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Thin nanomaterials are key constituents of modern quantum technologies and materials research. The

identification of specimens of these materials with the properties required for the development of state-

of-the-art quantum devices is usually a complex and tedious human task. In this work, we provide a

neural-network-driven solution that allows for accurate and efficient scanning, data processing, and sam-

ple identification of experimentally relevant two-dimensional materials. We show how to approach the

classification of imperfect and imbalanced data sets using an iterative application of multiple noisy neural

networks. We embed the trained classifier into a comprehensive solution for end-to-end automatized data

processing and sample identification.
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I. INTRODUCTION

Since the isolation of graphene [1], two-dimensional

(2D) materials have constituted an active area of research,

with numerous applications in optoelectronics [2–5] and as

basic building blocks for a wide range of quantum devices

[6]. This is due to the van der Waals stacking technique

[7–9], which allows for drastic modifications of the band

structure by stacking different materials, varying the num-

ber of layers, or introducing a twist between the layers

[10–12].

High-quality van der Waals devices consist of flakes that

are typically prepared by mechanical exfoliation [1]. Suit-

able flakes are identified via visual inspection in an optical

microscope [13]. The shape, size, homogeneity, and thick-

ness determine whether the flake is suitable for further

processing. However, the observed difference in contrast

and color of a flake with respect to the background not only

depends on its thickness and material but also on the sub-

strate that is used and on the settings of the microscope.

This large parameter space makes the identification of

usable flakes tedious and, while there exist proposed algo-

rithmic solutions [14–21], a sufficiently general and fast

algorithm is difficult to formulate. So far, many existing

algorithmic approaches have concentrated on rule-based

image processing [16] and a combination of the latter with

machine learning [15,17]. While these methods are suc-

cessful in the specific conditions of the respective study, it

may be hard to generalize them to different experimental

*geliska@phys.ethz.ch

conditions, such as, e.g., various camera settings, illumi-

nation conditions, or substrates. Further approaches to the

identification of suitable flakes comprise the automated

classification and evaluation of previously collected flakes

either by using optical-spectroscopy techniques [18,19] or

via machine-learning methods [14,20–22].

Machine learning has proven to be a successful method

for addressing the classification of large noisy data sets in

many areas both in science and engineering [23–27]. In

the present work, we address the issue of fast and reliable

identification of 2D material samples using a supervised

machine-learning algorithm. In this context, the problem of

2D sample identification is particularly daunting due to the

lack of data (suitable flakes are, in general, rare and hard

to find). Moreover, the challenge we are addressing here

is not only to classify suitable flakes but also to formulate

an end-to-end algorithm that enables scanning of the sam-

ples, preprocessing, fast classification, and identification of

the suitable flakes in the frame of reference of the origi-

nal sample. Once a suitable sample is identified, machine

learning can also be used to further characterize the proper-

ties of the 2D flakes in real time, as recently demonstrated

in Ref. [22].

Dealing with realistic data sets can overwhelm even

established machine-learning methods, as the collected

data can be insufficient, unbalanced, mislabeled, and can

have a high amount of noise. Here, we first discuss the effi-

cient collection of suitable hexagonal boron-nitride (hBN)

flakes, before we extend our approach to both graphite

and graphene flakes. The search for 2D material flakes

is an example of the broader class of noisy classification
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problems: high-quality 2D materials are crucial elements

of many quantum device experiments but their collection

is difficult, as appropriate flakes are exceedingly rare and

qualitatively very different from each other. Finding 2D

material flakes typically requires many hours of expert

human labor or advanced image-processing software. The

ideal flake is uniform, isolated from other flakes, and has

a certain thickness that is suited for a specific experiment.

For example, hBN is typically used as either a flat sub-

strate (in this case, the thickness is not relevant) or as a

gate dielectric (with a thickness between 10 and 90 nm).

