
Research Article

Fully Automated Robust System to Detect Retinal Edema,
Central Serous Chorioretinopathy, and Age Related Macular
Degeneration from Optical Coherence Tomography Images

Samina Khalid,1,2 M. Usman Akram,3 Taimur Hassan,3,4

Ammara Nasim,4 and Amina Jameel5

1Department of Computer Science & Information Technology, Mirpur University of Science and Technology, Mirpur, Pakistan
2Department of So�ware Engineering, Bahria University, Islamabad, Pakistan
3Department of Computer Engineering, National University of Sciences and Technology, Islamabad, Pakistan
4Department of Electrical Engineering, Bahria University, Islamabad, Pakistan
5Department of Computer Engineering, Bahria University, Islamabad, Pakistan

Correspondence should be addressed to Samina Khalid; samina.csit@must.edu.pk

Received 27 December 2016; Revised 23 February 2017; Accepted 8 March 2017; Published 23 March 2017

Academic Editor: Michele Lanza

Copyright © 2017 Samina Khalid et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Maculopathy is the excessive damage to macula that leads to blindness. It mostly occurs due to retinal edema (RE), central serous
chorioretinopathy (CSCR), or age related macular degeneration (ARMD). Optical coherence tomography (OCT) imaging is the
latest eye testing technique that can detect these syndromes in early stages. Many researchers have used OCT images to detect
retinal abnormalities. However, to the best of our knowledge, no research that presents a fully automated system to detect all of
these macular syndromes is reported. 	is paper presents the world’s 
rst ever decision support system to automatically detect
RE, CSCR, and ARMD retinal pathologies and healthy retina from OCT images. 	e automated disease diagnosis in our proposed
system is based on multilayered support vector machines (SVM) classi
er trained on 40 labeled OCT scans (10 healthy, 10 RE,
10 CSCR, and 10 ARMD). A�er training, SVM forms an accurate decision about the type of retinal pathology using 9 extracted
features. We have tested our proposed system on 2819 OCT scans (1437 healthy, 640 RE, and 742 CSCR) of 502 patients from two
di�erent datasets and our proposed system correctly diagnosed 2817/2819 subjects with the accuracy, sensitivity, and speci
city
ratings of 99.92%, 100%, and 99.86%, respectively.

1. Introduction

	e retina is the innermost layer of an eye that is composed
of macular and ocular regions. 	e macular region is the
one where inverted vision is formed. Retinal abnormalities
within the macular region (maculopathy) tend to damage the
macula resulting in distorted vision. 	ese macular diseases
are the collective group of abnormalities which a�ect the
central vision of a person if they are le� untreated. In extreme
cases, these diseases can lead to severe visual impairments or
even blindness.	emajor cause of these retinal abnormalities
is diabetes due to which blood vessels within choroidal
pathology become thinned and start leaking �uid within the
intraretinal region [1]. Due to poor health infrastructure in

third-world countries like Pakistan, the rate of blindness is
growing yearly [2]. Also, macular disorders are the second
most leading cause of blindness worldwide following cataract
[3]. 	e most common types of these macular diseases are
retinal or macular edema (ME), CSCR, and ARMD. 	ese
diseases can be easily cured if they are detected in early
stages; however, due to the ignorance and unawareness in
Pakistan especially in rural areas, more than 2 million people
are su�ering from blindness. In order to compensate this
loss, a fully automated diagnostic system is required which
can e�ciently detect and diagnose retinal abnormalities. 	e
diagnostic system can also act as an aid to ophthalmologists to
mass-screen retinal diseases across di�erent areas of Pakistan.
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Figure 1: Images of (a) healthy eye vision, (b) RE a�ected vision, (c) CSCR a�ected vision, and (d) ARMD a�ected vision.
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Figure 2: Clinical macular analysis using OCT images: (a) healthy OCT scan, (b) CSCR a�ected OCT scan, (c) OCT scan with RE symptoms,
and (d) OCT scan with ARMD symptoms (drusen).

ME or RE mostly occurs due to leakage of �uid within
retinal layers and leads to the formation of cyst spaces. CSCR
or central serous retinopathy (CSR) occurs due to storage of
serous �uid beneath neurosensory retina a�er intercepting
retinal pigment epithelium (RPE) layer. CSCR is character-
ized into two stages. In type 1 CSCR, neurosensory retina
remains intactwhile serous �uid gets accumulated in between
RPE andneurosensory retina [4]. In type 2CSCR, serous �uid
breaches the RPE layer and gets accumulated within retinal
pathology. ARMDhighly correlates with aging and is primar-
ily caused due to the formation of cellular debris, also known
as drusen, within retinal and choroidal pathology. ARMD is
mainly characterized into two types.	e 
rst form of ARMD,
also known as dry ARMD, is related to the formation of
drusen within the retinal and choroidal boundary that leads
to the atrophy and degeneration of RPE. 	e second form of
ARMD, also known as wet ARMD, is more severe and it is
caused due to the formation of irregular blood vessels within
choroid which intercepts retinal boundary causing severe
visual impairments.	is condition is also known as choroidal
neovascularization (CNV). 	e symptoms of these diseases
usually do not appear in early stages on fundus images.
However, OCT imaging can easily detect the presence of
these retinal abnormalities in early stages. 	ese diseases can
cause blurred and distorted central vision [5, 6] as shown in
Figure 1.

