the same

class using local discriminative features. For example, skeletal

ages are evaluated by the progression in epiphyseal width rela-

tive to the metaphyses at different phalanges, carpal bone ap-

pearance, and radial or ulnar epiphyseal fusion, but not by the

shape of the hand and wrist. Subcategory recognition tasks are

known to be more challenging compared to basic level recog-

nition as less data and fewer discriminative features are avail-

able [17]. One approach to fine-grained recognition is transfer

learning. It uses well-trained, low-level knowledge from a

large-scale dataset and then fine-tunes the weights to make

the network specific for a target application. This approach

has been applied to datasets that are similar to the large-scale

ImageNet such as Oxford flowers [18], Caltech bird species

[19], and dog breeds [20]. Although medical images are con-

siderably different from natural images, transfer learning can be

a possible solution by using generic filter banks trained on the

large dataset and adjusting parameters to render high-level fea-

tures specific for medical applications. Recent works [21, 22]

have demonstrated the effectiveness of transfer learning from

general pictures to the medical imaging domain by fine-tuning

several (or all) network layers using the new dataset.

Optimal Network Selection for Transfer Learning

We considered three high-performing CNNs, including AlexNet

[13], GoogLeNet [14], and VGG-16 [15], as candidates for our

system as they were validated in ImageNet Large Scale Visual

Recognition Competition (ILSVRC) [23]. Fortunately, Canziani

et al. performed a comparative study between the candidate net-

works. A summary of their differences is presented in Table 1

[24]. If accuracy is the sole determiner, VGG-16 is the best

performer and AlexNet is the worst. However, GoogLeNet uti-

lizes∼25 times fewer trainable parameters to achieve comparable

performance to VGG-16with a faster inference time. In addition,

GoogLeNet is themost efficient neural network [24], particularly

Fig. 5 Finding the optimal combination of image patch sizes and strides

for optimal mask generation in the preprocessing engine. a mean

Intersection over (mIoU) results were shown for all combinations of

strides (2, 4, 8, 16) and image patch sizes (16 × 16, 24 × 24, 32 × 32,

40 × 40, 48 × 48, 56 × 56, 64 × 64). b Representative predicted and

ground truth binary maps with the equation for Intersection over Union

(IoU) for a single case. mIoU was calculated by taking the arithmetic

mean of IoU values for all 280 test cases

Table 1 Comparisons of the

three candidate networks for

transfer learning in terms of

trainable parameter number,

computational requirements for a

single inference, and single-crop

top 1 accuracy on the ImageNet

validation dataset

No. of trainable

parameters

No. of operations needed

for a single inference

Single-crop top

1 validation accuracy

GoogleNet [14] ˜5̃M (1×) ˜3̃ G-ops (1×) ˜6̃8.00%

AlexNet [13] ˜6̃0M (12×) ˜2̃.5 G-ops (0.83×) ˜5̃4.50%

VGG-16 [15] ˜1̃40M (28×) ˜3̃2 G-ops (10.6×) ˜7̃0.60%

Numbers from a comparative study conducted by Canziani et al. [24]
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because the inception modules described in Figs. 5 and 6, enable

the network to have a greater capability to learn hierarchical

representative features without many trainable parameters by

minimizing the number of fully connected layers.

Training Details

We retrieved a pretrained model of GoogLeNet from Caffe Zoo

[25] and set about fine-tuning the network to medical images.

ImageNet consists of color images, and the first layer filters of

GoogLeNet correspondingly comprise three RGB channels.

Hand radiographs are grayscale, however, and only need a single

channel. As such, we converted the filters into a single channel

by taking arithmetic means of the preexisting RGB values. We

confirmed that the converted grayscale filters matched the same

general patterns of filters, mostly consisting of edge, corner, and

blob extractors. After initializing the network with the pretrained

model, our networks were further trained using an SGD for 100

epochs with a mini-batch size of 96 using 9 different combina-

tions of hyperparameters, including base learning rates (0.001,

0.005, 0.01) and gamma values (0.1, 0.5, 0.75), in conjunction

with a momentum term of 0.9 and a weight decay of 0.005.

Learning rate, a hyperparameter that controls the rate of weights

and bias change during training a neural network, is decreased

by the gamma value by three steps to ensure a stable conver-

gence to loss function. It is challenging to determine the best

learning rate because it varies with intrinsic factors of the

dataset and neural network topology. To resolve this, we use

an extensive grid search for optimal combinations of

hyperparameters using the NVIDIA Devbox [26] to find the

optimal learning rate schedule.