In addition, different users may prefer slightly different

flakes. These challenges, however, make machine learn-

ing, and particularly neural networks, highly apt for this

task: the goal of machine learning is to extract general

features from a limited set of data. An additional advan-

tage of machine-learning methods is that, once trained, the

model can be applied to new data in a matter of seconds,

as opposed to the repeated run of an computationally heavy

algorithm.

In this paper, we present a fully automated solution for

identifying suitable 2D material flakes on a wafer. We

automatize a setup consisting of a microscope, a camera,

and a sample stage in a glove box (for further details,

see Appendix B) to scan wafers carrying manually exfo-

liated flakes. In a preprocessing step, flakes on the wafer

are detected and uniformly formatted. A set of multilayer

convolutional neural networks is employed to identify

promising flakes. In a last step, the algorithm captures pic-

tures of the promising flakes in a higher resolution. We

report a success rate of our algorithm that is comparable to

that of a human operator, while being significantly faster.

II. ALGORITHM

A human operator bases their classification of 2D mate-

rial flakes into “good” or “bad” flakes using various fac-

tors. The size, shape, homogeneity, the amount of bubbles,

and the color (which relates to the thickness) are con-

sidered. For example, good flakes of hBN are blue to

yellow on our substrate, homogeneous, and large. These

criteria are not strictly objective and there is a significant

user-to-user variation in the classification.

Deep neural networks are the state-of-the-art candidates

for solving diverse classification problems [28–34]. Our

algorithm utilizes a neural network to classify 2D flakes

on the fly. While the microscope automatically scans the

wafer, the algorithm processes the pictures and returns

the coordinates of the experimentally relevant flakes on

the sample. In the end, the human operator obtains a

small selection of flakes that are labeled as “good” by the

algorithm.

Our approach to collecting and classifying data con-

sists of the following steps: (a) automated data collection

(“scanning”); (b) manual labeling of the obtained data;

(c) preprocessing of the data; (d) training of the machine-

learning model; (e) applying the trained neural network to

new data sets; and (f) identifying the coordinates of the

flakes of interest on the sample. Steps (b) and (d) are only

performed once and are skipped when the trained model is

applied to new raw data sets.

Scanning. Step (a) is accomplished by an automated

setup consisting of an off-the-shelf microscope, a camera,

and a sample stage in a glove box. This setup scans wafers

with manually exfoliated 2D flakes on their surface and

captures an image at fixed positions. Prior to the scan, the

scanning area and focal plane of the sample are defined

through user input. This step takes minutes and, crucially,

is independent of the wafer size. At each position, the

camera automatically adjusts the focus according to the

user input and captures an image. The machine-learning

algorithm explained below processes these images in par-

allel to the scanning, thus avoiding any downtime of the

setup. At a microscope magnification of 10×, scanning a

1 cm2 of flake material takes 190 s. This is significantly

faster than for the average human operator. An example

of a typical image of hBN obtained by sample scanning is

shown in Fig. 1(a).

Labeling. In step (b), the images obtained in step (a) are

labeled by human operators who identify suitable flakes.

The labeling is done by different human operators and

each flake is only looked at once by a single operator.

This labeled data is used for training the machine-learning

algorithm. The labeling and training step is only performed

once. To facilitate the labeling process, we develop a

graphical user interface, where the user simply clicks on

the samples they considers suitable for further processing.

The coordinates of the flakes within the given picture, as

well as within the whole wafer, are saved.

Preprocessing. Having collected (and, in the case of

the training phase of the algorithm, labeled) the data, the

preprocessing step (c) is applied. The minimal prepro-

cessing algorithm identifies potential candidates for usable

flakes and formats them uniformly for the classification

step. We use the PYTHON Image Library (PIL) to process

the data and check it for large standard deviation. When-

ever the standard deviation exceeds a chosen threshold, the

algorithm cuts out a fixed-size square around the given

point. The square images (80 × 80 pixels) then become

elements of the training or evaluation set for the algorithm.

