
NEURO

Fully automated detection and segmentation of meningiomas
using deep learning on routine multiparametric MRI

Kai Roman Laukamp1
& Frank Thiele1,2

& Georgy Shakirin1,2
& David Zopfs1 & Andrea Faymonville3

& Marco Timmer3 &

David Maintz1 & Michael Perkuhn1,2
& Jan Borggrefe1

Received: 14 February 2018 /Revised: 19 May 2018 /Accepted: 5 June 2018 /Published online: 25 June 2018
# The Author(s) 2018

Abstract

Objectives Magnetic resonance imaging (MRI) is the method of choice for imaging meningiomas. Volumetric assessment of

meningiomas is highly relevant for therapy planning and monitoring. We used a multiparametric deep-learning model (DLM) on

routine MRI data including images from diverse referring institutions to investigate DLM performance in automated detection

and segmentation of meningiomas in comparison to manual segmentations.

Methods We included 56 of 136 consecutive preoperative MRI datasets [T1/T2-weighted, T1-weighted contrast-enhanced

(T1CE), FLAIR] of meningiomas that were treated surgically at the University Hospital Cologne and graded histologically as

tumour grade I (n = 38) or grade II (n = 18). The DLMwas trained on an independent dataset of 249 glioma cases and segmented

different tumour classes as defined in the brain tumour image segmentation benchmark (BRATS benchmark). The DLM was

based on the DeepMedic architecture. Results were compared to manual segmentations by two radiologists in a consensus

reading in FLAIR and T1CE.

Results The DLM detected meningiomas in 55 of 56 cases. Further, automated segmentations correlated strongly with manual

segmentations: average Dice coefficients were 0.81 ± 0.10 (range, 0.46-0.93) for the total tumour volume (union of tumour

volume in FLAIR and T1CE) and 0.78 ± 0.19 (range, 0.27-0.95) for contrast-enhancing tumour volume in T1CE.

Conclusions The DLM yielded accurate automated detection and segmentation of meningioma tissue despite diverse scanner

data and thereby may improve and facilitate therapy planning as well as monitoring of this highly frequent tumour entity.

Key Points

• Deep learning allows for accurate meningioma detection and segmentation

• Deep learning helps clinicians to assess patients with meningiomas

• Meningioma monitoring and treatment planning can be improved

Keywords Meningioma . Brain neoplasms .Magnetic resonance imaging .Machine learning . Artificial intelligence

Abbreviations

DLM Deep-learning model

FLAIR Fluid-attenuated inversion recovery

T1CE T1-weighted contrast-enhanced MRI

TTV Total tumour volume

TV Tumour volume

Introduction

Meningiomas are neoplasms originating from meningothelial

cells and are among the most common intracranial neoplasms

with an incidence of 0.9% in routine brain magnetic resonance

imaging (MRI) [1–5]. Almost one-third of primary intracrani-

al lesions are meningiomas [2]. According to the World

Health Organization (WHO), the lesions are graded as benign

(grade I), atypical (grade II) or anaplastic (grade III) [1, 6, 7].

The histological grading allows for the prediction of
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biological behaviour and prognosis of meningiomas. There

have been detailed studies showing that grade II and III me-

ningiomas are associated with increased risk of recurrence,

invasiveness and aggressiveness [3, 8, 9].

MRI is the key method for diagnosis and characterisation

of meningiomas, resection planning, therapy decisions and

monitoring of therapy [5, 7, 10]. Typical meningiomas occur

sessile or lentiform in shape and are sharply circumscribed

showing wide dural attachments. They have a strong laminar

contrast enhancement and are usually isointense to hyperin-

tense in T2-weighted and fluid-attenuated inversion recovery

(FLAIR) images. Apparent diffusion coefficient (ADC)

values may differ significantly among meningiomas and are

often isointense to normal brain tissue [7]. Peritumoural oede-

ma of the brain parenchyma may be present, especially when

meningiomas show greater tumour volumes [7]. Atypical and

anaplastic meningiomas present with larger tumour volumes

compared to benign meningiomas [1, 11]. Further, higher me-

ningioma grades show faster tumour growth [1]. However,

there is no clear radiological criteria so far that can reliably

distinguish grade I and II meningiomas. Anaplastic grade III

meningiomas present differently on MRI and are often irreg-

ularly shaped [5].

