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Abstract—This paper presents a fully-automated algorithm to
segment fluid-associated (fluid-filled) and cyst regions in optical
coherence tomography (OCT) retina images of subjects with
diabetic macular edema (DME). The OCT image is segmented
using a novel neutrosophic transformation and a graph-based
shortest path method. In neutrosophic domain, an image g is
transformed into three sets: T (true), I (indeterminate) that
represents noise, and F (false). This paper makes four key
contributions. First, a new method is introduced to compute
the indeterminacy set I , and a new λ-correction operation is
introduced to compute the set T in neutrosophic domain. Second,
a graph shortest-path method is applied in neutrosophic domain
to segment the inner limiting membrane (ILM) and the retinal
pigment epithelium (RPE) as regions of interest (ROI) and outer
plexiform layer (OPL) and inner segment myeloid (ISM) as
middle layers using a novel definition of the edge weights. Third, a
new cost function for cluster-based fluid/cyst segmentation in ROI
is presented which also includes a novel approach to estimating
the number of clusters in an automated manner. Fourth, the final
fluid regions are achieved by ignoring very small regions and the
regions between middle layers. The proposed method is evaluated
using two publicly available datasets: Duke, Optima, and a third
local dataset from the UMN clinic which is available online.
The proposed algorithm outperforms the previously proposed
Duke algorithm by 8% with respect to the dice coefficient
and by 5% with respect to precision on the Duke dataset,
while achieving about the same sensitivity. Also, the proposed
algorithm outperforms a prior method for Optima dataset by
6%, 22% and 23% with respect to the dice coefficient, sensitivity
and precision, respectively. Finally, the proposed algorithm also
achieves sensitivity of 67.3%, 88.8% and 76.7%, for the Duke,
Optima, and the UMN datasets, respectively.

Index Terms—Fluid/cyst segmentation, graph theory, neu-
trosophic set, optical coherence tomography, diabetic macular
edema.
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I. INTRODUCTION

O
PTICAL coherence tomography (OCT) is a non-invasive

and non-contact imaging method with extensive clinical

use in ophthalmology. It uses optical technology to create

tomographic images with variable scan rates and resolutions,

and is used to create cross-sectional images of ocular tissues,

including the retina [1], [2]. It is extensively used clinically

for the diagnosis and follow-up of patients with DME and

age-related macular degeneration (AMD). OCT images allow

detection and quantitative assessment of retinal abnormalities

[3].

The macula is the central part of the retina and is critical for

good vision. Diabetic macular edema (DME), manifested by

fluid cysts within the retina and retinal thickening, is caused

by fluid leakage from damaged macular blood vessels. This

is the most common cause of vision loss among working-

aged adults in the United States. OCT images allow very

sensitive detection and quantitative assessment of these fluid

cysts and retinal thickening [4], [5]. Ophthalmologists evaluate

the severity of DME using retinal thickness maps to indirectly

measure the intra-retinal fluid/cyst regions in OCT images.

Manual segmentation of fluid/cyst regions is a time consuming

task and is prone to human errors [6]. Currently, very few

automated methods for fluid/cyst segmentation exist; some of

these are reviewed in Section II.

Neutrosophy is a branch of philosophy which studies the

nature and scope of the neutralities and their interactions which

is the basis of neutrosophic logic and neutrosophic (NS) set

[7]. This theory was applied for image processing first by

Guo et al. [8] and it has subsequently been successfully used

for other image processing operations including image seg-

mentation [8]–[11], image thresholding [12], medical image

segmentation [13] and edge detection [14]. Also, NS has been

adapted for data and image clustering as well [15].

Graph theory is one of the powerful tools for image segmen-

tation due to the benefits of mapping the image pixels (voxels)

and relationship between them onto a graph. Graph theory

based image segmentation makes use of techniques such as

minimal spanning tree, graph cut with cost function, graph

cut on Markov random field models, shortest path methods

and random walker methods [16]. Graph-based image segmen-

tation methods have been applied in OCT segmentation; some
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prior works include: automated layer segmentation [2], [17]–

[19], optic disc segmentation [20] and drusen segmentation

[21].

The main contributions of this paper that lead to a fully-

automated method for the segmentation of fluid-associated and

cyst regions in two-dimensional (2D) OCT of DME subjects

are summarized as follows:

1) The OCT images are first transformed into three sets

T (true), I(indeterminacy) and F (false) in the NS do-

main and denoised simultaneously. This is done by the

novel definition of indeterminacy set and proposed λ-

correction operation which is robust to the structures and

intrinsic properties of the OCT images. The traditional

NS domain processing, developed for natural images,

is not directly applicable to OCT segmentation due to

its layered structure. The proposed approach is the first

approach to make use of NS logic for OCT image

segmentation. Set T is the output of this step and is

used for all subsequent steps.

2) The outer layers inner limiting membrane (ILM) and

retinal pigment epithelium (RPE) are segmented as

region of interest (ROI) and the middle layers outer

plexiform layer (OPL) and inner segment myeloid (ISM)

are segmented using the proposed graph shortest path

based method in the NS domain. With respect to graph

construction, new definitions of edge weights are intro-

duced for layer segmentation. Note that middle-layer

segmentation is a key step of the algorithm to reduce

the number of false positives which is used in the post-

processing step.

3) A new method in the neutrosophic domain is pro-

posed for fluid/cyst segmentation. Then, the appropriate

number of clusters is computed automatically from the

estimated fluid/cyst regions and is used by the proposed

clustering scheme for segmentation. In the clustering

method, a new cost function is defined and minimized

to obtain the segmented image.

4) In the post-processing step, both the segmented regions

between middle layers and small segmented regions are

ignored.

The rest of this paper is organized as follows: Section II

describes related works. The neutrosophic set approach is

reviewed in Section III. Proposed algorithms are presented

in Section IV. Experimental setup and results are described

in Sections V and VI, respectively. Statistical comparison and

discussion are presented in Section VII. Finally, conclusions

and future directions are discussed in Section VIII. A prelim-

inary version of this work has been reported in [22].

II. RELATED WORKS

For segmentation and quantification of fluid/cyst features in

OCT images, several methods have been proposed. A semi-

automated method for fluid-filled region segmentation in AMD

subjects was proposed in [23]. In this method, a deformable

model for accurate shape descriptions of fluid-filled regions

was presented followed by a nonlinear anisotropic diffusion

filter to decrease the effect of speckle noise. This method

was evaluated on 7 AMD subjects and then quantitative and

qualitative (good, fair and poor extraction) analysis were

carried out. Note that all following methods are considered

as automated methods.

In [3], a supervised method was proposed to identify fluid-

filled regions and retinal layers on 110 Bscans of 10 patients

with DME. In this method, fluid and retinal layer positions

were estimated by a kernel regression-based classification

approach. The classification method is then used for more

accurate segmentation of retinal layer boundaries using a graph

theory and dynamic programming framework. In [24], intra-

retinal and sub-retinal fluid regions were detected in 78 SD-

OCT volumes from 23 AMD patients by a supervised 3D

method. This method computes the local differences from

normal appearance by 23 extracted features in each layer

locally and the normal ranges of layer-specific feature vari-

ations derived from 13 SD-OCT volumes of normal subjects.