At this stage, every flake is uniquely identified by its coor-

dinates with respect to the coordinate system spanned by

three corners for the wafer. This identifier is kept through-

out all further steps. Examples of suitable hBN flakes

are shown in the right-hand column of Fig. 1(b), while

examples of unsuitable flakes are depicted in the left-hand

column.

We use the preprocessing part of the algorithm to assign

two labels to the training images. When the square image

created around an interesting point in the data contains a
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(a)

(c)

(b)

FIG. 1. The collection and processing of data. (a) A typical

microscope image of hBN. (b) Examples of the preprocessed

images: the first column depicts examples picked up by our pre-

processing algorithm that are not hBN flakes, whereas the second

column shows hBN flakes labeled as “good”. (c) A schematic

illustration of the architecture of the neural network that is

used: the convolutional layers are followed by pooling and are

connected to the dense layer—the two-neuron output layer out-

puts probabilities for a given flake being suitable (“good”) or

unsuitable (“bad”) for further processing.

suitable flake, as identified in step (b), the image is labeled

as “good”; otherwise, it is labeled as “bad.” The result-

ing data set contains a large number of unsuitable (“bad”)

flakes identified by the standard-deviation filter, since the

threshold criterion has to be sufficiently loose such that

no good flake will be missed, independent of its size,

thickness, or the color of the wafer.

We artificially increase the number of “good” flakes in

the training set by using image rotations and mirror reflec-

tions, such that each “good” flake enters the training set

in six different variations. This choice significantly short-

ens the preparation of the training set, i.e., the training set

will, with less effort, contain a sufficient amount of “good”

flakes for successful training of our model.

As seen in Fig. 1(b), the examples of both “good” and

“bad” flakes are very diverse. On the one hand, the flakes

of various thicknesses and shapes have to be recognized

as good even against the background, the color of which

can vary depending on the wafer. On the other, flakes

that are too small, broken, or simply just dust or pictures

taken outside of the wafer all have to be identified as

“bad.” This diversity of the different flakes has immedi-

ate consequences for the construction of the classification

mechanism.

Training. In step (d), a reliable binary classification

model is trained using the training set from step (c). This

classifier is trained to distinguish two classes of flakes:

“good” and “bad.”

The architecture of the network in use is shown in

Fig. 1(c). We employ a deep network consisting of four

convolutional layers and one dense layer. The convolu-

tional layers have 64, 64, 128, and 256 filters, respectively.

The dense layer has 256 neurons (for further details, see

Appendix A). The output of the network is the probability

distribution between the two classes “good” and “bad” in

the output layer. The weights for the neurons in the net-

work are trained using standard back-propagation methods

based on the training set [35].

The data set from step (c) is highly imbalanced, mean-

ing that the number of flakes with the label “good” is very

low compared to the number of flakes with the label “bad.”

In general, such an imbalanced data set for training will

result in a network that labels all the flakes with the label

“bad” and not learning any feature of the flakes with the

label “good.” On the other hand, down-sampling the num-

ber of “bad” flakes will lead to a loss of the variability of

the data set. We overcome these issues by forming small

balanced sets, so-called batches, out of the labeled data

and by creating an iterative protocol consisting of multi-

ple neural networks applied consecutively. In particular, in

each training step, the network is fed a batch that consists

of randomly selected 50% “good” and 50% “bad” flakes.

To avoid overfitting the networks, the training is inter-

rupted while the network is still relatively noisy and has

an accuracy of around 90%. At this point, we train further

networks separately on the same training data. In our case,

we find that applying three separate models is optimal.

If a given flake consecutively passes the three separately

trained noisy classifiers, there is an increased probability

that it is worth being inspected by a human expert. The

scheme of the iterative model is illustrated in Fig. 2. When

generalizing to other materials, the number of networks

needed may differ depending on the particular distribution

of good flakes in the training set.