To the best of our knowledge, there are no studies regarding

the fully automated detection and segmentation of meningio-

mas to date. As tumour progression of meningiomas is com-

monly slow, multifocal and occurring in different directions,

an automated detection of meningiomas might facilitate and

improve image reading. Regarding the manual volumetric as-

sessment of meningiomas in MRI, it has been shown that

three-dimensional assessments provide an increased sensitiv-

ity for the detection of tumour progression in comparison to

two-dimensional assessments [1, 12]. Therefore, the volumet-

ric evaluation of meningiomas is superior to traditional diam-

eter methods when assessing tumour growth but is time-

consuming [1, 12, 13]. Further, volumetric assessment of

MR images of the brain is often conducted in routine image

assessments and necessary for many neurological diseases,

such as brain tumours [14].

In contrast, automated detection and segmentation of me-

ningiomas inMRI may be performed as pre-processing before

reading the images, possibly allowing for a more detailed

analysis of tumour volumes and further multiparametric im-

age analysis. Furthermore, automated tumour segmentation

and evaluation may lead to an increased robustness and reli-

ability due to reduced inter-reader bias [14]. As the tumour

volume at primary diagnosis correlates with recurrence rates

[1, 12], a precise volumetric assessment could help to differ-

entiate between meningioma grades. However, the correlation

between growth and histological grading is vague and has to

be further evaluated [1, 11, 12].

Automatic brain tumour segmentation algorithms

should address several challenges to be reliable, such as

anatomical variations, varying imaging data due to differ-

ent MRI scanners as well as variations in scanner parame-

ters. Further, pathologies such as brain tumours vary

strongly in their presentation [5, 14]. The technological

advancements of deep-learning models (DLMs) led to sig-

nificant improvements regarding the automated tumour de-

tection and the technology is currently on the verge of

being used in clinical routine [13, 15, 16]. DLMs work

with multiple processing layers and levels of abstractions

resulting in deep convolutional neural networks that need a

larger amount of training data for extraction of a complex

hierarchy of features by its self-learning abilities [14, 17,

18]. A neural network architecture consists of different

layers for convolution, pooling, and classification [14].

The necessary training data and segmentation Bgold

standard^ is usually obtained by manual segmentations.

For manual brain tumour segmentation high intra- and

inter-rater variability between 20-30% has been reported

[14, 19]. Besides deep learning other (semi-)automated

methods have been used for brain tumour segmentation,

especially for most common intracranial neoplasms, i.e.

meningiomas and gliomas. For semi-automated segmenta-

tions, various approaches have been applied, such as re-

gion growing, random walker, non-negative matrix

factorisation, fuzzy clustering and livewire algorithm

[20–24]. Automated tumour volume definition has also

been applied in post-radiation patients using an algorithm

that is based on the Chan-Vese active contour method and

patient-specific intensities [25].

The purpose of this study was to investigate the reliability

of automated detection and segmentation of grade I and II

meningiomas using a deep learning model on routine

multiparametric MRI data from diverse scanners including

referring institutions.

Materials and methods

Patients

This study was approved by the local institutional review

board. One hundred and thirty-six patients that were referred

to the University Hospital of Cologne from January 2012 to

May 2016 for treatment of meningiomas were included in this

retrospective study (Fig. 1). All diagnoses were confirmed

histologically according to the guidelines of the WHO [6, 8].

Only patients with a complete available MRI dataset before

treatment were included, with T1- and T2-weighted, FLAIR

and T1-weighted contrast-enhanced (T1CE) MRI

sequences being defined as necessity for study inclusion.

Slice thickness varied from 1.2 to 6 mm. Nine patients were

excluded due to (1) a prevalent second tumour entity (n = 3),

(2) severe leukoencephalopathy impairing the FLAIR tumour
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segmentation (Fazekas III, n = 4) and (3) strong artefacts due

to patient movement (n = 2). Fifty-six patients fulfilled all

criteria and were included in this study.