OCT imaging is the primary eye testing technique that
is being used nowadays to detect early symptoms of retinal
pathology. 	e major bene
t of OCT over other eye testing
techniques is that it can give an objective and accurate visual-
ization of early retinal syndromes [7]. OCT imagingworks on
the principle ofMichelson interferometer where a beam split-
ter decomposes low coherence light source into two parts.
One part is re�ected by the reference mirror and the other
part goes to the candidate eye. Both parts are then merged
together and form an axial scan (A-scan) [8]. 	e combina-
tion of multiple A-scans along the horizontal axis produces

a brightness scan (B-scan). Figure 2 shows an OCT B-scan
which depicts each of the retinal syndromes along with its
distinctive features.

Di�erent scholars have clinically diagnosed RE, CSCR,
and ARMD using OCT scans. Helmy and Atta Allah [9]
proposed OCT based classi
cation of cystoid macular edema
(CME). 	eir dataset included 104 eyes of 86 test subjects
and they concluded that quantitatively OCT provides better
characterization of CME. Mitarai et al. [10] found alterations
at leakage points in OCT scan of CSCR patients. 	e
dataset included 23 male and 3 female subjects. It was hence
concluded that, in case of CSCR, OCT detects the retinal
morphological variations e�ortlessly. Ahlers et al. [11] dis-
cussed the variations in the retinal layers within OCT scans
of CSCR a�ected patient. 	eir dataset consisted of 18 CSCR
patients and it was concluded that theOCT is the noninvasive
technique that can provide an objective evaluation of retinal
pathology. Zhang et al. [12] presented the usage of OCT in the
early detection of diabetic macular edema (DME). Teke et al.
[13] presented a comparison of �uorescein angiography (FA)
and OCT for the evaluation of abnormalities in 100 CSCR
patients and they proved that both techniques can assist
clinicians in CSCR diagnosis. Shrestha et al. [14] highlighted
the importance of OCT imaging in aligning macula a�er
ME surgery. 60 patients were involved as test subjects in
their study. Ferrara et al. [15] characterized the distinguishing
features of choroid and RPE that appears in OCT scans
of CSCR patients. 	eir dataset consisted of 15 eyes of 13
patients. Mokwa et al. [16] diagnosed ARMD and CNV using
FA, fundus photography (FP), and OCT imaging technique.
According to their results, it was determined that fundus
photography best speci
es the drusen and RPE variations in
case of ARMD.However, in case of CNV,OCT tends to detect
minute changes better than other techniques. Wani et al. [17]
presented a detailed analysis for the diagnosis of CSCR on
48 eyes and they proved that OCT is an e�ective technique
that can replace FA for the diagnosis of CSCR. Hannouche
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Table 1: Scanning parameters of AFIO dataset.

Scanning parameters
Type

Healthy CSCR RE

Total subjects 30 30 30

Axial resolution (um) 3∼3.8 3∼3.8 3∼3.8
Lateral resolution (um) 11∼13 7∼13 11∼13
Azimuthal resolution (um) 49∼122 58∼129 63∼186
Scan resolution (pixel × pixel) 480 × 1280 480 × 1280 480 × 1280

B-scans 128 115∼134 117∼126
A-scans (points) 1280 points 1280 points 1280 points

and Ávila [18] carried out a detailed analysis between OCT,
biomicroscopy, fundography, and FA to diagnose diabetic
foveal edema where they concluded that OCT is capable of
giving objective evaluation regarding severity ofmaculopathy
as compared to other techniques.

Di�erent scholars have also presented automated systems
to detect retinal syndromes. Sugmk et al. [19] presented an
autonomous system to diagnose ARMD and DME pathology
by extracted RPE and cyst pro
le. To extract RPE, they
removed retinal nerve 
ber layer (RNFL) from the candidate
B-scan where their proposed system achieved an overall
accuracy of 100% for ARMD cases and 86.6% for DME cases.
Srinivasan et al. [20] presented a fully automated system for
the diagnosis of ARMD, DME, and healthy subjects from
OCT B-scans. 	ey utilized histogram oriented gradients
(HOG) feature descriptor to extract meaningful features
and then they used SVM for the automated diagnosis of
retinal pathology.	e accuracy of their proposed system was
100% for both ARMD and DME subjects and 86.67% for
healthy subjects. Zhang et al. [23] utilized adaptive boosting
(AdaBoost) based classi
cation system for the automated
diagnosis of cystoidmacular edema (CME) through segmen-
tation of intraretinal layers. 	e accuracy of their proposed
system was 98.6%. Wilkins et al. [22] used manual annota-
tions of RPE and ILM to identify the �uid within retinal lay-
ers. 	ey evaluated their proposed system on 16 test subjects
with overall 91% sensitivity and 96% speci
city. To the best of
our knowledge, there is no technical paper available that gives
automated detection of ME, CSCR, and ARMD from OCT
scans.

