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Abstract – Locating facial feature points in images of 

faces is an important stage for numerous facial image 

interpretation tasks. In this paper we present a method for 

fully automatic detection of 20 facial feature points in 

images of expressionless faces using Gabor feature based 

boosted classifiers. The method adopts fast and robust face 

detection algorithm, which represents an adapted version 

of the original Viola-Jones face detector. The detected face 

region is then divided into 20 relevant regions of interest, 

each of which is examined further to predict the location of 

the facial feature points. The proposed facial feature point 

detection method uses individual feature patch templates to 

detect points in the relevant region of interest. These 

feature models are GentleBoost templates built from both 

gray level intensities and Gabor wavelet features. When 

tested on the Cohn-Kanade database, the method has 

achieved average recognition rates of 93%. 

1 Introduction 

 Facial feature points are generally referred to as facial 

salient points such as the corners of the eyes, corners of the 

eyebrows, corners and outer mid points of the lips, corners 

of the nostrils, tip of the nose, and the tip of the chin (see 

Fig. 1(e)). Detection of facial feature points is often the 

first step in computer vision applications such as face 

identification, facial expression recognition, face tracking 

and lip reading. For example, localization of facial points is 

the initial step of Active Shape and Active Appearance 

Models algorithms (e.g. [1]) that are nowadays widely used 

for face alignment and tracking. Currently, however, this 

step is usually carried out by manually labeling the required 

set of points. The localization of stable facial points such as 

the inner corners of the eyes and the inner corners of the 

nostrils is also usually used to register each frame of an 

input image sequence with the first frame of it. In turn, the 

robustness of the facial feature point detection algorithm 

highly affects the overall system performance.  

 Previous methods for facial feature point detection 

could be classified in two categories: texture-based and 

shape-based methods. Texture-based methods model local 

texture around a given feature point, for example the pixel 

values in a small region around a mouth corner. Shape-

based methods regard all facial feature points as a shape, 

which is learned from a set of labeled faces, and try to find 

the proper shape for any unknown face. Typical texture-

based methods include gray-value-, eye-configuration- and 

neural-network-based eye-feature detection [2], log Gabor 

wavelet based facial point detection [3], and two-stage 

facial point detection using a hierarchy of Gabor wavelet 

networks [4]. Typical shape-based methods include active 

appearance model based facial feature detectors [5], [6]. A 

number of approaches combining texture- and shape-based 

methods have been proposed as well. Wiskott et al. [7] 

used Gabor jet detectors and modeled the distribution of 

facial features with a graph structure. Cristinacce and 

Cootes used Haar feature based AdaBoost classifier 

combined with the statistical shape models [8]. Chen et al. 

proposed a method that applies a boosting algorithm to 

determine facial feature point candidates for each pixel in 

an input image and then uses a shape model as a filter to 

select the most possible position of feature points [9]. In 

general, although some of these detectors seem to perform 

quite well when localizing a small number of facial feature 

points such as the corners of the eyes and the mouth, none 

of them detects all 20 facial feature points illustrated in Fig. 

1(e) and, more importantly, none performs the detection 

with high accuracy. To wit, the current approaches usually 

regard as SUCCESS if the bias of automatic labeling result 

to the manual labeling result is less than 30% of the true 

(annotated manually) inter-ocular distance (the distance 

between the eyes). However, 30% of the true inter-ocular 

value is at least 30 pixels in the case of the Cohn-Kanade 

database samples [10], which we used to test our method. 

This means that a bias of 30 pixels for an eye corner would 

be regarded as SUCCESS even though the width of the 

whole eye is approximately 50 pixels. This is unacceptable 

in the case of facial expression analysis, which represents 

the main focus of our research, since subtle changes in the 

facial feature appearance will be missed due to the errors in 

point localization and tracking [11].  