Fluid-associated abnormalities in OCT images of 15 OCT

volumes from 15 AMD subjects undergoing intravitreal anti-

VEGF injection treatment were segmented by a supervised

3D method [25]. This method includes two main steps. Layer

segmentation, candidate fluid identification and retinal OCT

flattening were carried out in the first step. In the second step,

a probability constrained graph search graph cut method was

proposed to refine the candidate fluid regions. In [26], fluid

filled boundaries on B-scans (x and y-axes) and C-scans (z-

axis) were identified in DME subjects by an unsupervised

method based on fuzzy level set. These boundaries were

combined to generate 3D segmentation of retinal fluid. Then,

morphological characteristics were used for the elimination of

artefactual fluid regions. Identification of vascular shadowing

was also used for removing such artefactuals. The accuracy of

this method in retinal fluid segmentation was evaluated on 10

DME subjects. In [27], an automated method based on artifi-

cial neural network combined with a segmentation framework

based on geodesic graph cut for retinal fluid segmentation from

OCT images of AMD subjects was presented. This method

was evaluated on 30 OCT volumes from 10 AMD subjects at

3 different treatment stages. In [28], a supervised 2D segmen-

tation of cyst regions in AMD patients was presented based on

k-means cluster analysis and k-nearest neighbor classifier. 31

volume scans collected during a 4-year period from one AMD

patient with a serous retinal detachment were used to evaluate

this method. Localization of cysts in OCT images of DME

subjects was proposed using an unsupervised 2D method in

[29]. In this approach, sub-retinal layers segmentation, dark

regions detection, and solidity analysis steps were carried out

for fluid segmentation. In [30], microcystic macular edema

pixels were classified using a supervised 2D method based

on random forest classifier with intensity and spatial features.

Automatic segmentation of intraretinal cysts from 3D OCT

images of DME patients was presented using an unsupervised

method with three-dimensional curvelet transform [31]. This

method was evaluated on 30 OCT volumes of 10 subjects at

3 different stages of treatment. In [32], an unsupervised 2D

retinal cyst segmentation method was proposed based on bilat-

eral filter for DME subjects. This approach was tested on 16

vitreoretinal patients and three control subjects. Detection of
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cysts among DME subjects with non-linear complex diffusion

and mathematical morphology operations was proposed by an

unsupervised 2D method in [33]. Detection of pseudo-cysts

on Spectralis OCT and Cirrus OCT scans of DME subjects

was proposed based on a supervised 2D method in [34], [35].

These methods were evaluated on a small sample size of five

subjects. Supervised 3D cystoid macular edema segmentation

of macular hole images of DME patients was presented in [36].

This method was tested in 3D OCT images from 18 subjects

with cystoid macular edema and macular hole. Finally, in

[37], a higher-order constraint-based supervised 3D method

was proposed based on label propagation for fluid-associated

regions segmentation.

Fluid/cyst regions can be revealed in AMD and DME

subjects. Therefore, proposed methods for fluid/cyst segmen-

tation are categorized as AMD and DME methods. Also,

segmentation methods can be applied to 2D OCT slices and

3D OCT volumes which are referred as 2D and 3D meth-

ods, respectively. Furthermore, segmentation methods that use

fluid/cyst regions labeled by experts are referred as supervised

methods. Unsupervised methods segment fluid/cyst regions

directly without requiring manually segmented regions. Fi-

nally, if user interaction is used in segmentation process the

method is semi-automated; otherwise it is automated. A brief

explanation of how our proposed method is similar to and

differs from the related works is summarized as follows.

The proposed method defines a new cost function in NS

domain. Then, the cost function is minimized which leads to an

unsupervised segmentation of 2D OCT slices of DME patients.

Therefore, the proposed method can be considered in the same

category of methods proposed in [29], [32], [33]. Similar to the

proposed method, methods in [3], [30], [34], [35], [38] are 2D

methods applicable to DME subjects although these methods

use supervised procedures in segmentation process. Methods

in [26], [31] address the same problem as the proposed

method except these methods have been applied to 3D OCT

volumes rather than 2D slices. [36], [37] also present DME

methods which have been applied to 3D OCT volumes but

in a supervised manner. Apart from the proposed methods for

DME subjects, methods in [24], [25], [27], [39] have been

proposed for AMD subjects using a supervised 3D procedure.

Correlation between initial vision and vision improvement

with automatically calculated retinal cyst volume in treated

DME subjects was analysed in [40].

III. REVIEW OF NEUTROSOPHIC IMAGES

A. Neutrosophic Set

Consider that X is a universal set in the neutrosophic

domain and a set A is included in X . Each member x in

A is described with three real subsets of [0, 1] named as T , I

and F . Element x in set A is expressed as x(t, z, f), where

t, z and f vary in T , I and F , respectively. x(t, z, f) could

be interpreted as it is t% true, z% indeterminate, and f%
false that x belongs to A. T , I and F could be considered as

membership sets [7].

B. Neutrosophic Image

For using the concept of NS in image processing, an image

should be transformed into the neutrosophic domain. Although

the general method for this transformation was proposed by

Guo et al. [8], the method of transformation is completely

dependent on the image processing application. In Section IV,

we propose our transformation method that is appropriate for

OCT segmentation.

Consider an image g with L gray levels. g can be mapped

into T , I and F sets. Thus, the pixel p(i, j) in g is transformed

into PNS(i, j) = T (i, j), I(i, j), F (i, j)) or PNS(t, z, f) in

neutrosophic domain. T , I and F are considered as white,

noise and black pixel sets, respectively. PNS(t, z, f) means

that this pixel is %t true to be a white pixel, %z to be a noisy

pixel and %f to be a black pixel. T , I and F are computed

as follows [8], [9]:

T (i, j) =
g(i, j)− gmin

gmax − gmin

(1)

F (i, j) = 1− T (i, j); (2)

I(i, j) =
δ(i, j)− δmin

δmax − δmin

; (3)

g(i, j) =
1

w2

w

2
∑

m=−
w

2

w

2
∑

n=−
w

2

g(i+m, j + n) (4)

δ(i, j) = |g(i, j)− g(i, j)| (5)

where g is the gray scale image, g is a filtered version of the

image g filtered with an averaging filter, w is the window size

for the averaging filter, gmax and gmin are the maximum and

minimum of the g, respectively, δ is the absolute difference

between g and g, δmax and δmin are also the maximum and

minimum values of δ, respectively.

IV. PROPOSED METHOD

In this section, segmentation approach is proposed for

fluid/cyst segmentation.