MRI

All scans were conducted for clinical indications. The MRI

acquisitions were performed on diverse scanners from refer-

ring institutions (n = 37; 1.0, 1.5, 3.0 T; (1) Siemens MRI

models: Avanto, Espree, Aera, Verio, Essenza (Siemens,

Erlangen, Germany), (2) Toshiba Titan (Toshiba, Tokio,

Japan) and (3) Philips MRI models: Panorama, Intera,

Achieva, Ingenia (Philips Healthcare, Best, The Netherlands)

and on local scanners from the University Hospital of Cologne

[n = 19, Philips models: Achieva, Ingenia, Intera; 1.5 and

3.0 T (Philips Healthcare, Best, The Netherlands)]. MRI scan

parameters are given in Supplementary Table S1. At the

University Hospital of Cologne, for T1CE MR images

patients were injected intravenously with gadolinium

(Dotarem; Guerbet, Roissy, France: 0.5 mmol/ml, i.e. 1 ml =

279.32 mg gadoteric acid = 78.6 mg gadolinium) with a con-

centration of 0.1 mmol/kg body weight. The contrast medium

applications in the referring institutions were not standardised.

Manual segmentation

Manual segmentation (semi-automated) was performed by

two radiologists in a consensus reading using IntelliSpace

Discovery (Philips Healthcare, Best, The Netherlands).

Contrast-enhancing tumour and FLAIR isointense to hyperin-

tense tumour as well as surrounding hyperintense oedema

were defined as tumour volume and segmented separately in

T1CE and FLAIR images. Total tumour volume (TTV) was

defined as the union of tumour volumes in T1CE and FLAIR,

including solid contrast-enhancing tumour parts, surrounding

oedema in FLAIR and if present tumour necrosis. T1CE tu-

mour volume was defined as contrast-enhancing tumour vol-

ume in T1CE images.

Automated deep learning-based segmentation

The DLM for automated detection and segmentation was

trained on an independent dataset of 249 glioma cases. The

DLM preforms voxel-wise classifications of four tumour clas-

ses (oedema, contrast-enhancing tumour, necrosis, non-

enhancing tumour) as defined in the BRATS benchmark [26].

MR images were pre-processed with established tools

(SPM8, Wellcome Trust Centre for Neuroimaging, London,

UK; Intellispace Discovery, Philips Healthcare, Best,

The Netherlands) before feeding into automatic segmentation.

The processing pipeline included (1) bias field correction, (2)

co-registration, (3) skull stripping, (4) resampling to isotropic

resolution of 1 × 1 × 1 mm3 and (4) normalisation to zero-

mean and standard deviation of one. The DLM was based on

the DeepMedic architecture [15] using a deep 3D

convolutional neural network, followed by a 3D fully con-

nected network to remove false positives. The 3D

convolutional neural network included two pathways that ap-

ply different image resolution to capture both short and long-

range characteristics of the tumour appearances. Extracted tu-

mour volumes for analysis were TTVas well as T1CE TV.

Statistical analysis

Statistical analyses were conducted using JMP Software

(V12; SAS Institute, Cary, USA). Quantitative results are

displayed as mean (± standard deviation). Wilcoxon signed

rank test was used for the determination of statistical differ-

ences. Statistical significance was set to p < 0.05.

To evaluate automatic segmentation, the resulting tumour

volumes were compared to the manual ground truth annota-

tions. For TTV and T1CE TV, segmentations were compared

with respect to volume and voxel-wise accuracy. As before,

the accuracy was computed as overlap of ground truth seg-

mentation S1 and model segmentation S2 using the Dice co-

efficient (similarity index) [27]:

DSC S1; S2ð Þ ¼
2jS1∩S2j

S1j j þ S2j j

Fig. 1 Patient selection. Patients were excluded due to an incomplete

dataset, prevalent second tumour, leukoencephalopathy or severe

artefacts. Fifty-six patients fulfilled all requirements and could be inte-

grated in further machine-learning analyses
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Results

Patients

The 56 adult patients included 28 women and 28 men

with a mean age of 59.1 ± 13.7 years (range, 33-86

years). Thirty-eight patients had a grade I meningioma

and 18 patients a grade II meningioma, including menin-

giomas of the falx (n = 6), convexity (n = 24), sphenoid

wing (n = 9), olfactory groove (n = 4), suprasellar (n =

2), posterior fossa (n = 10) and with attachment to the

sinus (n = 1).