 We propose here a robust, highly accurate method for 

detecting 20 facial points in images of expressionless faces 

with possible in-plane rigid head rotations, recorded under 

various illumination conditions. The method consists of 4 

steps (Fig. 1): Face Detection, Region Of Interest (ROI) 

Detection, Feature Extraction, and Feature Classification. 

To detect the face region in an input image, we adopted fast 

and robust face detector based on a cascade scheme 

consisting of a set of Haar feature based GentleBoost 
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classifiers [12]. The detected face region is then divided in 

20 relevant ROIs, each one corresponding to one facial 

point to be detected. A combination of heuristic techniques 

based upon the analysis of the vertical and horizontal image 

histograms achieves this. The proposed facial feature point 

detection method uses individual feature patch templates to 

detect points in the relevant ROI. These feature models are 

13×13 pixels GentleBoost templates built from both gray 

level intensities and Gabor wavelet features. In the training 

phase, the feature models are learned using a representative 

set of positive and negative examples, where the positive 

examples are image patches centered on a particular facial 

feature point and the negative examples are image patches 

randomly displaced a small distance from the same facial 

feature. In the testing phase, each ROI is filtered first by the 

same set of Gabor filters used in the training phase (in total, 

48 Gabor filters are used). Then, for a certain facial point, 

13×13 pixels window (sliding window) is slid pixel by 

pixel across 49 representations of the relevant ROI 

(grayscale plus 48 Gabor filter representations; see Fig. 

1(c)). For each position of the sliding window, GentleBoost 

classifier outputs a response depicting the similarity 

between the 49-dimensional representation of the sliding 

window compared to the learned feature point model. After 

scanning the entire ROI, the position with the highest 

response reveals the feature point in question.  

 The remainder of this paper is organized as follows. 

In Section 2 we describe the four steps of our method. 

Section 3 describes the experimental results achieved by 

the proposed method. Section 4 concludes the paper. 

2 Methodology 

2.1 Face Detection  

 To build a system capable of automatically labeling 

facial feature points in a face image, it is first necessary to 

localize the face in the image. We make use of a real-time 

face detection scheme proposed in [12], which represents 

an adapted version of the original Viola-Jones face detector 

[13]. The Viola-Jones face detector consists of a cascade of 

classifiers trained by AdaBoost. Each classifier employs 

integral image filters, which remind of Haar Basis 

functions and can be computed very fast at any location 

and scale (Fig. 1(a)). This is essential to the speed of the 

detector. For each stage in the cascade, a subset of features 

is chosen using a feature selection procedure based on 

AdaBoost.  

 The adapted version of the Viola-Jones face detector 

that we employ uses GentleBoost instead of AdaBoost. It 

also refines the originally proposed feature selection by 

finding the best performing single-feature classifier from a 

new set of filters generated by shifting and scaling the 

chosen filter by two pixels in each direction, as well as 

composite filters made by reflecting each shifted and scaled 

feature horizontally about the center and superimposing it 

on the original. Finally the employed version of the face 

detector uses a smart training procedure in which, after 

each single feature, the system can decide whether to test 

another feature or to make a decision. By this the system 

retains information about the continuous outputs of each 

feature detector rather than converting to binary decisions 

at each stage of the cascade. The employed face detector 

was trained on 5000 faces and millions of non-face patches 

from about 8000 images collected from the web by 

Compaq Research Laboratories [12]. On the test set of 422 

images from the Cohn-Kanade database [10], the detection 

rate was 100%.  
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Fig. 1. Outline of the method. (a) Face detection using 

Haar feature based GentleBoost classifier; (b) ROI 

extraction, (c) feature extraction based on Gabor filtering, 

(d) feature selection and classification using GentleBoost 

classifier, (e) output of the system compared to the face 

drawing with facial landmark points we aim to detect.   

… … 
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2.2 Detecting Regions of Interest 

 The next step in the automatic facial point 

detection is to determine Region Of Interest (ROI) for each 

point, that is, to define more or less a large region which 

contains the point that we want to detect. To achieve this 

we apply a fully automated method for detecting the irises 

and the medial point of the mouth. When those three 

positions are known we can easily determine other ROIs 

within the face region.  