A. Transform the images to neutrosophic domain and denois-

ing

For fluid/cyst segmentation, first the OCT image is trans-

formed into NS by the proposed method. This method not

only transforms the image into NS but also changes the gray

level of the noisy pixels. In NS, indeterminacy is one of the

important concepts, and in the image processing domain, it is

interpreted as noise. Here, a new definition of indeterminacy is

proposed. In the basic NS-based image segmentation method,

indeterminacy set was defined by (3). In this definition, the

greater the difference between each pixel with the mean of its

neighbors in the square window, the greater the indeterminacy.

In (3), higher indeterminacy is assigned to pixels near the OCT

layers and the boundaries while these are not noisy pixels. For

example, in Fig. 1, pixel P1 is not a noisy pixel; however,

a high indeterminacy value is assigned to this pixel because

of its difference with the mean of its surrounding pixels. We

propose a new definition of indeterminacy of the image g in

Algorithm 1.
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Algorithm 1 Indeterminacy computation

1: Consider a rectangular Gaussian filter with the dimension

of [g1, g2].
2: Rotate the filter in 10 different directions to cover 180

degrees of rotation.

3: Apply all filters to image T to compute 10 filtered images:

FIk=1...10.

4: Compute I as: I(i, j) = mink|T (i, j)− FIk(i, j)|

Fig. 1: Illustration of the proposed indeterminacy definition.

Instead of considering the difference between each pixel and

the mean of its surrounding window, the minimum difference

between each pixel and the mean of its neighbors in 10

different directions is considered. By this way, for pixels like

P2 (which has similar situation as P1) in Fig. 1, the filter d1
(in horizontal direction) results in the lowest difference with

P2. Thus, the indeterminacy of this pixel is not increased.

Pixels with high indeterminacy are considered as too noisy.

A λ-correction operation is proposed to decrease the noise

effect as defined in (6)-(8). In this definition, the very noisy

pixels are blurred with the filter which has the greatest

difference (the biggest penalty is considered for these pixels).

T̄ (λ) =

{

T (i, j), if I(i, j) < λ

T ′

λ(i, j), otherwise
(6)

Ind(i, j) = argmaxk|g(i, j)− FIk(i, j)| (7)

T ′

λ(i, j) = FIInd(i,j)(i, j) (8)

where FI has been defined in Algorithm 1.

Based on this definition for indeterminacy set and λ-

correction operation, the image g is transformed and denoised

as described in Algorithm 2.

Algorithm 2 Proposed image transformation to NS domain

1: Inputs: g (input image), Output: T , I and F .

2: Compute T (i, j) = 1−
g(i, j)− gmin

gmax − gmin

, F = 1− T and I

with Algorithm 1.

3: Apply λ-correction operation to T set.

4: Compute T = T̄ (λ), F = 1− T and I with Algorithm 1.

5: If |Entropy(Ik)−Entropy(Ik−1)|< ǫ go to 6, otherwise

go to 3.

6: End.

The entropy is defined as Entropy(I) =
−
∑m

i=1

∑n

j=1 I(i, j)log2I(i, j). Since fluid regions are

darker than other regions, the inverse of intensity is

considered as T set. Therefore, pixels with high T (i, j)
values are likely to be in fluid regions. Fig. 2 shows a

Fig. 2: Transformation to NS domain. (a): input OCT Bscan,

(b): subset T, (c): subset F and (d): subset I.

transformed OCT Bscan to NS domain. The obtained T and

I sets in Algorithm 2 are used in the subsequent steps of

segmentation.

B. ROI segmentation with shortest path graph

Fluid/cyst regions are all located between ILM and RPE

layers in the OCT images of DME subjects. Therefore, the

first step of our proposed method is the segmentation of

these layers as the ROI in the NS domain. This step is very

important due to two aspects. First, the background region

is very similar to fluid/cyst regions in both brightness and

texture. This can easily mislead the segmentation method since

this method is based on an unsupervised clustering scheme

and will be affected by the similarity between the desired

fluid/cyst regions and the irrelevant background region. The

second reason for ROI segmentation is speeding up since the

ROI is processed instead of the whole image. The proposed

ROI segmentation is derived from the method presented in

Chiu et al. [19]; however, the method in [19] was proposed

for the OCT layers of normal adult eyes while our proposed

method is proposed for abnormal OCT images. For this task,

the graph is constructed from each OCT image by mapping

each pixel in the image to one node in a graph. We only

consider the local relationship between pixels. Therefore, by

considering the local relationship for 8 neighbors of each pixel,

the 8-regular graph is constructed. For ILM segmentation,

the image is first filtered with filter H for the calculation of

vertical gradient of each pixel using (9).

V erGrad = T ∗H,H =





−2
0
2



 (9)

where T is the transformed image in NS. The proposed

weight computation between any two arbitrary pixels (a1, b1)
and (a2, b2) is defined by (10):

W ((a1, b1), (a2, b2)) = 4×MaxG− V erGrad(a1, b1)

− V erGrad(a2, b2) + 2×mean(R)

(10)

where MaxG is the maximum gray level of the image and

R is a set of D pixels above (a1, b1). In all experiments D is

set to 40. Based on the filter H , the maximum of V erGrad

is 2 × MaxG. So, the maximum of V erGrad(a1, b1) +
V erGrad(a2, b2) is 4 ×MaxG. Pixels which are located in

the first layer have the maximum vertical gradient. Therefore,

the minimum weight will be assigned between them and then

they have the highest chance to be selected by the shortest

path algorithm. The main problem is that there are pixels in

other layers which also have the maximum vertical gradient.
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Fig. 3: Weight computation parameters in (a): ILM, (b): ISM

and (c): OPL segmentation.

Fig. 4: ROI segmentation for a sample Bscan.

Fig. 3 (a) shows the pixels which have the maximum vertical

gradient (and thus minimum weight) but not located in the

first layer. The weight between these pixels is increased by

introducing the term 2 ∗mean(R); note that this term is very

small for the pixels in ILM. Therefore, it is guaranteed that

the pixels in ILM always have the minimum weight.

After graph construction, the gradients of all boundary

pixels are set to MaxG and then the start and end points are

selected randomly from nodes corresponding to the pixels in

the first and the last columns of the image, respectively. The

proposed weight computation equation assigns non-negative

weights between nodes. Therefore, the Dijkstra shortest path

algorithm can be applied to this problem to find the shortest

path between start and end points and this path is considered

as the ILM layer. The procedure for the segmentation of RPE

is same except for the filter H which is inversed. Also, note

that R corresponds to a set of D pixels under (a1, b1). A

result of ROI segmentation for a sample OCT image is shown

in Fig. 4.

C. Segmentation scheme for fluid/cyst regions

In this research, an unsupervised clustering method is

proposed for the segmentation of fluid/cyst regions in OCT

images. For this task, a new cost function is proposed. Al-

though the OCT images were denoised in Algorithm 2, in

the clustering scheme, the effect of noise is still considered

in the proposed cost function in two steps. In the first one,

an extra cluster referred as noise cluster (NC) is considered

beside K main clusters. Therefore, it is expected that the noisy

pixels will be assigned to the NC. The second step is that the

indeterminacy of the pixels is included in the cost function.