Mean TV from manual segmentations in T1CE was

30.9 ± 25.9 cm3 and TTV as the union of tumour volume

in T1CE and FLAIR from manual segmentation was 74.0 ±

67.2 cm3. TV by automated detection was smaller: TV in

T1CE was 22.8 ± 18.8 cm3 and TTV was 67.9 ± 58.8 cm3.

Additional detailed TV data sorted after localisation are

given in Table 1.

Detection

In 55 of 56 patients the DLM detected presence of meningio-

mas, leading to a detection accuracy of 98%. The single me-

ningioma that was not detected was a grade II meningioma

located at the skull base (os sphenoidale) with a rather small

tumour size of 12.7 cm3 and little surrounding oedema of 3.6

cm3. Visually, the tumour was well detectable (Fig. 2).

Segmentation

Manual segmentation and automated deep-learning-based

segmentation correlated well regarding TTV and contrast en-

hancing tumour volume. The mean Dice coefficient for TTV

was 0.81 ± 0.10 (range, 0.46-0.93) and 0.78 ± 0.19 for T1CE

tumour volume (range, 0.27-0.95). There was no significant

difference between Dice coefficients of TTVand T1CE TV (p

> 0.05). Further, Dice coefficients did not differ significantly

between grade I and II meningiomas. For TTV, the mean Dice

Table 1 Tumour volumes listed

after different localisations Localisation Number Manual segmentations Automated segmentations

TTV TV in T1CE TTV TV in T1CE

Falx 6 104.8 ± 58.9 39.6 ± 12.7 90.0 ± 50.2 32.6 ± 16.3

Convexity 24 56.2 ± 53.5 29.0 ± 28.2 53.8 ± 49.5 21.3 ± 18.7

Sphenoid wing 9 91.8 ± 91.1 31.9 ± 28.6 84.8 ± 83.4 18.3 ± 18.9

Olfactory groove 4 127.9 ± 98.8 36.2 ± 27.5 103.8 ± 73.0 23.7 ± 21.4

Suprasellar 2 18.0 ± 19.0 12.8 ± 9.8 10.1 ± 10.9 9.4 ± 9.9

Posterior fossa 10 69.2 ± 56.7 27.2 ± 25.4 67.9 ± 56.8 27.0 ± 26.9

Attachment to the sinus 1 114.1 68.8 111.9 34.9

Tumour volume in cm3

TTV total tumour volume; TV tumour volume

Fig. 2 A 41-year-old man with a

meningioma grade II located at

the medial sphenoid wing. The

meningioma showed a rather

small tumour size and was visu-

ally rather easily detectable
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coefficient was 0.80 ± 0.11 for grade I and 0.83 ± 0.07 for

grade II meningiomas. Mean Dice coefficient for T1CE tu-

mour volume was 0.76 ± 0.21 for grade I and 0.83 ± 0.11 for

grade II meningiomas.

In most cases DLM based automated segmentation worked

well in one of the two defined tumour volumes, leading to

high Dice coefficients (over 0.90) either for TTV or T1CE.

In three patients Dice coefficients in both TTVand T1CEwere

0.90 or better. A patient with a meningioma grade II in the left

frontal lobe with surrounding oedema showed best automated

segmentation with Dice coefficients of 0.92 for TTVand 0.95

for T1CE TV (Fig. 3).

In some patients automated segmentation did not perform

appropriately and resulted in Dice coefficients below 0.70.

This was mostly the case either for TTV or T1CE tumour

volume. Dice coefficients below 0.70 were obtained in three

cases for TTV and nine cases for T1CE TV. Only in one

patient with a small paramedian meningioma grade I at the

os sphenoidale without surrounding oedema both TTV (0.52)

and T1CE tumour volume (0.58) showed Dice coefficients

below 0.70 (Fig. 4).