The iris and mouth detection is achieved as follows. First, 

we divide the face region horizontally into two parts: the 

upper face region containing the eyes and the lower face 

region containing mouth (Fig. 2). Since the face detector 

described above is highly accurate and the detected face 

region is always extracted in the same way regarding the 

relative size and position of the face box, it is sufficient, for 

the first step, to roughly divide the face region horizontally 

in two halves (Fig. 2(a)). The upper face region is again 

divided into two halves in a vertical direction (Fig. 2 (a)) so 

that each eye can be analyzed separately.  

The positions of the irises are located in the segmented 

eye regions by sequentially applying the analysis of the 

vertical histogram (showing the intensity differences 

between the successive rows, pixel-wise) and then the 

horizontal histogram (showing the intensity differences 

between the successive columns, pixel-wise). The peak of 

the vertical histogram of the eye-region box corresponds 

with the y-coordinate of the iris, and the peak of the 

horizontal histogram of the eye-region box corresponds 

with the x-coordinate of the iris. By knowing y and x 

coordinates of both irises, we are able to calculate the angle 

that they make with the horizontal plane and, if necessary, 

to rotate the image for that angle. In this way, possible in-

plane rotations of the face can be eliminated. With this 

method we achieve a detection rate of 100% (i.e., all the 

segmented ROIs were correctly identified) on the test set of 

422 Cohn-Kanade database images.  

 To locate the medial point of the mouth we first 

define a ROI of the mouth. Since we know the distance 

between the irises (ED), we define the mouth region to be 

the horizontal strip whose top is at 0.85×ED from the eyes 

horizontal position and has a height equal to 0.65×ED (Fig. 

2). In that region horizontal and vertical thresholded edges 

will give us the shape of the mouth. Analysis of the vertical 

histogram of such a thresholded mouth region, obtains the 

graph similar to the one illustrated in Fig. 1(b). The center 

of the widest peak will define vertical position of the 

medial point of the mouth. By choosing the widest peak, 

the possibility of detecting the nose instead of the mouth is 

avoided. The horizontal position of the point in question is 

defined as the middle point between the eyes. Fig 1(b) 

shows typically detected positions of the eyes and mouth.   

 We regard the detection scheme described above as 

successful if the eye position was detected within the iris. 

For the test set of 422 images from the Cohn-Kanade 

database, the detection rate for the irises was 100%. For the 

medial point of the mouth, the detection rate was 99%, i.e., 

we had 2 false detections for our test set. 

 Subsequently, we use the detected positions of the 

irises and the medial point of the mouth to divide the face 

into 20 regions so that each of the points to be localized is 

within one ROI. An example of ROIs extracted from the 

face region for points B, I, and J, is depicted in Fig. 1(b).  

2.3 Feature Extraction 

 The proposed facial feature point detection method 

uses individual feature patch templates to detect points in 

the relevant ROI. These feature models are 13×13 pixels 

GentleBoost templates built from both gray level intensities 

and Gabor wavelet features.  

 Recent work [14] has shown that a Gabor approach 

for local feature extraction outperformed PCA (Principal 

Component Analysis), FLD (Fisher’s Linear Discriminant) 

and LFA (Local Feature Analysis). The essence of the 

success of Gabor filters is that they remove most of the 

variability in image due to variation in lighting and 

contrast, at the same time being robust against small shift 

and deformation [15]. Gabor wavelets seem to be a good 

approximation to the sensitivity profiles of neurons found 

in visual cortex of higher vertebrates [16]. There is 

evidence that those cells tend to come in pairs with even 

and odd symmetry [17], [18] similar to the real and 

imaginary part of Gabor-based wavelets. 