The proposed cost function is presented in (11).

J(M,N,C)

=
n1
∑

i=1

n2
∑

j=1

K
∑

k=1

(IijMijk)
m‖Tij

−Ck‖
2+

n1
∑

i=1

n2
∑

j=1

((1−Iij)Nij)
m||K−

K
∑

k=1

||Tij −Ck||
2||

(11)

(12)s.t.

K
∑

k =1

Mijk +Nij = 1

where T and I represent true and indeterminacy sets in NS,

respectively, which were computed in Algorithm 2, and Mijk

and Nij represent the membership degree of pixel (i, j) to

main cluster k and NC, respectively, K is the number of main

clusters, Ck is the center of kth main cluster, m is a constant

and n1 and n2 are the image dimension. The proposed cost

function (13) is derived from fuzzy c-means clustering whose

convergence has been proved in [41].

(13)Jm =
N
∑

i=1

K
∑

j=1

Mm
ij ||Xi − Cj ||

2

where Xi and Cj represent data point i and cluster center

j, respectively, and Mij represents the membership degree of

data point i to cluster j.

In fuzzy c-means, for each data point Xi, the highest

membership is assigned to the closest cluster since the goal

is to minimize the cost function. Our cost function includes

two terms, one for the main clusters and another for NC. We

consider two conditions for pixel (i, j) to have the highest

membership degree to the main cluster k: (a) pixel (i, j)
should have the minimum distance from the main cluster

center k rather than other clusters, (b) pixel (i, j) should

have the minimum indeterminacy. Similarly, there are also

two conditions for pixel (i, j) to have the highest membership

degree to NC: (a) having the maximum sum distance from all

main clusters
∑K

k=1‖Tij−Ck‖
2 and (b) having the maximum

indeterminacy. The maximum distance (in intensity) between

any two pixels is 1 since all sets in NS have been normalized

to the interval [0, 1]. Therefore, the maximum quantity for
∑K

k=1‖Tij − Ck‖
2 is K. For considering the constraint in

(12), the Lagrange cost function in (14) is constructed.

J(M,N,C) =
n1
∑

i=1

n2
∑

j=1

K
∑

k=1

(IijMijk)
m‖Tij − Ck‖

2

+
n1
∑

i=1

n2
∑

j=1

((1− Iij)Nij)
m||K −

K
∑

k=1

||Tij − Ck||
2||−

λij

n1
∑

i=1

n2
∑

j=1

(Mijk +Nij − 1)

(14)

For minimizing this cost function, gradient descent approach

is used. Therefore,

(15)Mijk = I
m−1

m

ij (
λij

m
)

1

m− 1 ||Tij − Ck||

−2

m− 1

Nij = (1−Iij)
m−1

m (
λij

m
)

1

m− 1 ||K−
K
∑

k=1

||Tij−Ck||
2||

−2

m− 1

(16)

(17)Ck =

∑n1
i=1

∑n2
j=1(IijMijk)

m((1− Iij)Nij)
mTij

∑n1
i=1

∑n2
j=1(IijMijk)m((1− Iij)Nij)m

The final proposed clustering algorithm is described in

Algorithm 3.

The result of clustering Algorithm 3 for a sample Bscan by

considering just fluid regions in step 5 is depicted in Fig. 5.
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Algorithm 3 Proposed clustering algorithm

1: Initialize K, m, Mijk and Nij .

2: Compute Ck, Mijk and Nij using (15)-(17).

3: If |Jk(M,N,C)− Jk−1(M,N,C)|< ǫ go to 4 else go to

2.

4: Assign the cluster number with the highest membership

to each pixel, the cluster number for NC is K + 1.

5: Based on the definition of T in Algorithm 2, fluid pixels

have the maximum value. Therefore, these pixels are in

the cluster Ck with the greatest center value.

Fig. 5: Clustering result for a sample Bscan.

D. Post processing with middle layers segmentation

The proposed post-processing is an important step in image

segmentation. After segmentation with the proposed clustering

scheme, some segmented regions are incorrectly marked as

fluid/cyst. The regions between OPL and ISM are similar

to fluid/cyst regions in both texture and brightness. In the

proposed approach, another layer segmentation method for

OPL and ISM segmentation is proposed which is similar to

the proposed ROI segmentation method and is based on the

Dijkstra graph shortest path algorithm. After the segmentation

of fluid regions, the regions between OPL and ISM layers are

ignored during post-processing. For the segmentation of ISM,

the graph is constructed from the image similar to that for

ROI, except for the weight computation between nodes which

is proposed to be calculated by (18).

(18)W (p1, p2) = 2×MaxG− [mean(L1)−mean(U1)]

− [mean(L2)−mean(U2)]

where L1, U1, L2 and U2 are the set of pixels under p1,

above p1, under p2 and above p2, respectively, and are shown

in Fig. 3(b).

For OPL segmentation, the weights are computed using

(19).

(19)W (p1, p2) = 2×MaxG− [mean(U1)−mean(L1)]

− [mean(U2)−mean(L2)] + β ×D.

where D is the distance of p1 from ISM layer, U1, L1, U2

and L2 are same with (18). Fig. 3(c) shows all parameters

for weight computation in OPL. The extra term β×D in (19)

increases the weight of pixels that are far from ISM. Therefore,

this term enforces the shortest path algorithm to be as close as

possible to ISM. This step is necessary since all the regions

between ISM and OPL are ignored in the post processing step.

Therefore, the proposed method tries to find OPL layer under

the fluid regions. For both OPL and ISM, the start and end

points for finding shortest path are selected from any arbitrary

pixels in the first and the last columns of ROI image. Finally,

OPL is flattened using (20).

Fig. 6: OPL and ISM segmentation result for a sample

Bscan.

Oi =

{

Oi, ifabs(Oi − Ii) <= mean(Dif)

Ii +AD, otherwise
(20)

where Oi and Ii represent OPL and ISM pixels in ith

column, respectively, Dif is a vector that shows the distance

between OPL and ISM in each column and AD is the average

distance between OPL and ISM. OPL and ISM segmentation

results are shown in Fig. 6.

E. Fluid/cyst segmentation

1) Automated determination of the number of clusters (K):

In the proposed clustering method, the number of main clusters

(K) affects the segmentation results significantly. Therefore,

for having appropriate segmentation results, K should be

determined carefully. The main question is what K is appro-

priate for any arbitrary OCT scan. For this task, all ground

truth images were analyzed and we found that for images

with a great deal of fluid/cyst, ophthalmologists are interested

in the segmentation of the image with more general and

bigger segments. Therefore, segmentation with a small K

has the best correlation with the segmentation annotated by

an ophthalmologist. For the images with smaller fluid/cyst

regions, a larger K is more appropriate. By this interpretation,

an automated method is proposed for determining K. In this

method at first the minimum and maximum values for K

are considered and then the fluid/cyst regions are estimated.