Application of the model. Once the model is trained,

we can, in step (e), apply it to any preprocessed data

set that was not part of the original training data. The

unique coordinates of each flake identified as “good” by

the algorithm allow us to easily navigate to any flake

under the microscope and to use it for further processing

or device fabrication.

064017-3



ELISKA GREPLOVA et al. PHYS. REV. APPLIED 13, 064017 (2020)

FIG. 2. The application of the multiple networks. The iterative procedure filters out bad flakes on the concrete example of a small

set of 944 flakes. The rectangle on the left of each network is its input and the rectangle on the right of the network is its number of

flakes classified by the network to be good. The dark green ovals denote the number of good flakes present in each step according to

the human operator’s labeling. The input of the algorithm is 944 flakes, out of which 108 are labeled as good by a human operator. The

first iteration of the networks classifies 224 flakes as suitable for further processing. Out of these, 98 are actually labeled as good by a

human expert. Therefore, the network misses ten good flakes in this first step. In the second step of the iterative algorithm, we input

the 224 flakes selected by our first model into the second neural network. The second network classifies 160 flakes as suitable, out of

which 87 are labeled as good by a human operator. In the second step, the model misses an additional 11 good flakes. Finally, we run

the last neural network on the output of the second neural network. The model now selects 150 flakes as suitable, out of which 86 are

labeled as good. In this last step, the algorithm misses one good flake from the set of good flakes identified in the previous step.

III. RESULTS

We first discuss the results for hBN on a Si substrate.

For this material, each of the three networks is trained on

approximately 105 flakes. Of these, about 104 are labeled

as good. For training, we use batches of approximately

200 flakes each and perform 1.2 × 105 training steps. We

evaluate the performance of the model every 1000 train-

ing steps on a fixed evaluation batch consisting of 10% of

the total number of “good” flakes and an equal number of

“bad” flakes.

The evaluation loss and accuracy of all models are

shown in Figs. 3(a)–3(c). The evaluation loss is the cross-

entropy between the label (“good” or “bad”) predicted by

the network and the label determined by an expert. The

accuracy is the percentage of correctly identified flakes

within the chosen evaluation batch (the evaluation batch

is different for the different neural networks). The accuracy

reached at the end of the training is between 87% and 88%,

as shown in Fig. 3. While the loss for the trained models

keeps decreasing toward zero, the training is intentionally

finished at its nonzero finite value, as explained in Sec. II

(see also Appendix A).

The performance of the protocol for hBN is shown in

Fig. 2. The first network is applied on a preprocessed data

set of 944 flakes, out of which 108 are “good” (human

operator). These data points are not seen by the neural net-

work, i.e., are not part of the training set. Thus, the network

does not have access to the labels. After the first applica-

tion of the network, we obtain 224 flakes marked as “good”

by the network. Out of these 224 flakes, 98 are “good” as

determined by a human expert (this also implies that the

network missed (assigned a false negative to) ten out of all

108 good flakes). We take the flakes marked by the net-

work and use them as input for the second network (see

Fig. 2) and so on. After the application of the third network,

we obtain 150 flakes, out of which 86 are labeled as “good”

by an expert. The application of the networks takes a few

seconds and it puts the human operator into a situation in

which approximately 55% of the flakes are suitable for fur-

ther experimental use. Therefore, around 80% of the flakes

marked as good by a human operator are reliably found by

the algorithm, whereas the remaining 20% of the “good”

flakes are missed.