In the 16 meningiomas that were attached to the skull base,

automated segmentation appeared to perform slightly worse

than for meningiomas situated at the convexity of the skull,

however without significance of differences. Mean Dice coef-

ficients for TTVwere 0.78 ± 0.12 for meningiomas at the skull

base and 0.82 ± 0.08 for meningiomas situated at the

convexity of the skull. For T1CE tumour volume mean Dice

coefficients were 0.73 ± 0.23 at the skull base and 0.81 ± 0.15

at the convexity of the skull.

Discussion

This study investigated automated detection and segmenta-

tion of meningiomas by DLM. The method proved to allow

for accurate detection and segmentation, even though di-

verse MR images from different scanners, including data

from referring institutions (66% of the available images)

were included in this study. Detection accuracy was high

(>98%). Automated segmentation correlated well with

manual segmentations. Overlap measured by Dice coeffi-

cients was high for TTV and for T1CE TV (0.81 and 0.78,

respectively). These results are comparable with other re-

cently published studies in brain lesion segmentation using

deep learning [14, 15, 28–31] and general segmentation

accuracies accounting for intra- and inter-reader variabil-

ities [14, 19]. Numerous deep convolutional neuronal net-

works with different technical specifications have been ap-

plied and tested for brain tumour segmentation [13, 26].

Gliomas are brain tumours with strong clinical implications

and in focus of research for automated tumour segmenta-

tion. The results so far have been promising and even ac-

cu ra t e d i f f e r en t i a t i on be tween d i s t i nc t tumour

Fig. 3 A 53-year-old womanwith

a meningioma grade II in the left

frontal lobe with wide dural at-

tachment. The meningioma is

sharply circumscribed and shows

strong gadolinium enhancement.

Moderate to strong oedema of the

surrounding white matter. The

manual and automated segmenta-

tion correlate very well
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compartments were possible [13–15, 28, 29, 32–34].

Meningioma segmentation has also been a focus of research

and several semi-automated and automated approaches

have shown promising results in TV definition [23–25,

35]. One recent study investigated accuracies of TV defini-

tions for longitudinal evaluation of meningiomas treated

with stereotactic radiation. Segmentation accuracies for

contrast enhancing tumour parts have been reported to be

high, with Dice coefficients of 0.87; however, this approach

used a manual pre-therapy segmentation for following post-

therapy automated TV definition and therefore comparison

of these results to our fully automated approach is difficult.

Nevertheless, the study design from Shimol et al [25] has

an excellent clinical focus and the workflow appears well

suited for clinical meningioma surveillance as it contains

accurate and consistent post-radiation measurements by the

above-mentioned expert meningioma delineation in the

pre-therapy scans and manual adaptions for clinical valida-

tion of the post-therapy segmentation data. It is well known

that the extent of peritumoral oedema has a decisive impact

on the clinical outcome as well as intraoperative perfor-

mance. Volume definition therefore appears warranted and

has been achieved by a semi-automated approach to a

satisfactory level [23]. Semi-automated methods based on

region growing and fuzzy clustering proved also to be

feasible in unenhanced T1- and T2- weighted MR images

[24].

The accurate automated detection of a cerebral tumour, as

presented in our study, is clinically relevant as it allows for a

preselection of lesions and patients of priority and as a control

mechanism for the radiologist as a computer-assisted device

[13, 20, 36–39]. Beyond this, the automated segmentation

offers improved approaches to clinical assessment in the im-

aging routine, as it may allow for a more precise therapy

planning (Fig. 5), enhanced detection and improved monitor-

ing or additional evaluation of tumour features with radiomics

approaches [1, 11–13, 40]. Further, automated detection al-

lows for high reproducibility as it avoids inter- and intra-

rater variability of tumour volume definition which has been

reported as high [14, 19]. Reliable volumetric detection of

tumour growth will allow for improved therapy decisions, as

conventional diameter methods tend to underestimate tumour

growth [1, 12]. Further, volumetric assessment in clinical rou-

tine is time-consuming, an automated segmentation is there-

fore warranted. The automated evaluation may further be

transferred for the purpose of planning stereotactic radiation

therapy and surgery [5, 13, 38, 41, 42].