Preventing Overfitting (Data Augmentation)

Deep neural networks require a large amount of labeled training

data for stable convergence and high classification accuracy. If

there is limited training data, deep neural networks will overfit

and fail to generalize for target application. This is a particular

challenge in medical imaging, as compilation of high quality and

well-annotated images is a laborious and expensive process. As a

result, severalmethods are used to decrease the risk of overfitting.

Data augmentation is one technique where we synthetically in-

crease the size of the training dataset with geometric transforma-

tions, photometric transformations, noise injections, and color

jittering [13], while preserving the same image label. Table 2

details the geometric, contrast, and brightness transformations

used for real-time data augmentation and the number of possible

synthetic images for each. Affine transformations, including ro-

tation, scaling, shearing, and photometric variation were utilized

to improve resiliency of the network to geometric variants and

variations in contrast or intensity. Rotations ranged from −30 to

+30 in 5° increments. Scaling operations were performed by

multiplying the width by 0.85–1.0 in 0.01 increments and the

height by 0.9–1.0 in 0.01 increments. Shearing was performed

Fig. 6 a GoogLeNet network topology that we used for this study. b The inception module, utilized in GoogLeNet, contains six convolutional layers

with different kernel sizes and a pooling layer. All resultant outputs are concatenated into a single output vector
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by applying an x and y angle ranging from −5 to +5 with an

increment of 1°. Brightness was adjusted by multiplying all

pixels by a factor ranging from 0.9 to 1.0 with increment of

0.01 and adding an integer ranging from 0 to 10. These transfor-

mations were augmented with random switches for each trans-

formation. By using real-time data augmentation, a single image

can be transformed into one of 1,107,150,000 images (= 61 *

150 * 121 * 100), preventing image repetition during each epoch.

This method does not increase computing time or storage as

images for the next iteration are augmented on the CPU while

the previous iteration is being trained via the GPU. We excluded

random horizontal inversion, frequently utilized for natural im-

ages, because BAA only uses left-sided radiographs by conven-

tion. We also did not perform random translation as all were

centered at the image preprocessing stage.

Results

Preprocessing Engine

Figure 7 demonstrates the effectiveness of the preprocessing

engine at performing image standardization. There is exten-

sive variability among the input images with half the images

having white bones on black backgrounds, variable collima-

tion configurations, and presence or absence of side markers.

Normalizing the grayscale base and image size produces the

images in the second row. The third row presents the con-

structed label maps used for automatic hand/wrist segmenta-

tion used by a second trained CNN. However, the label map

cannot be used as a segmentation mask because there are

frequently false-positive pixels, such as in the second image

Table 2 Summary of real-time

data augmentation methods used

in the study

Method Range No. of synthetic

images

rotate −30° ≤ rotation angle ≤30° 61

resize 0.85 ≤ width < 1.0, 0.9 ≤ height < 1.0 150

shear −5° ≤ x angle ≤5°, −5° ≤ y angle ≤5° 121

pixel transform α* pixel +_β, (0.9 ≤ α ≤ 1.0, 0 < β ≤ 10) 100

Geometric (rotation, resizing, and shearing) and photometric transformations (contrast and brightness) were

applied to input images prior to training the network to prevent overfitting

Fig. 7 Ten examples at each stage of preprocessing as described in the

BPreprocessing engine^ section a Input radiographs. The images have

been transformed to a square shape for consistent layout. b Normalized

images with consistent grayscale base and image size. c Label maps of

hand (white) and non-hand (black) classes. d Generated masks for

segmentation. e Final preprocessed images.
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of the third row. These pixels can be removed by extracting the

largest contour and filling the resulting polygon to create a uni-

formmask shown in the fourth row. The vision pipeline can then

segment the hand and wrist using the generated mask, enhance

the bone edges, and denoise the image. The pipeline takes

DICOM objects from various vendors with huge differences in

appearance then automatically segments, centers, and enhances

the images prior to training and deployment.

Classification CNN

Optimal Depth of Fine Tuning

Tajbakhsh et al. [22] found that a layer-wise fine-tuning schema

can find the best performance for a given application with a

limited amount of training data in the medical imaging domain.

