
Fully Automatic Assessment of Programming Exercises
Riku Saikkonen, Lauri Malmi, and Ari Korhonen

Department of Computer Science and Engineering
Helsinki University of Technology, Finland

{rjs,lma,archie}@cs,hut.fi

Abstract

Automatic assessment of programming exercises has become an
important method for grading students' exercises and giving
feedback for them in mass courses. We describe a system called
Scheme-robo, which has been designed for assessing
programming exercises written in the functional programming
language Scheme. The system assesses individual procedures
instead of complete programs. In addition to checking the
correctness of students' solutions the system provides many
different tools for analysing other things in the program like its
structure and running time, and possible plagiarism. The system
has been in production use on our introductory programming
course with some 300 students for two years with good results.

1 I n t r o d u c t i o n

Introductory programming courses often have lots of small
exercises, designed to teach students to write small programs first.
After solving them the students can move on to solve larger
assignments. Such course organisation has also been used in
Hetsinki University of Technology on the basic programming
COUrSeS.

The course given for students studying computer science as
their major is based on using the functional programming
language Scheme [1,6]. Scheme is not widely used in "practical
programming", but there are over 250 colleges, universities, and
secondary schools that are using Scheme in their curricula [7]. We
use it on our course because Scheme provides better possibilities
to present and teach many important and complex concepts in
computer science than more commonly used programming
languages like Java or C. Unfortunately, many practically oriented
students have not been very motivated to learn an academic
language. Therefore we have used small but mandatory weekly
programming exercises in order to keep the students active during
the whole course instead of trying to catch on the course just
before the exams.

In 1997, due to the rapidly increasing number of students, we
did not have enough resources to assess the exercises manually.
We had to stop assessing them and make the exercises voluntary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/'or a fee.
ITiCSE2001 6/01 Canterbury, UK
© 2001 ACM ISBN 1-58113-330-8/01/06. . .$5.00

This was a serious drawback for the results of the course,
because voluntary exercises did not very well support the
prementioned aim of keeping students busy.

In order to return to the previous convention, the grading load
needed to be cut down heavily. One solution to this problem is to
assess the exercises automatically or semi-automatically. Many
such systems have recently been presented for programming
courses [2,4], data structures and algorithms courses [5] and
others [3]. We have used the Ceilidh system [2] to assess
exercises written in C or Java on the basic programming course
for students studying computer science as their minor since the
year 1994.

The main principle of Ceilidh is to use string matching to
compare the output of the student's program with the model
output given by the teacher. This approach is not very suitable for
our Scheme course, because in most exercises students write
single Scheme procedures instead of complete programs. This is
closer to the idea of implementing algorithms than to writing
programs. Moreover, it seems unimportant to require the students
to write trivial code just for reading input and writing output
values. Therefore we would have had to make artificial
modifications to the exercises, which we did not want to do.

One solution would have been to use a semi-automatic approach
such as presented by Jackson [4]. This approach requires the
teacher to monitor the assessment process and to do some of it
manually. However, even this would cause too much work on
large courses with lots of exercises.

To solve the problem we developed Scheme-robo, an automatic
assessment system for Scheme exercises. It assesses exercises
completely automatically without human intervention.

Scheme-robo has a number of features that we consider
important. First, the assessment is carried out on-line, so that
students get their results almost immediately and can resubmit a
failed exercise after reconsidering their solution. Limiting the
number of submissions forces them to think about the reason for
the failure instead of plain trial-and-error debugging. Second, we
avoid the problem of comparing the expected result with slightly
different output from student code [4], since most of the exercises
are Scheme procedures that return a value instead of printing it
out. Return values can be analysed within the Scheme language,
usually by simply comparing them to the correct answer using a
standard equality predicate. Third, the Lisp-like syntax enables us
to easily analyse the structure of the students' code. This is very
useful in assignments where students fill in the given exercise
code. The same feature can be used to detect plagiarism, as well.
Fourth, we can set restrictions on what language constructs they
are allowed to use for particular exercises. Fifth, Scheme-robo
allows us to use randomised tests. Finally, the use of Scheme
allows us to run code in a fully safe "sandbox", so that malicious
or non-terminating code does not harm the assessment. We can
actually use the run time control even for rough run time analysis,

133

i.e., if a linear time solution is required, our system catches
possible O(N 2) algorithms.

The system has been in production use for two years, with about
60exercises and 300students per year, and it has worked
suprisingly well. All exercises require the student to write either
Scheme code or short verbal answers (for example, complexity
figures).