Previously, we have proposed a fully automated robust
system in [24] to diagnose ME, CSR, and normal cases from
2D OCT scans and here we propose an extension of our
system to incorporate automated detection and diagnoses of
macular disorders. As there are di�erent macular diseases,
that is, RE, CSCR, and ARMD, which show a little bit similar
variations in OCT scans near the fovea, while designing an
automated system for detection of any macular disease, it is
important to di�erentiate between these macular disorders.
	is is themain contributionwe havemade in this article that
presents a fully automated decision support system to detect
RE, CSCR, and ARMD from OCT B-scans. 	e automated
classi
cation in our proposed system is based on extracting 9
distinct features from the coherent tensor of candidate OCT
scan, and then these features are fed to multilayered SVM

classi
ers to automatically diagnose CSCR, ME, or ARMD
retinal subjects.

	e rest of the paper is arranged in a way that Section 2
demonstrates the proposed methodology and Section 3
depicts the results while Section 4 outlines the conclusion of
the paper.

2. The Proposed Methodology

An autonomous decision support system is proposed here
for the automated self-diagnosis of RE, CSCR, and ARMD
pathology from OCT images. At 
rst, the input OCT scan�(�, �) is loaded into our proposed system which is denoised
using adaptive Wiener 
lter. 	e objective of denoising the
candidate scan is to increase the sparsity within intraretinal
pathology. A�er denoising the candidate scan, we extracted
intraretinal layers to discriminate between normal and
abnormal retinal pathology. 	ese retinal and choroidal lay-
ers are segmented by computing a highly coherent tensor rep-
resentation of macular pathology [25]. Extracted inner limit-
ingmembrane (ILM) and choroidal layer are used to compute
cyst pathology within the candidate scan. Drusen within the
retinal and choroidal boundary are detected by extracting
RPE and measuring atrophy and retinal degeneration. A�er
that, a 9D feature vector is obtained based on retinal thickness
and cyst pro
le, RPE atrophic pro
le, and drusen.	e feature
vector is then passed to the trained multilayered SVM classi-

er to diagnose the retinal syndrome. Figure 3 shows the
block diagram of our proposed system.

OCT Dataset. 	ere are two datasets that have been in this
research. 	e 
rst one is our local dataset that contains 90
OCT B-scans (30 healthy, 30 RE, and 30 ARMD) acquired
from 73 patients (19 females and 54 males). 	is dataset
has been acquired from AFIO, Rawalpindi, and the OCT
images within the dataset are captured using TOPCON 3D
OCT-2000 machine. 	e detailed description of the dataset
is shown in Table 1. Apart from this, we have also used
the publicly available Duke dataset that contains 2729 OCT
images (1407 healthy, 610 RE, and 712ARMD) of 429 patients.
Duke dataset has been acquired from Spectralis spectral
domain optical coherence tomography (SD-OCT) imaging
camera. 	e manufacturer of Spectralis SD-OCT machine is
Heidelberg Engineering Inc. Apart from this, Duke dataset



4 BioMed Research International

Feature vector

Multilayered 

SVM 

classi�er

RE

CSCR

AMD

Healthy

Preprocessing

Input OCT B-scan

Sparse denoising

Retinal layers

Segmentation

Retinal thickness pro�le Cyst fluid detection Drusen detection

Features extraction

Classi�cation

Feature set fusion

0

50

100

150

200

250

300

350

400

IL
M

-c
h

o
ro

id
 t

h
ic

k
n

es
s

20
0

40
0

60
0

80
0

10
00

12
00

14
000

A-scans

ID(x, y)
f = {f1, f2, f3, f4, f5, f6, f7, f8, f9}

Training

dataset

Figure 3: Detailed step-by-step �ow diagram of the proposed system.

(used in [20, 26]) has been annotated by multiple expert
ophthalmologists and it is publicly available online at the
following links:

http://people.duke.edu/∼sf59/Srinivasan_BOE_2014_
Dataset.htm

http://people.duke.edu/∼sf59/RPEDC_Ophth_2013_
dataset.htm

2.1. Preprocessing. An input OCT scan �(�, �) is initially
loaded into our proposed system and if it is a color image then
only the highest intensity contributing channel �Gray(�, �) is
kept for further processing. A�erwards, �Gray(�, �) is normal-
ized to the common spatial resolution of 480 × 1280. 	en,
it is denoised using 2D adaptive low pass Wiener 
lter. 	e
reason for denoising the candidate image is to increase the
sparsity of intraretinal pathology within �Gray(�, �). Wiener

lter adaptively suppresses noisy outliers by measuring an
average intensity of the surrounding pixels within the 
ltering
kernel as expressed in