The early layers learn low-level image features, like edges and

corners, while the later layers learn higher-level features applica-

ble for the target application [22, 27]. Transfer learning typically

requires fine-tuning the later layers to the specific dataset, but it

might require fine-tuning early layers, depending on how differ-

ent the source and target applications are [22]. To find the optimal

number of layers requiring adjustment for BAA, we conducted a

regressive test by incrementally fine-tuning pretrained CNNs

from the last layer to the first. In addition, the CNN was trained

from scratch with a random weight initialization to determine

whether the fine-tuning method was better than training from

scratch. In order to enable a stable convergence of loss function,

it is essential to anneal the learning rate over time. Similar to the

BClassification CNN^ section, a grid search for finding the

optimal combination of hyperparameters was conducted to en-

sure the optimal training parameters. Figure 8 presents test accu-

racy for the Bcorrect^ case, with the real-time data augmentation,

for the pretrained CNNs that were fine-tuned for layers ranging

from fully connected (fc) to all layers. A base learning rate of

0.005 was determined for the best performing models at

fine-tuning tests, and 0.01 was employed for training from

scratch. If large learning rates are used for training the pretrained

model, well-trained generic features will be overwritten, causing

overfitting of the model. We found out that fine-tuning weights

of all layers is the best scheme for BAA. Since medical images

are markedly different from natural images, all layers must be

fine-tuned to generate low-level and high-level features for BAA.

When training the network from scratch, there were many cases

where the loss function failed to converge, implying that random

weight initialization is not a stable training method given the

small amount of data.

Test Accuracy

Test accuracy of the four different methods for female and

male BAAs is detailed in Fig. 9. The first model (M1) was

the trained CNN with original hand radiographs resized to

224 × 224. Test accuracy was 39.06% for the female cohort

and 40.60% for the male cohort. Skeletal ages for the female

and male radiographs were assigned an age within 1 year of

ground truth 75.59 and 75.54% of the time and within 2 years

90.08 and 92.35% of the time, respectively. The secondmodel

(M2) was conducted with preprocessed images, and the third

model (M3) was performed by turning on real-time data

Fig. 8 CNN test accuracy with the real-time data augmentation using

different styles of training. The Btrained from scratch^ method trains a

CNN with a random weight initialization. Other methods fine-tune the

ImageNet pretrained CNNs by incrementally updating weights of each

fully connected (fc) layer from inception5 to conv1, detailed in Fig. 6
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augmentation while training the network from scratch.

Neural network generalization improved with the use of

preprocessed and augmented data, with test accuracy in-

creasing by 33.85% for the female cohort and 34.83% for

the male cohort. The last model (M4) was the fine-tuned

CNN with preprocessed images by turning on real-time

augmentation. Test accuracy was 57.32% for the female

cohort and 61.40% for the male cohort. BAAs for female

radiographs were assigned an age within 1 year of ground

truth 90.39% of the time and 98.11% within 2 years. BAAs

for male radiographs were assigned an age within 1 year of

ground truth (94.18%) of the time and 99.00% of the time

within 2 years. Root mean squared error (RMSE) was

0.93 years for females and 0.82 years for males, improved

by 62% for the female and 57% for the male cohorts com-

pared to RMSE for M1. Furthermore, mean average preci-

sion (mAP) was 53.3% for the female cohort and 55.8% for

the male cohort, improved by 57.69% for females and

72.22% for males compared to mAP for M1.

Visualization

Attention Map

Despite their impressive performance at natural image

classification, deep neural networks are not well under-

stood. Several approaches for investigating what neural

networks use to perform classification have been pro-

posed [27, 28]. We utilized the occlusion method [27] to

generate attention maps to find which part of an image is

locally significant for fine-grained classification. The oc-

clusion method iteratively slides a small patch across the

image, passing occluded input images to the forward net-

work and generating two-dimensional attention maps

based on the change in classification probability as a

function of occluder position. Only correctly classified

input images were selected to determine the important

regions of the input images. In Fig. 10, representative

attention maps were generated for four major skeletal de-

velopment stages—prepuberty, early-and-mid puberty,

late puberty, and postpuberty [10]—highlighting the im-

portant portions of the image which allowed the neural

network to perform fine-grained classification. Infant

and toddler categories were excluded. Intriguingly, the

significant regions for each classification are partially in

accordance with the targeted features of each category

described in [10]. The prepubertal attention maps (a) fo-

cus on carpal bones and mid-distal phalanges. The

early-mid and late-pubertal attention maps (b and c) focus

less importance on the carpal bones and more on the pha-

langes, implying that these are more important predictors

of BAA than the carpal bones. For postpubertal attention

maps (d), importance returns to the wrist, where the radial

and ulnar physes are the last to close.