The applied DLM was trained on glioma imaging data.

Despite different appearances of the two tumour entities, de-

tection and segmentation accuracies were high. Gliomas con-

sist of contrast-enhancing tumour parts, necrosis and sur-

rounding oedema and are quite varied. In contrast, meningio-

mas present as solid contrast-enhancing tumours with sur-

rounding oedema and necros is is less common.

Meningiomas tend to show less complex tumour structures

than, for example, glioblastomas and it could therefore be

argued that classification accuracies should be higher. But

there are several challenging aspects that make segmentation

Fig. 4 A 56 year-old woman with

a meningioma I medial at the os

sphenoidale next to the sella

turcica. The meningioma showed

a rather small tumour size without

surrounding oedema
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of meningiomas also difficult: (1) surrounding oedema in

FLAIR may result in complex tumour structures, as can be

seen in Fig. 5; (2) meningiomas are predominantly located in

association with the dura and/or the skull base with presence

of bordering hyperintense structures (e.g. dura, vessels) mak-

ing delineation challenging; (3) FLAIR signal intensities

differ strongly and meningiomas can even present isointense

to normal brain tissue; (4) meningiomas and surrounding tis-

sue also present heterogenous when oedema and necrosis are

present next to contrast-enhancing tumour [5, 7, 20, 43, 44].

Therefore, the provided tumour detection and segmentation

algorithm appears to be feasible for different cerebral tumour

Fig. 5 Three-dimensional

rendering of two segmented

tumour volumes. a, b Patient

from Fig. 3, a 53-year-old woman

with a meningioma grade II in the

left frontal lobe with wide dural

attachment. c, d, e A 33-year-old

man with a grade I meningioma

of the falx with great tumour vol-

ume in both frontal lobes and

surrounding oedema in the adja-

cent white matter. Dice coeffi-

cients were 0.89 for TTVand 0.92

for T1CE TV. a and c FLAIR

images; d T1CE MR image. b

and e Three-dimensional render-

ing of the two meningiomas;

contrast-enhancing tumour parts

are displayed in purple and sur-

rounding oedema in white and

blue
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entities and even other brain lesions. Considering meningio-

mas of the skull base the applied DLM performed slightly

worse than for convexity lesions. Even though this finding

was not significant, it is important to consider as radiologists

may need most assistance from a DLM for lesion segmenta-

tion in this area. Further, it needs to be discussed whether or to

what extent intra-axial glioma training data might impact per-

formance for the detection and segmentation of extra-axial

meningiomas of the skull base. Thus, additional meningiomas

as training data for the applied DLM may enhance future

performance. The result should be a multifunctional detection

and segmentation tool for neuro-oncology.

This study has several limitations that need to be considered

beyond the retrospective study design. Since the study tests the

segmentation of known meningiomas, the study does not test

the accuracy for the detection of meningiomas in general. Also,

it was not tested how far the DLMwould segment false-positive

tumour volume in normal brain MRI. Further, the presented

segmentation accuracies between automated and manual seg-

mentationsmight still be too preliminary for clinical applications

and should be evaluated in future studies. The relatively small

amount of cases may not reflect all types and sizes of meningi-

omas. The available image data were quite diverse as they in-

cluded examinations from referring institutions. Further, gliomas

were used as training data for the DLM; however, the study

aimed to evaluate to what extent automated detection and seg-

mentation was possible despite difference in training and despite

heterogenic imaging data, as would appear in clinical routine.

The study did not aim to present a DLM specifically designed

for meningioma segmentation. Nevertheless, we plan to adapt

the applied DLM with the manual meningioma segmentations

as training data to yield improved results in future studies.

Conclusions

Automated detection and segmentation of meningiomas based

on a DLM were accurate and reliable. Precise and

standardised TV definition allows for a more sensitive detec-

tion of tumour growth and thereby may improve monitoring

and treatment of this highly frequent tumour entity. Further,

automated detection by machine learning could function as a

useful tool for pre-assessing and preselection as well as a

control mechanism for radiologists.
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