ℶ = 1���� ∑
��∈��

∑
��∈��

� (��, ��)
ℵ2 = 1���� ∑

��∈��
∑
��∈��

�2 (��, ��) − ℶ2

�� (��, ��) = ℶ + ℵ2 − 2ℵ2 (� (��, ��) − ℶ) ,

(1)

where ��(��, ��) represents the sparsely strained pixel, ��
represents the row of a smoothing window, �� represents the

column of the smoothing window, ℶ represents the localized

mean within the kernel, ℵ2 represents the localized variance
within the kernel, and 2 is the mean of all ℵ2 kernels [27].
2.2. Retinal Layers Segmentation. In order to segment retinal
pathology from the candidate scan, a second-order structure
tensor grid is computed in our proposed system that takes
a candidate denoised scan ��(�, �) and generates its partial
derivatives at the orientation of 0 and �/2 radians. Since the
gradients are computed along two predominant orientations,
these gradients are fused together to generate four possible
tensors as expressed mathematically in

I (�, �) = [Γ		 (�, �) Γ	
 (�, �)
Γ
	 (�, �) Γ

 (�, �)]

Γ		 (�, �) = ∑
��∈��

∑
��∈��

� (��, �) Δ 		 (� − ��, � − �)
Γ	
 (�, �) = Γ
	 (�, �)

= ∑
��∈��

∑
��∈��

� (��, �) Δ 	
 (� − ��, � − �)
Γ

 (�, �) = ∑

��∈��
∑
��∈��

� (��, �) Δ

 (� − ��, � − �) ,

(2)

where I(�, �) represents a second-order structure tensor
matrix containing all possible tensors among two pre-
dominant orientations and Γ		(�, �), Γ	
(�, �), Γ
	(�, �), and

http://people.duke.edu/~sf59/Srinivasan_BOE_2014_Dataset.htm
http://people.duke.edu/~sf59/Srinivasan_BOE_2014_Dataset.htm
http://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm
http://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm
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Figure 4: Second-order structure tensor grid: (a) tensor computed through the dot product of horizontal gradient, (b) tensor computed
through the dot product of horizontal and vertical gradients, (c) tensor computed through the dot product of vertical and horizontal gradients,
and (d) tensor computed through the dot product of vertical gradient.

Γ

(�, �) represent the convolution sum of gradient products
at the respective orientation [28]. 	e gradient products
(Δ 		, Δ 	
, Δ
	, and Δ

) are mathematically expressed in

Δ 		 = (��		 (�, �))2
Δ 	
 = ��	 (�, �) ⋅ ��
 (�, �)
Δ

 = (��

 (�, �))2 .

(3)

In order to smoothen each tensor within the tensor grid,
a localized Gaussian window �(�, �) is computed which is
convolved with the gradient products. Out of these tensors,
a highly coherent tensor is obtained which has the maximum
coherency (H).H is computed using

H = (ℷ1 − ℷ2ℷ1 + ℷ2)
2 , (4)

where ℷ1 and ℷ2 represent the eigenvalues of partial deriva-
tives computed along 0 and �/2 radians. 	e computed
tensors are shown in Figure 4.

A�er extracting the highly coherent tensor ��(�, �), the
binary map ���(�, �) of ��(�, �) is computed using Otsu
algorithm [29]. A�erwards, retinal layers are extracted from
the digitalizedmap ���(�, �) by computing retinal edges using
canny edge detection [30], as shown in Figure 5.

Retinal layers segmented out from the candidate scan are
shown in Figure 6. It can be observed from Figure 6 that,
in the case of healthy subjects, all retinal layers are closely
intactwithout any deformity. Table 2 shows the axial scans (A-
scans) mean separation between retinal layers of all 4 types of
retinal disorders. It can be observed from the tabulated data
that in case of healthy subjects the mean value for all retinal

layers is less as compared to CSCR and RE cases. For ARMD
cases, all retinal layers are quite close to each other except for
RPE which is because of the deformity in RPE layer due to
ARMD pathology.

2.3. Features Extraction. A�er extracting retinal layer pathol-
ogy from candidate scan, a 9D feature vector is extracted
for automated disease self-diagnosis. A feature vector is a
collection of 9 distinct features obtained from candidate
OCT B-scan. 	e 
rst 5 features are gathered by extracting
retinal thickness and cyst pro
le from the candidate scan.	e
remaining 4 features are computed by extracting and analyz-
ing RPE atrophic pro
le.

2.3.1. �ickness Pro	le Extraction. A�er extracting intrareti-
nal pathology, ILMand choroidal layers are used to generate a
B-scan retinal thickness pro
le �
(�) as illustrated by (5) and
(6). Hence,

�
 (�) = [�
 (�1) , �
 (�2) , . . . , �
 (��)] , (5)

where

�
 (��) = (������ILM� (�, �) − �Choroid� (�, �)�����) , (6)

where “ ” represents the number of A-scans present within
a B-scan also shown in Figure 7. Figure 8 depicts the retinal
thickness pro
le of the candidate scan su�ering from RE.