Fig. 9 Performance of four different methods (M1–M4) of training for

female (a) and male (b) bone age assessments. M1 trains a CNN from

scratch with a random weight initialization on original images down

sampled to 224 × 224 pixels. M2 contains images from the automated

preprocessing engine. M3 contains synthetically generated images for

improving network generalization in addition to M2. M4 fine-tunes an

ImageNet pretrained CNN on the preprocessed images with data

augmentation turned on. BCorrect^ corresponds to the case where the

prediction of the model is the same as the ground truth. BWithin 1 year^

and Bwithin 2 years^ include the cases where the network’s prediction is

within 1 and 2 years, respectively. In addition, root mean squared error

(RMSE) and mean average precision (mAP) were reported for the four

different models to figure out how robust and well-performing each

model is
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Discussion

Comparison with Previous Works

Fully automated BAA has been a goal of computer vision and

radiology research for many years. Most prior approaches

have included classification or regression using hand-crafted

features extracted from regions of interest (ROIs) for specific

bones segmented by computer algorithms. Table 3 summa-

rizes four prior attempts at BAA in comparison with our meth-

od. Seok et al. [29] utilized a scale invariant feature transform

(SIFT) to extract image descriptors and singular value decom-

position (SVD) to create fixed-size feature vectors, feeding

them into a fully connected neural network. Since they used

only a small number of images, their model was not robust to

images totally different from their internal dataset. They also

did not provide any quantifiable performance metrics.

Somkantha et al. [30] selected the carpal bone region using

projections in both the horizontal and vertical axes, extracting

boundaries of the carpal bones. They extracted five morpho-

logical features from the segmented carpal bones, using them

for regression with a support vector machine (SVM). This

approach is similar to Zhang et al.’s approach [32] in that

hand-engineered features were extracted from carpal bones,

and the features were used as input for a fuzzy logic classifier.

However, this approach is not applicable for children older

Fig. 10 Selected examples of attentionmaps for female (upper rows) and

male (lower rows) in the four major skeletal maturity stages: prepuberty,

early-and-mid puberty, late puberty, and postpuberty stages [10]. Infant

and toddler categories were excluded. Six representative attention maps

were carefully chosen to represent the general trend for each category. a

Prepuberty: BAAs from 2 to 7 years for females and 3–9 years for males.

b Early-and-mid puberty: 7–13 years for females and 9–14 years for

males. c Late-puberty: 13–15 years for females and 14–16 years for

males. d Postpuberty: 15 and up for females and 17 years and up for

males

Table 3 Summary and comparison of prior attempts at automated BAA: dataset, method, salient features, and their limitations

Dataset Method Features Limitations

[29] 24 GP female images SIFT; SVD Fully

connected NN

Fixed-sized features vectors

from SIFT description with

SVD

Training and validation with

limited data; deficiency of

robustness to actual images

[30] 180 images from [31] Canny edge detection

Fuzzy classification

Morphological features

regarding carpal bones

Not applicable for children

above 7 years

[32] 205 images from [31] Canny edge detection

Fuzzy classification

Morphological features

regarding carpal bones

(Capitate Hamate)

Not applicable for children

above 5 years for females

and 7 years for males

[33] 1559 images from multiple sources AAM

PCA

Features regarding shapes,

intensity, texture of RUS

bones

Vulnerable to excessive noise

in images chronological age

used as input

Our work 8325 images at MGH Deep CNN transfer

learning

Data driven, automatically

extracted features

SIFTscale invariant feature transform, AAM active appearancemodel, PCA principle component analysis, SVD singular value decomposition,NN neural

network, SVM support vector machine, RUS radius ulna short
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than 5 to 7 years as the carpal bones are typically fully mature

by that age and no longer allow meaningful discrimination

beyond that point [10].

The most successful attempt to date is BoneXpert [33], a

software only medical device approved for use in Europe and

the first commercial implementation of automated BAA.