To evaluate the success of the protocol on the new

unlabeled data, we ask three human operators working on

different 2D-material-based quantum devices to indepen-

dently evaluate a previously unlabeled set of 100 hBN

flakes that the network has selected as “good.” The human

operators denote 73, 51, and 45 flakes as “good.” As the

exact flake size, shape, and the thickness desired for the

fabrication of quantum devices is strongly dependent on

the exact application, we observe a large user-to-user vari-

ation. Within this context, it is more descriptive to look

at how many flakes picked as “good” by the algorithm

are denoted as “bad” by all human operators. In our case,

only seven of the 100 test flakes are denoted as “bad” by

all three experts. This is consistent with the benchmarks

that we obtain from the validation procedure of our proto-

col, which leads us to expect that about 55% of the flakes

picked by the algorithm are of further use. The human

validation is illustrated in Fig. 4. One can observe a con-

siderable variability in the human assessment of the flakes

and very small amount of images that are considered to be

mislabeled by all three operators. This shows that our way

of labeling the flakes introduces sufficient diversity of cri-

teria into the training set. Due to this diversity, the selected

flakes are useful for multiple users with a range of different

requirements.

To test the robustness of the algorithm and to ensure

that it is not constrained to our specific setup, we test

the algorithm in two separate glove-box systems. The

setups have different cameras and light conditions and only

the Si substrate used is kept the same. The automated
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Training iteration, n (units of thousands)

Training iteration, n (units of thousands)

Training iteration, n (units of thousands)

(a)

(b)

(c)

FIG. 3. The loss and accuracy of the three models used in the

iterative algorithm. The networks are trained using a training set

of 105 labeled flakes. Panels (a), (b), and (c) show the evaluation

loss in orange and the corresponding evaluation accuracy in blue

for the three models used in the algorithm as shown in Fig. 2.

identification of suitable hBN flakes in this new setup leads

to results that are very similar to those described above,

i.e., roughly every second flake is useful to an experimen-

talist. This gives us great confidence that our system is

readily transferable to other laboratories featuring different

instruments.

To test the flexibility of our algorithm with respect to

different materials, we furthermore apply the algorithm

to graphite flakes as well as graphene flakes. Graphite

plays a similarly important role for quantum materials

experiments as hBN. In Fig. 5, we show an example of

a typical microscope picture of a graphite sample [panel

(a)] and examples of “bad” and “good” flakes [panel (b)].

For graphite, flakes of the various shades of blue (thick-

ness around 10–20 nm) are sought after, while the large

yellow flakes (thickness 50 nm or more) are not desir-

able. To adjust for this new thickness (and therefore color

preference), we retrain the models on approximately 200

manually labeled graphite flakes. Because the models are

FIG. 4. Validation by a human operator. The first 25 flakes

of the set for human validation are shown with their evaluation

by three different operators: 23 flakes are denoted to be suitable

by at least one operator, while two flakes are dismissed by all

three operators. While the user-to-user variation is significant,

the algorithm provides flakes that are mostly considered suitable

by at least one operator.

already trained for hBN and thus identify most features

of useful flakes, we only need a small training set for

the retraining process. We test the retrained network on

exfoliated graphite flakes [see Fig. 5(c)] previously unseen

by the algorithm. Our preprocessing algorithm identifies

1200 flakes, out of which 132 are “good” graphite flakes.

The retrained model, however, determines 185 flakes to be

good. Out of these, 109 flakes have been labeled as “good”

by a human operator. In other words, we obtain a suc-

cess rate of about 60%, which is comparable to the case

in which the algorithm is applied to hBN flakes.

As a final challenge, we test our model on bilayer

graphene, see Fig. 6. Bilayer-graphene flakes are one of the

most challenging to identify because of their thinness and

small size. We collect 48 bilayer-graphene flakes and use

them to retrain our model. We then test the trained model
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(a)

(c)

(b)

FIG. 5. Testing the performance of the network on different

materials: (a) an example of a graphite wafer; (b) examples of

bad (left) and good (right) graphite flakes; (c) the results of the

application of our protocol to 1200 flakes obtained by scanning

a single wafer. The test set of 1200 flakes contains 132 flakes

labeled as “good” by a human operator. The three iterations of

the protocol propose that 185 flakes are suitable, out of which

109 are actually good (as labeled by a human operator). This

result shows that approximately 60% of the flakes suggested by

the model are indeed suitable. In total, the network identifies 83%

of the “good” flakes in the set while missing 17%.