2.3.2. Cyst Fluid Detection. A�er segmenting retinal layers,
the proposed system detects cyst segments within retinal
pathology. A retinal mask ��(�, �) is created in between ILM
and choroid layer and it is logically fused with ���(�, �) to
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Figure 5: Segmented retinal and choroidal layers: (a) highly coherent 2D structure tensor ��(�, �), (b) binary map ��� (�, �) of highly coherent
tensor, (c) canny edge detection of retinal and choroid layer, and (d) segmented retinal layers.
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Figure 6: Segmented retinal layers in one B-scan: ILM, retinal nerve 
ber layer (RNFL), inner plexiform layer (IPL), inner nuclear layer
(INL), outer nuclear layer (ONL), outer plexiform layer (OPL), outer segment (OS), inner segment (IS), RPE, Bruch’s membrane (BM), and
choroid.

Table 2: Retinal layers separation for all 4 types of retinal subjects.

Layers
Healthy CSCR RE ARMD

Mean ± SD
(!m)

Mean ± SD
(!m)

Mean ± SD
(!m)

Mean ± SD
(!m)

ILM-IPL/INL 36.789 ± 6.21 67.248 ± 10.29 84.215 ± 14.71 35.475 ± 5.31

IPL/INL-OPL 38.114 ± 5.47 54.764 ± 13.17 124.10 ± 16.68 34.701 ± 7.83

OPL-ONL 40.028 ± 8.13 74.599 ± 15.85 115.738 ± 15.92 36.807 ± 7.63

ONL-IS/OS 29.437 ± 3.64 248.168 ± 32.64 192.577 ± 21.96 43.675 ± 2.54

IS/OS-RPE 32.582 ± 5.82 161.573 ± 24.91 201.612 ± 24.09 143.524 ± 27.39

RPE-BM 31.937 ± 4.86 60.008 ± 15.08 108.349 ± 14.79 187.237 ± 23.16

BM-choroid 36.768 ± 5.19 64.386 ± 9.78 94.02 ± 15.51 31.524 ± 4.13
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Figure 7: OCT scans structure. A-scan a�er the 10th interval is highlighted by white color. ILM is shown in red color, RPE is shown in yellow
color, and choroid is highlighted in green color. A-scans were fused together to form a single B-scan.
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Figure 8: (a) Segmented ILM, choroid, and intraretinal cyst pathology mapped onto the candidate scan; (b) retinal thickness pro
le.

extract the cyst pathology. Figure 9 shows the exact cyst
segments that are obtained using

Cyst (�, �) = �� (�, �) ⊕ ��� (�, �) . (7)

2.3.3. Drusen Detection. In conjunction with extracting cyst
pathology, our proposed system also analyzes atrophy and
degeneration within the extracted RPE layer for possible
detection of drusen within the retinal and choroidal bound-
ary. If there is a deformity within the RPE layer, then this is
due to the presence of drusen and neovascularization which
leads to ARMD. 	erefore, in our proposed system, we have
extracted 4 distinct features based on RPE pathology which
automatically detect the presence of ARMD syndrome as
shown in Figure 10.

Apart from this, both RE and CSCR pathology have
�uid accumulation within the retinal layer, so in order to

discriminate between both diseases, our proposed system
computes cyst energy obtained a�er decomposing the cyst
pro
le into a low resolution band through multilevel wavelet
decomposition technique. 	e value of this cyst energy is
much less in case of CSCR subjects as compared to RE
subjects as shown in Table 3.

2.4. Feature Set Fusion. A�er computing the individual
characteristic pro
le for each disease, our proposed system
extracts 9 distinct features from these pro
les and fuses a
9D feature vector which is passed to the multilayered SVM
classi
er. 	e 
rst 4 features are extracted from retinal B-
scan thickness and cyst pro
le to distinguish between healthy
and diseased scans. 	e 5th feature is used to discriminate
between RE and CSCR syndromes and the last 4 features are
extracted a�er analyzing RPE pro
le to distinguish ARMD
cases. 	e detailed description of each feature is as follows.
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(a) (b)
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Figure 9: Cyst �uid detection: (a) ��� (�, �); (b) ��(�, �) generated through ILM and choroid; (c) Cyst(�, �); (d) extracted cyst �uid mapped
onto the candidate scan. It is shown in yellow color.

Figure 10: Drusen detection through atrophic analysis of RPE. Segmented ILM is shown in red color. RPE is highlighted in yellow color.
Choroid is shown in green color.