BoneXpert utilizes a generative model, the active appearance

model (AAM), to automatically segment 15 bones in the hand

and wrist and then determine either the GP or TW2 bone age

based on shape, intensity, and textural features. Even though

BoneXpert reports considerable accuracy for automated

BAA, it has several critical limitations. BoneXpert does not

identify bone age directly, because the prediction depends on a

relationship between chronological and bone ages [29]. The

system is brittle and will reject radiographs when there is

excessive noise. Prior studies report that BoneXpert rejected

around 235 individual bones out of 5161 (4.5%) [34]. Finally,

BoneXpert does not utilize the carpal bones, despite their con-

taining discriminative features for young children.

In summary, all prior attempts at automated BAA are based

on hand-crafted features, reducing the capability of the algo-

rithms from generalizing to the target application. Our ap-

proach exploits transfer learning with a pretrained deep

CNN to automatically extract important features from all

bones on an ROI that was automatically segmented by a de-

tection CNN. Unfortunately, all prior approaches used varying

datasets and provide limited details of their implementations

and parameter selection that it is impossible to make a fair

comparison with prior conventional approaches.

How to Improve the System?

Classification Accuracy

The trained model in this study achieved impressive classifica-

tion accuracy within 2 years (>98%) and within 1 year (>90%)

for the female and male cohorts. Areas for future improvement

abound.We plan to use insights from attentionmaps and iterative

radiologist feedback to direct further learning and improve pre-

diction accuracy. The attentionmaps reveal key regions similar to

what domain experts use to perform conventional BAA; howev-

er, it is not certain whether the algorithm uses the exact same

features as domain experts. Rather, this method of visualization

only reveals that the important regions of the images are similar.

The CNN could be using as yet unknown features to perform

accurate fine-grained classification which happen to be in the

same regions. Further investigation is needed to determine if

bone morphology is what the CNN is using for BAA.

However, the algorithm still has room for improvement to

provide even more accurate BAA at a faster interpretation

time. We down sampled native DICOM images to 8-bit reso-

lution jpegs (224 × 224) to provide a smaller matrix size and

use GPU-based parallel computing. In the future, using the

native 14-bit or 16-bit resolution images with larger matrix

sizes will likely improve the performance of algorithm.

Another approach could be to develop a new neural network

architecture optimized for BAA. Recent advanced networks, like

GoogLeNet [14], VGGNet [15], and ResNet [35], contain many

layers—16 to 152—and run the risk of overfitting given our

relatively small amount of training images. Creating a new net-

work topology might be a better approach for BAAwhich could

bemore effective than using transfer learning. Thiswould require

future systematic study to determine the best algorithm for BAA,

beyond the scope of this work.

Lastly, we need to reconsider that bone ages obtained from

reports may not necessarily reflect ground truth as BAA is inher-

ently based on subjective analysis of human experts. In some

radiology reports, bone ages were recorded as single numbers,

a numerical range, or even a time point not in the original GP

atlas. In addition, Greulich and Pyle’s original atlas [36] provides

standard deviations that range from 8 to 11 months for a given

chronological age, reflecting the inherent variation in the study

population. As such, not all the ground truths can be assumed as

correct. To counter this, the algorithm could be enhanced with an

iterative training by applying varying weights to training images

based on confidence levels in reports.

Deployment Time

The proposed deep learning system for BAA will be used in

the clinical environment to both more efficiently and more

accurately perform BAA. It takes approximately 10 ms to

perform a single BAA with a preprocessed image. However,

it requires averagely 1.71 s to crop, segment, and preprocess

an image prior to classification. Most of the time is consumed

by the construction of the label map prior to segmentation.

The time could be decreased by exploiting a selective search

to process only plausible regions of interest [37]. Additionally,

instead of preserving aspect ratios and creating a 512 × 512

pixels image, image warping to a smaller matrix size could

reduce the computational time required for segmentation at

the cost of eventual output image quality. The optimal balance

requires a systematic study, beyond the scope of this work.

Although all stages of preprocessing and BAA cannot be per-

formed in real time (<30 ms), net interpretation time (<2 s) is

still accelerated compared to conventional BAA, which

ranges from 1.4 to 7.9 min [38].

Clinical Application

Figure 1 details the process of conventional BAA by radiolo-

gists and the proposed fully automated BAA system with

automated report generation. Radiologists conventionally

compare the patient’s radiograph to reference images in the

G&P atlas, a repetitive and time-consuming task. Since bone

age is evaluated based on a subjective comparison, interrater
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variability can be considerable. As a result, our system has

another major advantage: it reduces interobserver variability

for a given examination. Repeated presentations of the same

radiograph to the CNN will always result in the same BAA.