on a separate test set of approximately 3800 flakes that con-

tains 36 flakes labeled as “good” by human operators, i.e.,

around 1% of the flakes. Our model identifies 262 “good”

flakes, out of which 26, i.e., 10%, are actually considered

good by human experts. The algorithm therefore signifi-

cantly increases the density of good flakes in the sample

that a human expert has to go through, while at the same

time only losing a small percentage of good flakes that are

not picked up by the algorithm. While we do not achieve

the same performance as that of the model on hBN and

graphite, we succeed in increasing the occurrence of useful

bilayer-graphene flakes by one order of magnitude, from

around 1% to 10%. This achievement serves as a first step

toward accumulating a large database of bilayer graphene,

which will be a stepping stone toward new methods of

automated graphene collection.

IV. DISCUSSION AND CONCLUSIONS

We present a fully automated method to evaluate

the quality and suitability of 2D-material specimens for

(a)

(b)

FIG. 6. Testing the performance of the network on bilayer

graphene: (a) examples of preprocessed data containing bilayer-

graphene flakes; (b) the results of the application of our protocol

on 3800 flakes obtained by scanning a single wafer.

sample fabrication. With the inclusion of every step from

data collection and preprocessing to the evaluation of suit-

able flakes, the algorithm removes 90% of the redundant

data without human assistance. From the remaining 10%

of the flakes labeled as “good” by the algorithm, more

than half are actually suitable for further experimental use

for the case of hBN and graphite. The exact percentage

of useful flakes can vary depending on the needs of the

respective application. For example, hBN flakes can be

used for experiments with twisted bilayer graphene [36]

and these experiments typically require thick (90-nm) and

huge flakes (100 µm). On the other hand, samples used

for nanodevices [37–39] require thin (about 20-nm) and

small (20-µm) hBN flakes. Hence, almost all of the hBN

flakes identified by the network are usable for one of our

experiments, as seen in the human validation shown in

Fig. 4.

We train and successfully test our algorithm on the

detection of hBN, graphite, and bilayer-graphene flakes. In

the case of hBN, we create a very robust training set con-

taining thousands of good hBN flakes. The resulting model

is reliable and can be easily translated for the identification

of graphite flakes due to the similar quality characteris-

tics of good hBN and graphite flakes. Transferring the

model to the identification of bilayer graphene, however,

is not so easy, as the differences in the quality features of

good hBN or graphite flakes and bilayer-graphene flakes

are larger. The retraining of our model to identify good

bilayer-graphene flakes is furthermore hampered by the

lack of a vast data set of bilayer-graphene flakes labeled

as ‘good’. Therefore, the accuracy for bilayer graphene is

significantly lower than for hBN and graphite. Nonethe-

less, the algorithm is still successful in eliminating a very

large percentage of unsuitable flakes and leaves a human

operator with in the order of 100 flake candidates, out of
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which around 10% are suitable for further processing. This

procedure allows us to create a sufficiently large database

of graphene flakes and train further neural-network models

with higher success rates.

The extension of the algorithmic strategies presented

here to other 2D materials and platforms promises to

facilitate the fabrication of a large variety of differ-

ent 2D-material-based devices [40–43]. The ready-to-use

algorithm is available online [44]. We provide both API

for the automation of the data collection as well as pre-

trained models that can be applied on newly collected raw

data.
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APPENDIX A: NEURAL-NET ARCHITECTURE