Then, an appropriate K is determined based on this estimation.

Algorithm 4 describes the proposed method for automated

determination of K:

Algorithm 4 Automated determination of K

1: Find the mean (µ) and standard deviation (σ) of the normal

distribution of the pixel intensities between OPL and ISM.

2: Find the histogram of pixels between ILM and OPL

regions.

3: Count the number of pixels in the intensity interval [µ−
σ, µ+ σ] and name it as A.

4: Denote the maximum and minimum of A for all OCT

images in each subject as Amin and Amax.

5: Map the A of the each OCT image to appropriate K

with the following Eqs: A1 = 1 −
A−Amin

Amax −Amin

, K =

round((Kmax −Kmin)A1 +Kmin)

2) Final fluid/cyst segmentation algorithm: Based on pro-

posed methods in previous sections, the final fluid/cyst seg-

mentation is performed using the following steps: 1) Trans-

form OCT scans to NS domain using Algorithms 1 and 2. 2)

Segment ILM and RPE as ROI and ISM and OPL as middle

layers. 3) Compute appropriate number of clusters using
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Fig. 7: Final segmentation result for a sample Bscan.

Algorithm 4. 4) Segment fluid/cyst regions using Algorithm

3. 5) Remove the regions between ISM and OPL and small

regions under H pixles. Final segmentation result for a sample

Bscan is shown in Fig. 7.

V. EXPERIMENTAL SETUP

A. Datasets

In this work, three datasets have been used for the evaluation

of the proposed algorithms. The first dataset is a local dataset

from the UMN ophthalmology clinic containing 725 images

from 29 DME subjects which were taken using the Heidel-

berg Spectralis imaging system. Each image is obtained by

averaging 12-19 frames with the resolution of 5.88µm/pixel

along the length and 3.87µm/pixel along the width. Fluid/cyst

regions were segmented by two UMN ophthalmologists (DDK

and PMD). The second dataset from Duke includes ten DME

subjects (patients) with lateral and azimuthal resolutions rang-

ing from 10.94 to 11.98µm/pixel and 118 to 128µm/pixel,

respectively [3]. This dataset is available online and includes

automated and manual segmentation results1. The third dataset

is from the OPTIMA Cyst Segmentation Challenge and con-

tains 4 DME subjects with 49 images per subject where the

image resolution varies from 512x496 to 512x10242.

B. Parameters tuning

Cluster numbers (K) are computed adaptively by Algorithm

4. In Algorithm 1: parameters [3, 9] were used for filter

dimension [g1, g2]. These dimensions were selected to just

have a rectangular filter. ǫ = 0.001 in Algorithm 2 and

ǫ = 0.01 in Algorithm 3 were selected in such small quantities

to make sure that there is no significant change in the cost

function J and entropy of the indeterminacy set I . Parameters

λ = 0.7 in Algorithm 2 and β = 0.008 in layer segmentation

were determined by experiments. Parameters m, M and N in

Algorithm 3 are initialized randomly with the same procedure

as in conventional fuzzy c-means algorithms. In Algorithm 4,

the minimum and maximum number of clusters were set to 4

and 10, respectively. The reason is that in our experiments, if

these numbers are selected to be smaller than 4 and greater

than 10, general (big segments) and very small fluid/cyst

regions are segmented, respectively, which do not correlate

well with manual expert segmentations. In layer segmentation

methods, R was set to 40. This quantity includes while pixels

in the rectangular area above the pixels in the ISM layer.

Parameters U1, L1, U2 and L2 were set to 10 to only consider

dark pixels above ISM and bright pixels below ISM. The

difference between the means of these two pixel sets is high

and it reduces the weights of the pixels located in ISM

1http://duke.edu/ sf59/Chiu˙BOE˙2014˙dataset.htm
2http://optima.meduniwien.ac.at/challenges/optima-segmentation-

challenge-1/

Fig. 8: Final fluid/cyst segmentation results in Duke dataset.

(a) input OCT images, (b): expert 1 segmentation, (c): expert

2 segmentation, (d): method in [3] and (e): proposed method

segmentation.

Fig. 9: Final fluid/cyst segmentation results in Optima

dataset. (a) input OCT images, (b): expert 1 segmentation,

(c): expert 2 segmentation and (d): proposed method

segmentation.

layer by equation (20). It means that pixels in ISM layer are

good candidates to be selected by the shortest path algorithm.

However the layer segmentation method is not very sensitive

to the small changes of these parameters since the means of

these pixel sets are used in weight computation equations. For

example, if we assign 45 to R instead of 40, the mean of 45

pixels is not very different from the mean of 40 pixels. Finally,

in post-processing step, H was set to 50. It was selected due to

the fact that in our datasets, ophthalmologists did not segment

very small regions under 50 pixels in area as fluid/cyst region.

Therefore, all segmented regions under 50 pixels are ignored

in post-processing.

VI. EXPERIMENTAL RESULTS

Our proposed fluid/cyst segmentation has been tested on

the three mentioned datasets. The final fluid/cyst segmentation

results on Duke, Optima and local UMN datasets are illustrated

in Figs. 8, 9 and 10, respectively.

The proposed fluid/cyst segmentation method has been eval-

uated with respect to dice coefficient, precision and sensitivity

criteria. Accuracy and specificity criteria haven’t been used
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Fig. 10: Final fluid/cyst segmentation results in UMN dataset.

(a) input OCT images, (b): expert 1 segmentation, (c): expert

2 segmentation and (d): proposed method segmentation.

here since these are biased to very high values (close to 100%).

This is due to the large number of negative (non-fluid) pixels

and the large number of true negative (TN) segmented pixels.

Segmentation results of our proposed method using Duke

dataset are compared with manual segmentation results by two

ophthalmologists and with the results of the method in [3].

The dice coefficients, sensitivity and precision for all subjects

in each dataset are reported in Tables I-III. Our proposed

method achieves an average dice coefficient of 57.51% and

outperforms the method in [3] that achieves an average dice

coefficient of 49.24%. Furthermore, our proposed method

achieves the highest dice coefficients of 70.52% for the Optima

dataset.

The method in [3] achieves only about 1% better sensitivity

than our method while the proposed method achieves about

8% and 5% higher dice coefficient and precision, respectively,

compared to [3]. It should be noted that the method in [3]

achieved an average dice coefficient of 78% for fluid, NFL,

IPL, INL, OPL, ISM, ISE and RPE segmentation. However,

we compared our segmentation results with only fluid segmen-

tation results of [3] since layer segmentation is not the main

contribution of this paper and is just used for pre-processing

and post-processing steps. The goal of the layer segmentation

method is to avoid false positives in fluid/cyst segmentation,

and not to segment layers that correlate well with annota-

tions by the ophthalmologist. Therefore, segmented sub-retinal

layers have different positions as compared with segmented

layers by the ophthalmologist and these are not comparable.