Max �ickness (#1). It is actually the maxima in the retinal
thickness vector �
(�), which is due to maximum di�erence
between the ILM and choroid as expressed by

#1 = max [�
 (�)]
#1 = max [�����ILM (�, �) − �Choroid (�, �)����] . (8)

Min �ickness (#2). It is actually the minima in the retinal
thickness vector �
(�) which is due to minimum di�erence
between ILM and choroid layer as expressed by

#2 = min [�
 (�)]
#2 = min [�����ILM (�, �) − �Choroid (�, �)����] . (9)

�ickness Variation (#3). It depicts the retinal thickness
variation within macular pathology and it is computed using

#3 = #2 − #1. (10)

MaximumCyst Area (#4). It depicts themaximum area occu-
pied by the cyst or serous �uid within intraretinal pathology
and it is computed by taking area of Cyst(�, �) as expressed by

#4 = Area (Cyst (�, �)) . (11)

Cyst Energy (#5). It is the total energy of a cyst segment
calculated by

#5 = ∑ ����Low band (DWT (Cyst (�, �)))����2. (12)

RPE Maxima (#6). It is the peak value in RPE pro
le as
expressed by

#6 = max [�RPE (�)] . (13)

RPE Minima (#7). It is the shallowest value in RPE pro
le as
expressed by

#7 = min [�RPE (�)] . (14)
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Table 3: Feature vectors from 5 randomly selected subjects from each category.

Type Cases

Features$1 $2 $3 $4 $5 $6 $7 $8 $9
(mm) (mm) (mm) (mm2) (mm) (mm) (mm)

Healthy

Case 1 36.51 11.38 25.13 124.27 1165.2 1.20 −0.36 1.56 24.070

Case 2 39.69 27.02 12.67 140.28 1328.8 0.87 −0.80 1.67 29.060

Case 3 34.13 19.58 14.55 0 0 0.80 −0.57 1.37 26.008

Case 4 50.54 32.55 17.99 126.71 1124.1 4.00 −2.56 6.56 68.206

Case 5 38.36 18.26 20.10 174.34 983.24 0.93 −0.36 1.29 32.036

Mean 39.84 21.75 15.09 113.12 920.26 1.56 −0.93 2.49 35.87

STD 6.33 8.19 4.02 66.31 528.98 1.37 0.92 2.28 18.32

CSCR

Case 1 64.29 38.1 26.19 11827 10417 1.40 −0.26 1.66 32.010

Case 2 82.02 42.33 39.69 20981 8570.6 1.72 −0.79 2.51 31.050

Case 3 68.79 34.66 34.13 22936 12061 0.76 −0.65 1.41 27.038

Case 4 63.5 43.39 20.11 8724.1 12940 3.96 −3.12 7.08 78.519

Case 5 71.7 35.98 35.72 26443 13051 0.89 −0.65 1.54 42.213

Mean 70.06 38.89 31.16 18183 11408 1.74 −1.09 2.84 42.16

STD 7.47 3.84 7.89 7558.6 1904.3 1.29 1.14 2.40 21.07

RE

Case 1 72.23 36.25 35.98 7023.8 56835 1.32 −0.56 1.88 42.030

Case 2 48.42 25.66 22.76 18400 32093 1.75 −0.49 2.24 31.430

Case 3 49.48 21.96 27.52 14619 23180 0.72 −0.75 1.47 37.148

Case 4 62.18 33.07 29.11 27120 27419 4.93 −2.42 7.35 58.159

Case 5 65.62 39.43 26.19 3201.17 25871 0.69 −0.15 0.84 39.535

Mean 59.58 31.27 28.31 14073 33080 1.88 −0.87 2.75 41.66

STD 10.36 7.29 4.88 9449.4 1366.8 1.76 0.89 2.62 10.02

ARMD

Case 1 32.83 16.25 16.58 1523. 1147.1 10.93 −1.20 12.13 118.47

Case 2 38.22 25.36 12.86 2040.9 1452.7 13.08 −1.64 14.72 207.68

Case 3 39.18 16.66 22.52 1534.1 1365.2 16.48 −5.60 22.08 439.89

Case 4 47.58 30.37 17.21 1670.2 1678.3 11.37 −2.35 13.72 140.38

Case 5 35.72 12.22 23.50 2019.5 417.26 11.93 −0.88 12.81 106.29

Mean 38.70 20.17 18.53 1757.7 1212.1 12.75 −2.33 15.09 202.54

STD 5.53 7.44 4.42 255.47 483.39 2.23 1.90 4.02 138.34

RPE Variation (#8). It is the absolute di�erence between #7
and #6 as expressed by

#8 = ����#7 − #6���� . (15)

RPE Energy (#9). It depicts the RPE energy as expressed by

#9 = �−1∑
�=0

�����RPE ( )����2 . (16)

Table 3 depicts 9 distinct features extracted from 5 randomly
selected samples of each class. From Table 3, we can see that
the 
rst 5 features are quite distinctive for healthy, RE, and
CSCR cases while the last 4 features are quite distinctive
for ARMD cases. For ARMD cases, the 
rst 3 features are
quite close to healthy cases; however, discrimination between
healthy and ARMD cases can be best seen in #4, #6, #7, #8,
and #9.
2.5. Classi	cation