Our workflow shows the radiologist a relevant range of

images from the G&P atlas with probability estimate of which

the algorithm considers the best match. The radiologist then

chooses which image he or she thinks is the most accurate

BAA, triggering the system to create a standardized report.

This system can be seamlessly embedded into the reporting

environment, where it provides structured data, improving the

quality of health data reported to the EMR.

Limitations

While our system has much potential to improve workflow, in-

crease quality, and speed interpretation, there are important lim-

itations. Exclusion of 0–4 year olds slightly limits the broad

applicability of the system to all ages. Given that 10 years of

accessions only included 590 patients of ages 0–4 years (5.6%

of the total query), this limitation was felt to be acceptable given

the relative rarity of patients in this age range. Eventually, by

adding more radiographs to the dataset, we hope to expand our

system to include all ages.

Another limitation is our usage of integer-based BAA, rather

than providing time-points every 6 months. This is unfortunate-

ly inherent to the GP method. The original atlas did not provide

consistent time points for assignment of age, rather than during

periods of rapid growth, there are additional time points. This

also makes training and clinical assessment difficult, given the

constant variability in age ranges. This has been a problem that

multiple others have tried to correct, such as Gilsanz andRatib’s

work in this area with the Digital Atlas of Skeletal Maturity,

which uses idealized images from Caucasian children to pro-

vide 29 age groups from 8 months to 18 years of age [10].

While their atlas is more consistent than the GP atlas, it has

the serious limitation of not seeing wide clinical adoption,

therefore limiting the available training data that we can then

use for machine learning.

Because our cohort was underpowered for determinations

below annual age determinations, we elected to floor ages in

the cases where the age was reported as BX years, 6 months^

to maintain a consistent approach to handling all intermediate

time points and the fact that chronological ages are naturally

counted with flooring. However, this could be introducing error.

Retraining the models to account for this by using selectively

rounded cases, a higher volume of cases, higher resolution im-

ages, or higher powered computer systems to find the optimal

combination of settings is beyond the scope of this work but an

important future direction.

Lastly, an important consideration is the extent of interob-

server variability. Limited directly comparable data is available

in the literature regarding interobserver variability in BAA.

These estimates range from 0.96 years for British registrars

evaluating 50 images using Greulich and Pyle to Tanner’s own

publications which suggested manual interpretation using the

TW2 system resulted in differences greater than 1 stage ranging

from 17 to 33% of the time [38–40]. The most comprehensive

open dataset available of hand radiographs with assessment by

two raters is the Digital Hand Atlas [31], compiled by the Image

Processing and Informatics Lab at the University of Southern

California in the late 1990s. All radiographs in that series were

rated by two raters, with an overall RMSE of 0.59 years—

0.54 years for females, 0.57 years for males, and 0.66 years

for all children ranging from 5 to 18 years of age. More recent

publication from Korea reported interobserver variation of

0.51 ± 0.44 years by the GP method [41]. These values provide

a baseline for the human interobserver variability; however, they

may underestimate the true degree of interobserver variability.

Our values of 0.93 years for females and 0.82 years formales are

comparable to the upper limits of these reported values, keeping

in mind that our system does not reject malformed images.

While our dataset does provide a rich source from which to

perform a rigorous assessment of interobserver variability with

multiple raters and experience levels, performing such an anal-

ysis is beyond the scope of this work and will be performed as

part of future examinations to help guide assessments of system

performance.

Conclusion

We have created a fully automated, deep learning system to

automatically detect and segment the hand and wrist, stan-

dardize the images using a preprocessing engine, perform au-

tomated BAAwith a fine-tuned CNN, and generate structured

radiology reports with the final decision by a radiologist. This

system automatically standardizes all hand radiographs of dif-

ferent formats, vendors, and quality to be used as a training

dataset for future model enhancement and achieves excellent

average BAA accuracy of 98.56% within 2 years and 92.29%

within 1 year for the female and male cohorts. We determined

that the trained algorithm assesses similar regions of the hand

and wrist for BAA as what a human expert does via attention

maps. Lastly, our BAA system can be deployed in the clinical

environment by displaying three to five reference images from

the G&P atlas with an indication of our automated BAA for

radiologists to make the final age determination with one-

click, structured report generation.
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