Note that the approach in [3] for Duke dataset required 11.4s

compared to 29.25s for the proposed approach. However, this

segmentation is significantly less than 5.5 minutes required for

manual segmentation by an expert. Also, our segmentation

results in Optima dataset are compared with the method in

[31] (which achieved the third rank in Optima challenge) in

TABLE III. Note that the first and second ranks have not

been published yet. Our proposed method achieves 70.52%,

88.84% and 73.89% with respect to dice coefficient, sensitivity

and precision, respectively, which outperforms the method in

[31] with 63.63%, 66.49% and 50.03%. Finally, the proposed

method achieves 69.40%, 76.79% and 74.91% with respect to

dice coefficient, sensitivity and precision, respectively, in the

UMN dataset. The results of different steps in the proposed

fluid/cyst segmentation scheme for sample Bscans and the

average run times of the different steps of the segmentation

algorithm have been reported in supplementary parts of the

Fig. 11: Averge Dice Coefficients, Sensitivity and Precision

of methods in all datasets.

TABLE I: Dice Coefficients, sensitivity and precision of all

subjects in local collected UMN dataset.

Dice Coefficients Sensitivity Precision

Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 83.32% 79.25% 94.08% 89.68% 83.14% 83.21%

S 2 83.58% 83.50% 86.76% 86.06% 85.39% 85.52%

S 3 57.24% 49.81% 85.84% 74.40% 62.34% 62.32%

S 4 37.01% 37.07% 50.26% 49.61% 50.10% 50.41%

S 5 67.45% 67.45% 78.62% 78.62% 65.68% 65.68%

S 6 83.45% 82.88% 85.06% 83.88% 84.16% 84.25%

S 7 75.80% 75.80% 86.99% 86.99% 78.63% 78.63%

S 8 66.76% 62.74% 79.44% 75.38% 73.56% 73.64%

S 9 65.65% 65.21% 76.55% 75.97% 80.65% 80.52%

S 10 92.00% 88.00% 100.00% 96.00% 92.00% 92.00%

S 11 78.23% 73.72% 79.49% 74.14% 89.69% 90.07%

S 12 60.81% 61.98% 57.96% 58.73% 82.39% 82.91%

S 13 62.39% 62.42% 82.68% 82.72% 61.60% 61.59%

S 14 65.05% 65.00% 82.36% 82.06% 62.31% 62.41%

S 15 67.31% 67.77% 70.77% 67.89% 71.03% 72.25%

S 16 66.65% 66.24% 69.78% 69.19% 65.67% 65.50%

S 17 66.29% 66.29% 67.46% 67.46% 73.69% 73.69%

S 18 64.31% 64.66% 72.77% 72.57% 66.28% 67.13%

S 19 81.37% 81.29% 83.33% 82.95% 82.48% 82.52%

S 20 66.24% 66.16% 68.57% 68.31% 76.74% 76.92%

S 21 73.20% 73.08% 66.88% 66.75% 93.17% 93.17%

S 22 67.53% 67.52% 66.29% 66.28% 78.54% 78.54%

S 23 76.83% 76.64% 84.38% 83.92% 80.15% 80.27%

S 24 76.24% 76.24% 82.87% 82.87% 76.04% 76.04%

S 25 73.65% 72.95% 74.01% 72.25% 75.80% 76.44%

S 26 70.00% 70.03% 82.36% 82.55% 71.37% 71.03%

S 27 59.96% 58.04% 58.62% 58.77% 65.21% 61.23%

S 28 69.37% 69.77% 88.13% 86.97% 73.58% 76.14%

S 29 67.89% 68.02% 85.03% 83.86% 69.04% 70.34%

Ave. 69.85% 68.95% 77.49% 76.10% 74.84% 74.98%

paper1.

VII. STATISTICAL COMPARISON

In the experimental results section, the average of each

measure was used as an overall performance criterion. In

this section a statistical test named as pairwise U-Mann-

Whitney test is used for evaluating which method has better

performance statistically [42]. Different pairwise comparisons

between our proposed method and [3] using different criteria

are carried out using the mentioned test. The confidence level

threshold of 90% is considered. Test results show that the

1The Address of the supplementary materials.
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TABLE II: Dice Coefficients, sensitivity and precision of all subjects in Duke dataset.

Dice Cofficients Sensitivity Precision

Method in [3] Prop. Method Method in [3] Prop. Method Method in [3] Prop. Method

Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 61.79% 42.38% 74.53% 52.96% 68.03% 48.47% 79.28% 55.40% 57.91% 58.66% 71.77% 70.99%

S 2 48.10% 43.10% 62.56% 59.38% 74.86% 70.33% 70.91% 68.76% 44.30% 40.83% 65.79% 60.21%

S 3 52.98% 37.05% 72.90% 42.69% 92.99% 73.15% 83.63% 53.96% 47.49% 50.08% 72.18% 71.69%

S 4 42.81% 42.69% 42.87% 43.90% 79.76% 78.32% 70.86% 74.05% 34.93% 38.21% 39.33% 43.61%

S 5 66.19% 57.24% 61.49% 60.64% 81.09% 71.47% 81.58% 72.62% 60.42% 62.74% 56.05% 58.74%

S 6 49.67% 57.43% 48.81% 55.86% 79.03% 77.92% 64.85% 61.73% 48.25% 59.53% 55.93% 69.64%

S 7 52.38% 45.84% 80.56% 74.01% 85.79% 87.76% 89.72% 94.52% 58.96% 54.46% 82.39% 74.12%

S 8 48.87% 57.65% 55.25% 59.35% 60.48% 61.41% 59.07% 55.34% 64.74% 75.87% 65.73% 76.14%

S 9 51.09% 14.78% 58.33% 20.78% 56.07% 16.36% 58.29% 18.40% 84.87% 88.36% 66.91% 71.05%

S 10 59.40% 53.34% 66.27% 56.92% 54.47% 45.69% 73.75% 58.64% 72.68% 84.67% 61.01% 66.32%

Ave. 53.33% 45.15% 62.36% 52.65% 73.26% 63.09% 73.19% 61.34% 57.46% 61.34% 63.71% 66.25%

TABLE III: Dice Coefficients, sensitivity and precision of all

subjects in Optima dataset.

Dice Coefficients Sensitivity Precision

Exp. 1 Exp. 2 Exp. 1 Exp. 2 Exp. 1 Exp. 2

S 1 83.38% 81.86% 87.59% 83.03% 84.45% 87.30%

S 2 59.53% 57.46% 97.17% 92.56% 59.51% 59.61%

S 3 71.34% 79.09% 85.39% 91.57% 77.07% 79.21%

S 4 65.90% 65.59% 87.19% 86.24% 71.62% 72.36%

Ave. 70.04% 71.00% 89.34% 88.35% 73.16% 74.62%

proposed method with the mean rank of 12.9 statistically

outperforms the method in [3] with the mean rank of 8.9 in

terms of dice coefficient with a confidence level of 93%. For

sensitivity and precision all confidence levels are under thresh-

old; therefore, which method is significantly better cannot be

concluded, although, for example, in precision measure the

mean rank of the proposed method and the method in [3] are

12.1 and 8.9, respectively, with a confidence level of 77.4%.