2.5.1. Classi	er Training. 	e classi
cation system in our
proposed system uses multilayered SVM classi
er to dis-
tinguish between retinal abnormalities. A�er processing the

input candidate OCT scan, 9 distinct features are extracted
which are fused together to form a 9D feature vector # ={#1, #2, #3, #4, #5, #6, #7, #8, #9}. 	e feature vector # is then
passed to the multilayered supervised SVM classi
er for
automated disease diagnosis. 	e classi
cation system in our
proposed system is trained on our custom prepared training
dataset that includes 40 labeled images (10 healthy, 10 RE,
10 CSCR, and 10 ARMD). 	e dataset has been annotated
by multiple expert ophthalmologists. 	e 
rst 5 features in
the feature set are extracted from retinal thickness and cyst
pro
le. 	e remaining 4 features are acquired by analyzing
atrophy within the RPE pro
le. SVM is being incorporated
in our proposed classi
cation system because it is one of the
fastest and accurate classi
ers [31]. In our proposed system,
SVM has a nonlinear decision boundary because of Gaussian
radial basis function (RBF) andmultilayer perceptron (MLP)
kernel. Figure 11 demonstrates the training phase of our
proposed classi
cation system.

	e performance of our classi
cation system is measured
through %-fold cross-validation. We cross-validated our
classi
cation system for di�erent values of & and computed
the accuracy. 	e best accuracy was achieved for & = 10 as
shown in Table 4.
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Figure 11: Training phase of SVM.

Table 4: Classi
er cross-validation performance.

% Max. accuracy

2 92.4%

4 94.8%

8 95.7%

10 98.2%

12 96.5%

2.5.2. Classi	cation of Retinal Pathologies. A�er training the
proposed classi
cation system, it was used to classify unla-
beled input OCT scan for possible diagnosis of retinal abnor-
malities. 	e classi
cation system in our proposed system is
based onmultilayered SVMclassi
er inwhich the test sample
is 
rst classi
ed as healthy or abnormal through#1,#2,#3, and#4 features. If it is classi
ed as abnormal, then it is further
classi
ed as RE, CSCR, or ARMD positive candidate based
upon the remaining features within the feature vector. SVM
in our proposed system has been implemented in 3 layers to
classify all 4 types of macular syndromes. 	e �owchart of
our proposed decision support system is shown in Figure 12.

3. Results

Our proposed system was tested on our local dataset which
we acquired fromAFIO.	e dataset contained 90OCT scans
of 73 patients inwhich 30 images are of RE patients, 30 images
are of CSCR patients, and 30 images are of healthy subjects.
Apart from this, we have tested and validated our proposed
systemon the publicly availableDuke dataset containing 2729
OCT images of 429 patients in which 712 OCT images are of
ARMDpatients, 610 OCT images are of RE patients, and 1407
OCT images are of healthy subjects. Our proposed system
correctly identi
ed all the retinal pathologies on Duke

dataset, while on our local dataset our proposed system cor-
rectly identi
ed 88/90 cases. 	e results from our automated
decision support system have been cross-veri
ed by expert
ophthalmologists as well. 	e detailed statistical analysis of
our proposed system is shown in Table 5.

Figure 13 shows 7 randomly selected B-scans for each
pathology from AFIO dataset that has been correctly classi-

ed. In each scan, ILM is shown in red color, choroid is shown
in green color, and cyst or serous pathology is shown in yellow
color. Apart from this, Figure 14 shows 6 randomly selected
B-scans fromDuke dataset that have been correctly classi
ed.
	e color scheme remains the same as in Figure 13 except for
yellow color which is used to show the extracted RPE layer in
Figure 14.

In addition to this, we have also compared our multilay-
ered classi
cation systemwith other state-of-the-art solutions
where our proposed systemhas outperformed other competi-
tors as shown in Table 6. Also, we proposed the world’s 
rst
ever automated decision support system that can automati-
cally detect 4 di�erent types of retinal pathologies fromOCT
images.

4. Discussion

A fully automated decision support system is proposed here
which can automatically detect and self-diagnose retinal
abnormalities from OCT images by extracting 9 distinct
features. A�er that, all the extracted features are fused
together to form a feature vector which is then passed to the
multilayered support vector machine classi
cation system to
automatically diagnose the retinal pathology. 	e proposed
system is quite robust in detecting small disease patterns that
appear onOCT images. Apart from this, our proposed system
is also rotationally invariant and can easily detect the above
mentioned retinal diseases from skewed OCT B-scans. Our
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Table 5: Results achieved.

Dataset Type Correctly classi
ed Accuracy Sensitivity Speci
city

AFIO

Healthy 28/30

97.77% 100% 93.33%CSCR 30/30

RE 30/30

Duke

Healthy 1407/1407

100% 100% 100%RE 610/610

ARMD 712/712

Total

Healthy 1435/1437

99.92% 100% 99.86%RE 640/640

ARMD 742/742

Table 6: Classi
er performance comparison.