 A 2D Gabor filter ψ(x,y) can be defined as: 
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where f0 is the central frequency of a sinusoidal plane 

wave, θ is the anti-clock wise rotation of the Gaussian and 

the plane wave, and α and β are the parameters for scaling 

two axis of the elliptic Gaussian envelope. Here we 

consider that the orientation of the Gaussian envelope and 

the orientation of the sinusoidal function are the same 

(which is one the characteristics of complex cells of the 

mammals’ visual cortex). The Gabor function is actually 

Gaussian shaped function (first part of the equation (1)) 
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Fig. 2. (a) Dividing the face horizontally in half and 

dividing the upper face region vertically in half. (b) 

Finding the mouth region within the face region by means 

of Eye Distance (ED) 
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which modulates sinusoidal plane wave carrier (second part 

of the equation (1)). Its 2D Fourier transform is: 
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By fixing the ratio of the frequency of the wave and the 

sharpness of the Gaussian we get that the spatial filter (1) 

includes a constant number of waves. The ratios which are 

known to hold for the cells in human visual cortex are [16]: 
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and in frequency domain as: 
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Thus, in the frequency domain, the filter is an oriented 

Gaussian with orientation θ  centered at frequency 0f . 

Gabor filter formulated in this way has the response at zero 

frequency (DC-response) which has a value close to 0 and 

is the same for all central frequencies. This ensures that the 

method is insensitive to illumination variations. 

 Several Gabor filters are combined to form a filter 

bank. The filter bank is usually composed of filters in 

several orientations and frequencies, with equal orientation 

spacing and octave frequency spacing, while the relative 

widths of Gaussian envelope γ and η stay constant. In the 

frequency domain Gabor filter must obey Nyquist rule, 

which means that   

0f  ≤ 0.5, for each θ .                             (7) 

 Feature vector for each facial point is extracted from 

the 13×13 pixels image patch centered on that point. This 

feature vector is used to learn the pertinent point’s patch 

template and, in the testing stage, to predict whether the 

current point represents a certain facial point or not. This 

13×13 pixels image patch is extracted from the gray scale 

image of the ROI and from 48 representations of the ROI 

obtained by filtering the ROI with a bank of 48 Gabor 

filters at 8 orientations and 6 spatial frequencies (2:12 

pixels/cycle at ½ octave steps). Thus, 169×49=8281 

features are used to represent one point. Each feature 

contains the following information: (i) the position of the 

pixel inside the 13×13 pixels image patch, (ii) whether the 

pixel originates from a grayscale or from a Gabor filtered 

representation of the ROI, and (iii) if appropriate, which 

Gabor filter has been used (See Fig. 1(c)).  

2.4 Feature Classification 

 In the training phase, GentleBoost feature templates 

are learned using a representative set of positive and 

negative examples. As positive examples for a facial point, 

we used 9 image patches centered on the true point and on 

8 positions surrounding the true (manually labeled) facial 

point in a training image. For each facial point we used two 

sets of negative examples. The first set contains 8 image 

patches randomly displaced 2-pixels distance from the true 

facial point. The second set contains 8 image patches 

randomly displaced in the relevant ROI (Fig. 3). Thus, for 

each ROI, we have 9 positive and 16 negative examples, 

meaning that there is a 25×8281 size matrix representing 

training data for each ROI for each training image. Even 

though each feature can be computed very efficiently, 

computing the complete set is computationally expensive. 

Adding the fact that such a representation of features is 

highly redundant, we used GentleBoost technique to reduce 

the dimensionality. 

 In contrast to AdaBoost, GentleBoost [19] uses real 

valued features. GentleBoost seams to converge faster than 

AdaBoost, and performs better for object detection 

problems [20]. It is simple to implement, it is numerically 

robust and it has been shown experimentally to outperform 

(with respect to detection accuracy) other boosting variants 

for the face detection task [21]. The performance of 

boosting methods on data which are generated by classes 

that have a significant overlap, in other words, 

classification problem where even the Bayes optimal 

prediction rule has a significant error is discussed in [22]. 