VIII. DISCUSSION

A. The effect of hard exudates and signal intensity

In some DME eyes, a collection of hard exudates exists

which are imaged as intensely hyper-reflective structures. With

regard to the evaluation of the proposed methods in subjects

with these structures, we collected 2 subjects with these struc-

tures from the UMN eye clinic. In Fig. 12, (a) shows a sample

of an OCT image with hyper-reflective structures and (b) is the

transformed image corresponding to subset T in neutrosophic

domain. Based on the step 2 of Algorithm 2 and the result

of transformation in Fig. 12(b), very low memberships are

assigned to hyper-reflective regions. Also, in indeterministic

set, higher memberships are assigned to these regions (see

Fig. 12(c)) which means that in the designed cost function

in the clustering scheme, these are considered as noisy pixels

and assigned to noise cluster. Therefore, these structures do

not affect the fluid/cyst segmentation results. With regard to

the effect of hard exudates on the proposed layer segmentation

algorithms, although these regions create high vertical-gradient

points (good candidates for being selected by shortest path

algorithms), the shortest path does not include these regions.

The cost of a path through these regions would be much higher

as it would contain many low vertical-gradient nodes. Fig.

12(d) shows the segmented OPL layer and fluid/cyst regions

by proposed algorithms.

Fig. 12: Hyper-reflective structures in a sample OCT Bscan.

(a): Input OCT, (b): transformed image to neutrosophic

domain (c): indeterminacy set and (d): segmented OPL and

fluid/cyst regions.

Fig. 13: Signal intensity effect.

It is clear that the intensity of OCT Bscans may be different

in even subsequent slices of an OCT volume. In our collected

dataset and other two datasets, there are variations in signal in-

tensities. In the proposed Algorithm 2 for transforming Bscans

to neutrosophic domain, the highest membership is assigned

to fluid/cyst regions. This membership is computed based

on the intensity of each individual Bscan. In the proposed

clustering Algorithm 3, the cluster with the highest center

value in T subset in neutrosophic domain is designed for

fluid/cyst regions. It guarantees that if the Bscan be either

darker or brighter in subsequent slices, fluid regions always

are located in the cluster with maximum membership. Fig.

13 shows the two subsequent slices in one of the subjects

of Duke dataset. It can be observed that the Bscan in right

side with lower noise level in background is darker than left

side. Segmented fluid/cyst results for these samples show that

the proposed method is robust with respect to the variation

of signal intensity. In these examples, although the average

of the points in fluid/cyst clusters in the T set are 0.71 and

0.84 for the left and right Bscans, respectively, it does not

affect the fluid/cyst segmentation results. In contrast with semi-

automated and supervised methods reported in section II which

are sensitive to initial seed points and training samples for fluid

regions (due to the variation of intensity level for fluid regions

in different Bscans), our proposed method is fully-automated,

unsupervised, more robust and does not need any user seed

point or training set for fluid regions.

It should be noted that in some cases with abnormal

intensity changes in layer structures, our proposed layer seg-

mentation method can lead to a part of the layer path that is

misleading. Figs. 14 (a) and (b) show two examples of such
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Fig. 14: Middle layer segmentation errors.

cases. This is due to the existence of the high vertical-gradient

pixels which stem from the intensity changes from very bright

regions to darker ones. However, these errors do not affect the

final fluid/cyst segmentation results since segmented layers are

just used in the ROI segmentation and post processing steps.

In few images which are very dim, gradient information of the

layer structures is almost lost and the OPL layer segmentation

method follows a wrong path. This path may be even under the

ISM layer. Fig. 14 (c) shows an example of such case. In these

cases, the final fluid/cyst segmentation results will be affected

and false positive pixels are segmented as fluid/cyst region

which is due to the fact that in very dim images many pixels

are similar to fluid/regions and the middle layer segmentation

fails to ignore them in the post-processing step.

B. Benefits of NS theory in OCT analysis

Here, the effect of the proposed indeterminacy definition

and λ-correction operation in NS domain is analyzed qual-

itatively and quantitatively. Although transforming image to

NS domain is not a direct denoising approach, the effect of

noise is decreased in this transformation by operations such

as α-mean and β-enhancement in the conventional NS-based

segmentation approaches and indeterminacy definition and λ-

correction in the proposed method. For the evaluation of the

proposed transformation method, the result of a transformed

image by our method is compared with other transformation

methods in [8], [9] which are based on NS. Fig. 15 (a), (b),

(c) and (d) show the input OCT Bscan, transformed image by:

our method, method in [8] and method in [9], respectively.

It is visually clear that the sub-retinal layers structure is not

preserved in [8]. Method in [9] preserves layer structure better

than method in [8] although some artifacts are created near

the hard exudates regions. Our proposed method preserves the

layer structure without creating any artifact in the NS domain.

It should be noted that we compare subset F in our method

with the subsets T in [8], [9] since in Algorithm 2 subset T is

inverted to assign highest memberships to pixels in fluid/cyst

regions.

Beside the benefits of using NS for hard exudates, hyper-

reflective structures and signal intensity variations, the effect

of NS is evaluated quantitatively to show that how NS affects

the final fluid/cyst segmentation results. TABLE IV shows how

segmentation results are affected when Algorithms 3 and 4 are

used in image domain for segmentation. It should be noted that

in clustering Algorithm 3, subsets T is replaced with input

image g and I is ignored. As it is reported in TABLE IV the

best effect of using NS is observed in the Optima dataset with

TABLE IV: The effect of NS in segmentation results.

With NS Without NS

UMN dataset
Dice Coff. 69.40% 64.76%
Sensitivity 76.79% 70.45%
Precision 74.91% 68.14%

Duke dataset
Dice Coff. 57.51% 48.34%
Sensitivity 67.27% 59.73%
Precision 64.98% 58.15%

Optima dataset
Dice Coff. 70.52% 59.12%
Sensitivity 88.84% 73.17%
Precision 73.89% 61.08%

Fig. 15: Transformation to NS domain. (a): input OCT

Bscan, transformed image by: (b): proposed method, (c):

method in [8] and (d): method in [9].

11.14% improvement in dice coefficient which is due to the

existence of higher amount of speckle noise in this dataset. The

minimum improvement of segmentation accuracy is 4.64% in

the UMN dataset which has the lowest level of noise. It can be

concluded that using proposed transformation to NS domain

has more benefits for images with lower signal to noise ratio.