The structure of this paper is the following. In the next section
we explain briefly how students use the system. In Section 3 we
consider more closely how the student code is analysed in various
ways and give an example of setting up an exercise. In Section 4
we present a general view of the system architecture and in
Section 5 we discuss some results and observations we have made
during these two years. The final section includes some final
remarks and ideas for future work.

2 S t u d e n t ' s p o i n t of v iew

Students submit their solutions to Scheme-robo via e-mail. The
system automatically responds to them with a receipt containing a
copy of their submission and a set of points and comments to the
submitted exercises.

Currently Scheme-robo responds within about ten minutes.
While small response times are usually preferred, in this case an
instant response would encourage the students effectively to
debug their code in the Scheme-robo system by trial and error.
Ten minutes was selected to encourage the students to test their
code by themselves before submitting it.

We have a fixed deadline for finishing each set of exercises, and
the students may submit a solution for every exercise for up to
20 times. In practice, most students get it right with the first few
tries.

New exercises are automatically sent to the students via e-mail.
The students can also request copies of the exercises and the
report of their current points by sending e-mail to the Scheme-
robo system.

3 T e a c h e r ' s p o i n t o f v iew

To add a new exercise into the Scheme-robo system, the teacher
needs to write a configuration file that describes how the solutions
are assessed. The content of the file depends on the type of
assessment. Usually the files are about 20 to 100 lines long and
contain test runs, model solutions and/or other information.

Scheme-robo assesses solutions in several ways. The main
method is to execute the code using test runs specified by the
teacher and to examine the return values. The system can also do
some analysis on the structure of the submitted code, e.g., to make
sure that it conforms to a skeleton given in the problem statement.
In addition, the system can check for specific keywords in the
code. Finally, simple pattern matching based on regular
expressions is used in such exercises where students do not write
code. For example, the problem might ask for a set of numbers or
a complexity figure (e.g. O(N)), or it could be simply a multiple-
choice question.

Each of these assessment methods has its own type of
configuration which is described below more in detail. Moreover,
another configuration file can be included into the current one.
This feature is used for combining different methods, for example,
when analysing code structure before executing test runs. It is also
used for sharing parts of the configuration between different
exercises, e.g., a set of test runs for all exercises having to do with
a particular topic.

In order to help in testing the configuration files, we have

written a set of simple scripts that automatically check whether
our model answers are passed by the configuration files.

The Scheme-robo system gives points for each executed test.
Points from individual tests are summed together to get the total
points. There is also a possibility to give a f a i l value for the
number of points, which means that the exercise is immediately
rejected, without executing further tests. In practice, we have
assessed the exercises simply as passed or failed.

3.1 T e s t r u n s

The main method of assessing student code is to execute test
runs and examine their results. All test runs are independent of
each other.

Most of the test runs are "fixed"; that is, expressions are given
by the teacher and tested with every student. For example, we can
test if the Scheme expression (f a c t 5) returns 120, which is
the factorial of 5, calculated using a f a c t procedure submitted
by the student.

A general problem in automatic assessment is the difference in
wording and layout in students' answers. For example, one
program could print out "The factorial is 120." while another
could say "5! --- 120". We are able to avoid this problem by
looking at return values from procedures instead of the actual
output strings. Moreover, the students are also spared from the
pedagogically unimportant effort of writing output routines.

In addition to fixed tests, there is a possibility to include
randomness in the tests. Consider, for example, an exercise where
students implement a sorting algorithm. We can specify a test run
that generates five random lists of numbers, sorts them using the
student's code, and compares the result to what the model solution
returns for the same inputs.1

Many exercises require the use of code given in the textbook.
We therefore have the facility of including a fixed set of
definitions to be executed before the student's code when doing
the test runs. This feature is useful for various supporting
procedures, or when students need to modify large sections of
code and it is more convenient to submit only the modified
procedure definitions.

3.2 T e s t i n g p r o g r a m s t r u c t u r e

Keyword search For some exercises, we want to disallow the
use of certain Scheme primitives. For example, there is an
exercise to reimplement the r e v e r s e primitive that reverses a
list. A solution that uses the same primitive to implement itself
should naturally not be accepted.

The list of keywords to be rejected is set up in the configuration
file. This is practical, because Scheme does not have a large set of
primitives. For instance, we can require a purely functional
implementation of an exercise simply by disallowing primitives
set i , set-car : and set-cdr :.