For this case, GentleBoost performs better than AdaBoost 

since AdaBoost over-emphasizes the atypical examples 

which eventually results in inferior rules. As explained in 

[22], the reason for this might be that GentleBoost gives 

less emphasis to misclassified examples since the increase 

in the weight of the example is quadratic in the negative 

margin, rather than exponential.  

 The outline of the GentleBoost algorithm is as 

follows. At each boosting round, a regression function is 

fitted (by weighted least-squared error) to each feature in 

Fig. 3. Positive and negative examples for training point 

B. The big white square on the inner corner of the eye 

represents 9 positive examples. Around that square are 8 

negative examples randomly chosen near the positive 

examples. Another 8 negative examples are randomly 

chosen from the rest of the region. 
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the training set. The fitting of the regression function is 

done for one feature for all training examples by 

minimizing the weighted error 

∑
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where i is the i-th training example. By minimizing 

weighted error through all features, we get the feature with 

the smallest error and with the adequate parameters which 

minimize this error (a, b and th). Next step is estimation of 

the fitting function fm for each training example with this 

parameters: 
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where FeatureIndex is the feature which is chosen in the 

round m. The next step is to update the classifier output and 

the weights for each training example: 
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Finally, the weights should be renormalized and for each 

testing example xi the output of the classifier should be 

calculated as:  
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where M is the number of the most relevant  features the 

classifier has chosen for the classification.  

 Eventually, in the testing phase, each ROI is filtered 

first by the same set of Gabor filters used in the training 

phase (in total, 48 Gabor filters are used). Then, for a 

certain facial point an input 13×13 pixels sliding window is 

slid pixel by pixel across 49 representations of the ROI 

(grayscale plus 48 Gabor filter representations; see Fig. 

1(c)). For each position of the sliding window, GentleBoost 

classifier outputs a response depicting the similarity 

between the 49-dimensional representation of the sliding 

window compared to the learned feature point model. After 

scanning the entire ROI, the position with the highest 

response (i.e., with the largest positive sum F(xi) in 

Equation (11)) reveals the feature point in question.  

3 Results 

3.1 Training Set 

 The facial feature detection method was trained and 

tested on the Cohn-Kanade database [10], which consists of 

approximately 2000 gray-scale image sequences in nearly 

frontal view from over 200 subjects, male and female, 

being 18 to 50 years old. From those some 480 samples 

were made publicly available. Each video pictures a single 

facial expression and ends at the apex of that expression 

while the first frame of every video sequence shows an 

expressionless face. For our study, we used only the first 

frames of 300 Cohn-Kanade database samples. No further 

registration of the images was performed. Note, however, 

that for all first frames from the Cohn-Kanade database, the 

variation in the inter-ocular distance (the distance between 

the eyes) is max 30%, i.e., minimum distance measured 

was ±80 pixels and maximum distance measured was ±120 

pixels. Thus, in the case that the inter-ocular distance 

measured in the input image is way below ±80 pixels or 

way above ±120 pixels, we cannot guarantee that the 

method’s performance reported below will remain the 

same. The actual influence of such occurrences on the 

performance of the method is, however, the matter of future 

experimental studies. 

3.2 Experimental Results 

 The 300 images of the data set were divided into 3 

subsets containing 100 images each. The proposed method 

has been trained and tested using a leave-one-subset-out 

cross validation. To wit, training and testing procedure was 

repeated 3 times. Each time one of the 3 subsets was used 

as a test set and the other 2 subsets were used as a training 

set. We applied this method for 19 facial feature points 

depicted in Fig. 1(e), while point N (the tip of the nose) 

was defined as the middle point between points H and H1.  