Authors Pathologies Dataset Accuracy Sensitivity Speci
city

Proposed 4 2819 99.92% 100% 99.86%

[19] 2 16 — 91% 96%

[20] 3 16 87.5% — —

[21] 2 550 84% 93 80

[22] 3 45 95.5 100 93.75

Start

Input OCT image

Normal/abnormal retinal
diagnosis

SVM 
decision

Diseased

Healthy

Training dataset

SVM
decision

Stop Retinal edemaCSCR

AMD

Feature set fusion

SVM
decision

Abnormal cyst pathology
Training dataset

Training dataset

Retinal thickness pro�le
{f1, f2, f3}

Cyst fluid pro�le
{f4, f5}

RPE atrophic pro�le
{f6, f7, f8, f9}

Figure 12: Flowchart of classi
cation algorithm.

proposed system extracts 7 to 8 intraretinal layers from all 4
types of retinal pathologies and uses ILM, RPE, and choroidal
layers for the formation of cyst or serous pathology and
ARMD atrophic pro
le.

	e proposed multilayered classi
cation system is based
on 9D feature vector, extracted from candidate OCT B-scan.

At the 
rst layer of our classi
cation system, an automated
decision between normal and abnormal retinal pathology is
made by analyzing #1, #2, #3, and #4 as these features contain
the objective evaluation of retinal thickness pro
le. If the
candidate is classi
ed as abnormal, then it is further classi
ed
as RE, CSCR, and ARMD. 	e discrimination between RE
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(a) (b) (c)

Figure 13: Unlabeled AFIO dataset: (a) RE classi
ed scans; (b) CSCR classi
ed scans; (c) healthy classi
ed scan.

cysts and CSCR is provided by #5 features as RE cysts contain
more energy as compared to CSCR. Also, the presence of
drusen within the retinal and choroidal boundary is detected
by atrophic analysis of RPE pro
le through #6, #7, #8, and#9 features. All of these features for 5 randomly selected
subjects from each case are shown in Table 3. Apart from this,
we have applied our proposed system on our local dataset
acquired fromAFIO and also publicly available Duke dataset.
AFIO dataset contains samples of RE, CSCR, and healthy
subjects while Duke dataset contains samples of RE, ARMD,
and healthy subjects. Our proposed system correctly classi
es
a total of 2817/2819 retinal pathologies from both datasets.
Detailed analysis of results is shown in Table 5. 	e mis-
classi
cation of two healthy samples as diseased from AFIO
dataset is because we have tuned our system in such a way to
give more weightage to the correct classi
cation of diseased
samples as it ismore critical to classify diseased samples accu-
rately as compared to healthy subjects. Our proposed system
is also computationally quite fast and it takes around aminute
on average to give a complete disease diagnosis on a machine
with 5th-generation core i5 CPU (2.2GHz) and 4GB DDR3

RAM. Our proposed system is quite robust and sensitive to
retinal abnormalities as it can also detect small and early
retinal abnormalities from OCT B-scan. Two of such cases
are shown in Figure 15.

Our automated self-diagnosis decision support system
can act as an aid to ophthalmologists to mass-screen the
severe cases of retinal abnormalities. Also, our proposed sys-
tem can give an objective disease diagnosis with complete sta-
tistical analysis of retinal pathology which ophthalmologists
can use to back up their diagnosis. Based on the statistical
results obtained fromour proposed system, ophthalmologists
can improve their standardized grading system for the sever-
ity analysis of di�erent retinal pathologies.

5. Conclusion

	is paper proposes fully automated self-diagnosis system
to identify healthy, RE, CSCR, and ARMD cases from OCT
images. 	e automated classi
cation of candidate retinal
pathology is based on multilayered SVM classi
er that
is trained to distinguish between all 4 types of macular
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(a) (b)

Figure 14: Unlabeled Duke dataset: (a) healthy classi
ed scans; (b) ARMD classi
ed scans.

(a) (b)

Figure 15: Early self-diagnosis of macular syndromes: (a) early symptoms of RPE atrophy due to the presence of drusen; (b) early formation
of cyst �uid within macular pathology. 	ese scans are correctly identi
ed by our proposed system.

syndromes by analyzing 9 di�erent, unique, and distinct
features. 	ese features are extracted by 
rst segmenting
intraretinal and choroidal layers from candidate OCT B-scan
and then by computing retinal thickness pro
le, cyst or serous
pathology, and atrophic RPE pro
le. Our proposed system
was applied on 90 OCT B-scans from AFIO dataset and 2729
OCT B-scans from Duke dataset where our system correctly
identi
ed 2729/2729 samples from Duke dataset and 88/90
samples from AFIO dataset.

Apart from this, our proposed system was quite robust
in detecting small abnormalities within macular pathology
from noisy and skewed OCT B-scans. In the future, this
work can be extended to automatically diagnose the severity
of these macular syndromes; also, our proposed system can

be extended to incorporate other retinal abnormalities like
tractional retinal detachment (TRD), macular hole (MH),
and glaucoma.
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