Analysis o f p r o g r a m s t r u c t u r e In addition to keyword search,
Scheme-robo can also do some simple analysis on the structure of
student code. Scheme or Lisp code is trivially reduced into a list
structure which represents a kind of abstract syntax tree. This tree
can be examined to look for particular subpatterns or some
specific general structure.

In practice, this feature has mostly been used to check whether
the student has followed a mandatory skeleton given in the

i A model solution is actually needed only if there are
random tests.

134

problem statement.
Detecting plagiarism Plagiarism detection is important when

assessing exercises automatically. Some preprocessing of
submitted code is carded out before this. Individual solutions are
reduced to a kind of abstract syntax tree. Variable names are
removed and, for example, definitions and arguments of
commutative primitives are sorted in a particular order. The
resulting trees are finally compared to each other.

We observed that our exercises are too small for detecting
plagiarism from individual exercises. Therefore the system
compares all exercises, looking for pairs of students that have
many similar solutions. A plagiarism estimate is given for each
pair of students, and suspicious pairs are examined manually.

3.3 F e e d b a c k to the student
The student is given various kinds of feedback for his solution.

Each test has a set of possible outcomes given in the configuration
file, for example, a set of possible answers for a test run. The
configuration file specifies points and comments for each
outcome.

The comments are thus given on the basis of individual tests. In
practice, we have mostly used them as error messages: the most
common comments identify the test run that failed. Comments
could also be used as warnings ("this didn't work, but that's ok")
or as encouragement (when the student's solution includes
something more than what was required in the problem
statement).

3.4 A n example
One of the first exercises on our course has been to write a

procedure to compute the cube root of its argument using a
method given in the textbook (exercise 1.8 of [1]).

The exercise requires students to use internal definitions (i.e.,
block structure). This is checked via structural analysis. In the
following configuration file, .9 .9 represents any symbol or list
structure, and .9 ? * zero or more such. The solution is rejected if
internal definitions are not found. Otherwise one point is given.

(if (structure
(??*

(define (cube-root ??)
??*

(define (?? ??*) ??*)
??*)

??*))
(i)
(fail "No internal definitions. "))

The Scheme primitive e x p t must not, of course, be used in the
solution. This is tested by the following code, which either rejects
the solution or gives 0 points.

(if (keyword expt)
(fail)
(0))

Test runs can be specified as follows. Calculating the cube root
of 125 should return 5.0; the configuration below gives one point
for this, and otherwise rejects the solution with the comment
identifying the procedure call that did not work.

(t e s t (c u b e - r o o t 125)
(r 5.0 i)
(else fail "*expr* doesn't work"))

This is the essence of What is necessary for a configuration file.
The configuration actually used for the cube-root problem
contains some more test runs (including random ones); it has 29
lines plus empty lines and comments. Creating and testing the
configuration for a new exercise usually takes less than an hour
for these kinds of small exercises.

4 Architecture
Scheme-robo reuses the core of the TRAKLA system [5] to

handle orthogonal tasks of course administration: handling the
submitted answers, keeping track of points, calculating statistics,
etc. The assessment itself is implemented as a "checker module"
for TRAKLA. The module receives as input a submitted answer
to a single exercise and returns a number of points as its result.
Short configuration files are used to specify test runs and other
information specific to each individual exercise.

4,1 Exe c u t i ng s t u d e n t code

Student code is executed in a safe "sandbox", a metacircular
Scheme interpreter specifically created for this purpose. The
interpreter was based on the analysing metacircular Scheme
interpreter from [1], and it has been extended to implement most
of the Scheme language specification [6].

The interpreter has some special features that distinguish it from
a run-of-the-mill Scheme interpreter. In order to avoid infinite
loops in student code it includes a count of the number of
evaluations done when running a particular test; when this count
reaches an exercise-specific maximum, the submitted solution
fails. The same count can also be used for very coarse complexity
analysis. For example, we can measure whether an algorithm runs
in approximately linear time by specifying a limit for the number
of evaluations that is difficult to achieve with, for example, an
O(N 2) algorithm.

The customised metacircular interpreter provides a safe
sandbox, because we did not include Scheme features for file I/O
or other things that might compromise security when untrusted
student code is executed. These features have not been necessary
in practice in our exercises.

5 Observations from using the sys tem

The automatic assessment has worked quite well and we have
been able to assess all small exercises automatically. 2 In practice,
the system has been stable and has required very little manual
administration.