C. Inter-observer variability analysis

In this study, the automatic segmentation results are com-

pared with two experts referred as grader 1 (G1) and grader 2

(G2). Correlation between observers is analyzed and reported

in TABLE V. When the observer correlation is high, the

segmentation errors are due to the segmentation algorithm,

not inter-observer variation. The observer correlation of the

used datasets in this study are 97.70%, 91.15% and 58.08%

with respect to the dice coefficients in the UMN, Optima and

Duke datasets, respectively. It can be concluded from TABLE

V that the dice coefficient errors of our automated algorithm

in UMN and Optima datasets are from the algorithm, not

inter-observer variability while this error is increased by inter-

observer variability in the Duke dataset.

D. The effect of the number of clusters in segmentation results

The number of main clusters (K) affects the segmentation

results significantly. The smaller K, the bigger clusters are

created and vice versa for larger K. The segmentation results

TABLE V: Inter-observer variability analysis.

Average of
Automatic vs.

G1 and G2
Inter-Observer

Automatic vs.
G1 and G2
Intersection

UMN dataset
Dice Coff. 69.40% 97.70% 69.88%
Sensitivity 76.79% 97.46% 77.64%
Precision 74.91% 99.34% 74.62%

Duke dataset
Dice Coff. 57.51% 58.08% 57.99%
Sensitivity 67.27% 60.20% 81.68%
Precision 64.98% 76.80% 52.50%

Optima dataset
Dice Coff. 70.52% 91.15% 71.80%
Sensitivity 88.84% 91.39% 93.36%
Precision 73.89% 94.35% 70.93%

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TBME.2017.2734058

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XXXX 11

Fig. 16: Fluid/cyst segmentation results for (a) K=4 and (b)

K=7.

TABLE VI: The effect of the number of clusters in segmen-

tation results.

K=4 K=5 K=6 K=7 K=8 K=9 K=10 Automated K

Random Bscans 45.66% 49.83% 44.33% 23.80% 39.42% 31.75% 27.19% 64.69%

Bscans with hard exudates 33.73% 31.59% 44.68% 49.52% 38.76% 35.33% 41.46% 68.76%

Bscans with intensity changes 69.81% 75.87% 66.55% 66.87% 59.35% 45.41% 40.83% 86.64%

Bscans without fluid 21.13% 25.19% 26.49% 48.84% 59.42% 75.51% 88.64% 84.33%

for two different K values are depicted in Fig. 16. In this

section the effect of K in final segmentation results is analyzed

quantitatively. If K is considered as a constant value for all

OCT scans, average segmentation accuracy is decreased. For

example, for the scan shown in Fig. 16, K = 4 is more

appropriate than K = 7. In scans with less fluid regions K = 7
is better. It means that for each scan, the corresponding K

should be considered. To show that how the proposed method

for the determination of K affects segmentation results, four

groups of OCT scans (100 scans per group) including random

scans, scans with hard exudates, scans with intensity changes

and scans without fluid are considered. The main reason for

this consideration is to evaluate the effect of K in all types

of OCT scans (first group) and OCT scans which have more

challenges for fluid segmentation (last three groups). The

average dice coefficient of each group for different values

of K (from the minimum to maximum values) is reported

in TABLE VI. From TABLE VI it is concluded that for the

first three groups, using the K obtained from the automated

method improves segmentation results significantly. For the

last group, considering the maximum value for K is better

than automated K. This stems from the fact that segmentation

with the maximum K segments very small fluid regions which

are ignored in the last segmentation step in Section IV.E.2.

E. Remove the regions between OPL and ISM and small

regions

To improve the fluid/cyst segmentation results, two heuris-

tics are presented which ignore the incorrectly segmented

regions as fluid/cyst. In the first one (heuristic 1), the regions

between OPL and ISM are ignored. This idea stems from

the fact that these regions are created from OPL elevation

which is because of fluid/regions in the central part of OCT

scans. These regions are similar to fluid/cyst regions in both

texture and brightness and mislead the proposed segmentation

method. In the second one (heuristic 2), small regions under

H pixels are ignored. The reason for this heuristic is that

the proposed segmentation method does not consider spatial

dimension and connectivity of segmented regions. Therefore,

small isolated regions are segmented as fluid/cyst which are

false positive pixels. To show how these heuristics improve the

segmentation results, TABLE VII reports the dice coefficient,

sensitivity and precision of the proposed segmentation method

TABLE VII: Effect of removing the regions between OPL and

ISM and small regions.

Without
post-processing

Ignore small regions
Ignore regions
between OPL and ISM

Ignore small regions
and the regions
between OPL and ISM

UMN Dataset
Dice Coff. 61.79% 63.76% 68.33% 69.40%
Sensitivity 77.61% 77.13% 75.41% 76.79%
Precision 71.32% 72.43% 72.99% 74.91%

Duke Dataset
Dice Coff. 46.11% 50.65% 55.86% 57.51%
Sensitivity 67.95% 66.34% 67.38% 67.27%
Precision 58.45% 61.78% 61.75% 64.98%

Optima Dataset
Dice Coff. 62.19% 66.98% 65.72% 70.52%
Sensitivity 90.13% 90.66% 89.54% 88.84%
Precision 70.56% 71.13% 70.33% 73.89%

with and without these heuristics separately. Both heuristics

decrease the number of false positive pixels since the proposed

segmentation method consider some regions between OPL

and ISM and some small regions far from fluid/cyst regions

as fluid/cyst (see Fig. 5 in this document and Fig. 1 (b) in

supplementary materials). Therefore, as shown in TABLE VII,

applying these heuristics improves dice coefficient by 9%, 11%

and 8% in UMN, Duke and Optima datasets, respectively.

Also, precisions are increased 3%, 6% and 3% in UMN, Duke

and Optima datasets, respectively. With respect to sensitivity

measure, there is no considerable improvement in any metric

since the number of false negatives is not affected by such

heuristics significantly. Finally, in both heuristics, in some

cases the number of true positive pixels is slightly decreased

which leads to a decrease in the sensitivity.

IX. CONCLUSION

In this research, a fully automated algorithm for fluid/cyst

segmentation in OCT images of the retina with DME pathol-

ogy has been proposed based on graph shortest paths and

neutrosophic sets. Accurate segmentation of DME biomarkers

is important since it can provide a quantitative measure for

diagnosis of DME. To show the efficiency of the proposed

method, it was tested on three OCT datasets with DME.

Segmentation results show that the segmented images obtained

by our proposed algorithm are not only in close agreement

with the manual segmentations of the two ophthalmologist

experts but also achieve better performance with respect to

dice coefficient and precision comparison criteria, as compared

to a prior method [3]. Future efforts will be directed towards

the segmentation of fluid-filled regions in age-related macular

degeneration (AMD). Future efforts will also be directed to-

wards fine-tuning the algorithm for OCT images obtained from

other manufacturers. Finally, reproducibility studies between

segmentation following repeat imaging can be addressed as

another future work.

X. DATA ACCESS

The local UMN DME dataset and the segmented images of

the approach presented in this paper for the UMN, Duke and

Optima data sets are available from Prof. Keshab Parhi’s web

site: http://people.ece.umn.edu/∼parhi/DATA/OCT/DME/.
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