Neural networks are nonlinear functions of many param-

eters (the weights and biases of each neuron) mapping

input to output. The networks are trained such that a certain

cost function between input and output is minimized. This

minimization is achieved by optimizing the weights and

biases of the neuron using the back-propagation method

[35]. In this work, we use three neural networks sepa-

rately trained on the same highly imbalanced training set

consisting of approximately 105 samples. Roughly 10%

of these samples correspond to flakes of 2D material that

are labeled as “good,” i.e., they are of further experi-

mental use. Not all these approximately 104 flakes are

original, most of them having been created by mirroring

and rotations of the rare experimentally collected good

flakes. We train on batches of 200 flakes (100 of them

“good,” 100 of them “bad”). As discussed in the main

text, this balance is crucial for optimizing the network

variables correctly. We train the network using 1.2 × 105

training steps. We evaluate the model every 1000 train-

ing steps on a fixed evaluation batch consisting of 10%

of the total number of “good” flakes and an equal number

of “bad” flakes. The accuracy at the end of the training

is between 87% and 88%, as shown in Figs. 3(a)–3(c).

The cost function that we aim to minimize by training

TABLE I. A summary of the hyperparameters of the neural net.

Type of layer Filters Kernel size Strides Neurons

Convolutional 64 5 2 NA

Convolutional 64 3 1 NA

Convolutional 128 3 1 NA

Convolutional 256 3 1 NA

Dense NA NA NA 256

is the cross-entropy between the label (“good” or “bad”)

determined by the network (youtput) and the true label

assigned by an experimentalist (y target), which can be

expressed as

H(y target, youtput) = −
∑

j

y target ln youtput, (A1)

where y target, youtput ∈ {good, bad}. By trying to minimize

Eq. (A1), we penalize the misclassification of both “good”

and “bad” flakes and force the network to find the

weights that lead to recovery of the correct classification

label.

Let us describe the structure of our models in more

detail. As mentioned above, each of the networks that we

use consists of four convolutional layers and one dense

layer. The hyperparameters for the layers that we use are

summarized in Table I. The first convolutional layer is

defined with a larger kernel and stride and a low amount

of filters. The deeper layers contain a larger number of

filters and smaller kernels. The dense layer contains 256

neurons. These neurons are then connected to two out-

put neurons that contain a probability that the given flake

is “good” or “bad,” respectively. The activation function

for all the layers except the last is a rectified linear unit

(ReLU), while the last layer contains a softmax activation

function that transforms the values of the neurons into the

probability distribution. For a detailed overview of both

the theoretical aspects and the practical implementation of

neural networks, see Refs. [27,46].

We are using iterative applications of three indepen-

dently trained models. The number of models to be applied

is chosen by numerical optimization. Our main objec-

tive is to minimize the number of false positives (“bad”

flakes labeled as “good”) and at the same time the num-

ber of false negatives (the “good” flakes labeled as “bad”).

These two conditions translate into the following require-

ments: the human operator should have minimal overhead

when selecting the best flake for they purposes from the

suggested set. But, at the same time, this overhead mini-

mization should not lead to overwhelming loss of suitable

flakes. The balance that we find leads to the network sug-

gesting sets that contain about 60% of suitable flakes,

while at most 20% of the good flakes are lost. Given the

processing speed and the amount of flakes analyzed, this

loss is not significant.
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TABLE II. The confusion matrices for the evaluation of our

model on the new data for hBN (left), graphite (center), and

graphene (right). The rows represent the correct labels and the

columns the labels assigned by the model.

Good Bad Good Bad Good Bad

Good 86 22 Good 109 23 Good 26 10

Bad 64 794 Bad 76 1015 Bad 236 3522

In Table II, we summarize the performance of the mod-

els for hBN, graphite, and graphene via the confusion

matrices of their evaluation on the test sets shown in

Figs. 2, 5, and 6.

APPENDIX B: EXPERIMENTAL SETUP

We test and run our algorithm in two separate glove-

box setups. Below, we list the equipment used for the

automated scanning for both setups.

Glove box 1:

(a) LV Econ Microscope with motorized z axis and

motorized revolver

(b) Märzhauser Stage with Tango Desktop controller

(c) DS RI 2 Camera

Glove box 2:

(a) LV Econ Microscope with motorized z axis and

motorized revolver

(b) Märzhauser Stage with Tango Desktop controller

(c) DS FI 3 Camera
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