Most of the problems that students have reported with Scheme-
robo are due to additional non-standard features of the Scheme
implementation we use on the course. The problems have been
relatively minor, and we have been able to solve them by adding
support for such features.

In addition to assessing the exercises, Scheme-robo keeps
extensive logs of its operation. This data is useful for monitoring
the progress of the students and, for example, the difficulty of
individual exercises. On the fall 1999 course, we divided our
exercises into five "rounds", so there were deadlines every two
weeks. The logs clearly confirmed the assumption that many
students do exercises just before deadlines. For instance, about
1000 exercises per day were submitted before the first deadline,
and only about 60 per day just after it.

2 There is also a larger programming project on the course,
which is assessed manually.

135

5.1 The students' opinion
We had around 350 students on our course in the autumn term

2000. The exercises were divided in 5 two-week rounds, each
having 12 exercises, 4 of which were mandatory. The students
completed, on average, 5 out of 12 exercises. The voluntary
exercises gave extra points for the exam.

In October 2000, we asked students to give feedback on the
automatic assessment system. Out of 229 respondents, 80 %
thought that automatic assessment in general is a good or
excellent idea. The Scheme-robo system was also praised: only
10 % of the students thought that it assessed exercises badly. The
rest thought that the Scheme-robo system assessed exercises
moderately well (41%), weil (44 %) or excellently (6 %).

We also asked about an area that we knew needed
improvement: only 45 % of the students thought that the error
messages (comments) given by Scheme-robo are adequate or
good.

6 Discussion
There are some things that need to be taken into consideration

when creating exercises that are automatically assessed. First of
all, exercises must be well-specified to the level of specifying an
order for function arguments etc.

It is necessary to solve new exercises before one can be
reasonably certain that the automatic assessment is done correctly.
This is, of course, a good thing to do in any case, but it can often
be postponed when assessing exercises manually.

The system is by no means complete. Better error messages are
the most important area of improvement in it. In addition,
automatic assessment of coding style would be a valuable aid.
And finally, we should have a means for tailoring the exercises to
be different for each student, as in TRAKLA [5]. But even now
Scheme-robo has proved its value as an important tool with great
pedagogical value. Without it, we could not assess the exercises
and give the students enough feedback on such a large course with
300 students. Moreover, no reasonable human resources would be
enough to give feedback so quickly and allow the students tO
resubmit their solutions and learn from their errors in this way.

We use Scheme on our course, but this approach to automatic
assessment should also work well in other programming
languages. Testing individual procedures instead of complete
programs (thus avoiding the problems caused by I/O, as discussed
above) is possible in any language with an interpreter (perhaps
even in a traditional compiled language, if the assessment system
writes a main() function to do the test runs). We used a custom-
made metacircular interpreter, but even a normal run-of-the-mill
interpreter could be used (for example, as a subprocess of the
assessment system). A safe sandbox for student code is more
difficult to implement in this case, but could be done by, e.g.,
preanalysing the code and controlling the execution time, or by
using the safety features of Java. It would be interesting to see
whether this approach to automatic assessment would work in
Java.

7 Acknowledgements
We thank Kenneth Kronholm and Timo Lilja for writing major

parts of the Scheme-robo system.

References

[1] Abelson, H., Sussman, G. J., and Sussman, J.: Structure and

Interpretation of Computer Programs. 2nd Edition. ISBN 0-
262-51087-1, MIT Press, 1996.

[2] Benford, S., Burke, E., Foxley, E., Gutteridge, N., Mohd
Zin, A.: Ceilidh: A Course Administration and Marking
System. Proceedings of the International Conference of
Computer Based Learning, Vienna, 1993.

[3] English, J., Siviter, P.: Experience with an Automatically
Assessed Course. Proceedings of the 5th Annual
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, pp. 168-171,
Helsinki, Finland, 2000.

[4] Jackson, D.: A Semi-Automated Approach to Online
Assessment. Proceedings of the 5th Annual
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, pp. 164-167,
Helsinki, Finland, 2000.

[5] Korhonen, A., and Malmi, L.: Algorithm Simulation with
Automatic Assessment. Proceedings of the 5th Annual
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education, pp. 160-163,
Helsinki, Finland, 2000.

[6] Kelsey, R., Clinger, W., and Rees, J. (eds.): Revised 5 Report
on the Algorithmic Language Scheme. A CM SIGPLAN
Notices, 33(9), October 1998.

[7] Martin, E.: Schools Using Scheme.
http://www, schemers, corn/schools, html.

136