 To evaluate the performance of the method, each of 

the automatically located facial points was compared to the 

true (manually annotated) point. As explained above, we 

used as positive examples the true location of the point and 

8 positions surrounding the true facial point in a training 

image. Hence, automatically detected points displaced 1-

pixel distance from relevant true facial points are regarded 

as SUCCESS. Additionally, we define errors with respect 

to the inter-ocular distance measured in the test image. An 

automatically detected point displaced in any direction, 

horizontal or vertical, less than 10% of inter-ocular distance 

from the true facial point is regarded as SUCCESS.  

 However, for some facial points, variations in vertical 

direction are considered more cumbersome than variations 

in horizontal direction. This is mostly due to the fact that 

the main focus of our research is to develop an automatic 

facial point tracker, the output of which could be used for 

automatic facial expression analysis. For 2D tracking, an 

initial template for each facial point is sampled from the 

first frame of the input image sequence. This template is 

updated throughout the sequence during tracking. Up to 

now, the location of the initial sample templates was 

manually selected. Thus for automation, the tracker 

requires automatic detection of the facial points in question. 

Ideally, this automatic detection will resemble manual 

annotation of the facial points.  

 This means that points G, G1, F, and F1 (outer mid 

points of the eyes, Fig. 1(e)) will be detected on the border 

between the sclera and the eyelash. In turn, to favor such 

detecting of the outer mid points of the eyes, we applied the 

above mentioned rule only in horizontal direction. In 

vertical direction, an automatically detected point displaced 

3-pixels distance from the true point is regarded as 

SUCCESS, given that the radius of the iris is ±25 pixels. In 

addition, the horizontal position of point L (the bottom of 

the lips) is specified by the horizontal position of point K 

(the top of the lips) and we search for the correct point by 

varying only the vertical coordinate.   
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Table 1. Facial Feature Point Detection results for 300 

samples from the Cohn-Kanade database  

Detected Point Detect. Rate 

A: Outer corner of the left eye 0.92 

A1: Outer corner of the right eye 0.96 

B: Inner corner of the left eye 0.96 

B1: Inner corner of the right  eye 0.99 

G: Bottom of the left eye 0.95 

G1:  Bottom of the right eye 0.99 

F: Top of the left eye 0.91 

F1: Top of the right eye 0.83 

D: Inner corner of the left eyebrow 0.96 

D1: Inner corner of the right eyebrow 0.95 

E- Outer corner of the left eyebrow 0.96 

E1- Outer corner of the right eyebrow 0.90 

H-Left nose corner 0.98 

H1-Right nose corner 0.97 

I-Left mouth corner 0.97 

J-Right mouth corner 0.91 

K-Mouth top 0.93 

L-Mouth bottom 0.80 

M-Chin 0.90 

AVERAGE RATE FOR ALL POINTS  0.93 

 

 

 Overall, we achieved an average recognition rate of 

93% for 20 facial feature points using the above described 

evaluation scheme. The detection rates for each point are 

shown in Table 1. Typical results are shown in Fig. 4. Most 

misclassifications (encountered mostly with points F1 and 

M) can be attributed to the lack of consistent rules for 

manual annotation of the points. Typical misclassifications 

are illustrated in Fig. 5. 

 It is interesting to mention that detailed analysis of the 

Gentleboost classifiers revealed that the vast majority of 

features (over 98%) were selected from the Gabor filter 

components rather than from the grayscale values.  

4 Conclusion 

 In this paper we present a robust, highly accurate 

method for fully automatic detection of 20 facial feature 

points in images of expressionless faces using Gabor 

feature based boosted classifiers. When tested on images 

from the Cohn-Kanade database, with possible in-plane 

head rotations and recorded under various illumination 

conditions, the method has achieved average recognition 

rates of 93%.  

 In future work we will investigate effects of using a 

reduced number of features for classification. Also, we plan 

to conduct extensive experimental studies using other 

publicly available face databases.  
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Fig. 5. Inaccurate detection of facial points: (a) point D1, 

(b) point E, (c) point B, (d) points F and H. For feature 

point notation see Fig. 1(e). 

Fig. 4. Accurate detection of all facial points 
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