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ABSTRACT 

Purpose: As part of a programme to implement automatic lesion detection methods 

for whole body magnetic resonance imaging (MRI) in oncology, we have developed, 

evaluated and compared three algorithms for fully automatic, multi-organ 

segmentation in healthy volunteers. Methods: The first algorithm is based on 

classification forests (CFs), the second is based on 3D convolutional neural networks 

(CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We 

examined data from 51 healthy volunteers, scanned prospectively with a 

standardised, multi-parametric whole body MRI protocol at 1.5T. The study was 

approved by the local ethics committee and written consent was obtained from the 

participants. MRI data were used as input data to the algorithms, while training was 

based on manual annotation of the anatomies of interest by clinical MRI experts. 

Five-fold cross-validation experiments were run on 34 artefact-free subjects. We 

report three overlap and three surface distance metrics to evaluate the agreement 

between the automatic and manual segmentations, namely the Dice similarity 

coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root 

mean square surface distance (RMSSD) and Hausdorff distance (HD). Analysis of 

variances was used to compare pooled label metrics between the three algorithms 

and the DSC on a ‘per-organ’ basis. A Mann-Whitney U test was used to compare 

the pooled metrics between CFs and CNNs and the DSC on a ‘per-organ’ basis, 
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when using different imaging combinations as input for training. Results: All three 

algorithms resulted in robust segmenters that were effectively trained using a 

relatively small number of data sets, an important consideration in the clinical setting. 

Mean overlap metrics for all the segmented structures were: CFs: DSC=0.70±0.18, 

RE=0.73±0.18, PR=0.71±0.14, CNNs: DSC=0.81±0.13, RE=0.83±0.14, 

PR=0.82±0.10, MA: DSC=0.71±0.22, RE=0.70±0.34, PR=0.77±0.15. Mean surface 

distance metrics for all the segmented structures were:  CFs: ASD=13.5±11.3 mm, 

RMSSD=34.6±37.6 mm and HD=185.7±194.0 mm, CNNs; ASD=5.48±4.84 mm, 

RMSSD=17.0±13.3 mm and HD=199.0±101.2 mm, MA: ASD=4.22±2.42 mm, 

RMSSD=6.13±2.55 mm and HD=38.9±28.9 mm. The pooled performance of CFs 

improved when all imaging combinations (T2w+T1w+DWI) were used as input, while 

the performance of CNNs deteriorated, but in neither case, significantly. CNNs with 

T2w images as input, performed significantly better than CFs with all imaging 

combinations as input for all anatomical labels, except for the bladder. Conclusions: 

Three state-of-the-art algorithms were developed and used to automatically segment 

major organs and bones in whole body MRI; good agreement to manual 

segmentations performed by clinical MRI experts was observed. CNNs perform 

favourably, when using T2w volumes as input. Using multi-modal MRI data as input 

to CNNs did not improve the segmentation performance.  

 

Keywords: whole body MRI, fully automatic segmentation, classification forests, 

convolutional neural networks, multi-atlas segmentation  
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INTRODUCTION 

Recent technological advances in magnetic resonance imaging (MRI) technology, 

specifically the use of continuously moving table technology, more powerful and 

faster gradients, phased array coils and parallel acquisition techniques, have allowed 

whole body MRI to be performed clinically with uncompromised image quality and 

within reasonable time. The addition of diffusion-weighted imaging (DWI) to whole 

body protocols [1] means that whole body MRI is now becoming increasingly popular 

not only for cancer diagnosis and staging, but also for treatment response 

assessment [2, 3], without the burden of ionising radiation.  

 

One of the most important challenges when reading whole body MRI scans, 

however, is the increased volume of resulting imaging data, especially when multi-

parametric acquisitions are used. As a result, the reading process can become 

rather time-consuming, with increased risk of misinterpretations. Furthermore, whole 

body DWI for staging cancer patients suffers from some limitations with respect to its 

diagnostic performance [4], when compared to other whole body imaging 

techniques, for example Positron Emission Tomography (PET). Whole body DWI is 

particularly prone to false-positives, resulting from tissues with normally occurring 

restricted diffusivity [5].  

 

It would therefore be very beneficial in terms of reading speed and diagnostic 

performance to develop and evaluate fully automatic methods that identify and 

segment malignant lesions in whole body MRI scans, whilst recognising normal 

organs and benign lesions. Such automatic segmentation methods could also find 

applications in whole body imaging when, for example, adipose or muscle tissue 
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volume evaluation is required [6, 7]. In cancer staging and treatment response 

monitoring automatic segmentation methods could assist in, for example, automatic 

tumour detection and volumetric whole body lesion burden assessment [8].  

 

A plethora of segmentation methods has been described in the literature for the main 

medical imaging modalities used in the clinic (for example MRI or Computed 

Tomography-CT). Here, we provide a brief overview of the fully automatic 

segmentation techniques that refer to whole body MRI and/or relate to the machine 

learning methods we employ in this work. Automatic segmentation methods, which 

use algorithms other than the ones described here, have been previously described 

in whole body MRI for the quantification of adipose and muscle tissue [6, 7]. 

Algorithms based on classification forests (CFs) and variants, have been previously 

used for the localisation of spinal anatomy [9] or specific/multi-organ segmentation 

[10, 11] in CT scans and also for automatic detection and segmentation of high 

grade gliomas [12]. One study has used regression forests to perform multi-organ 

segmentation in whole body DIXON imaging [13]. A multi-atlas (MA) approach, 

analogous to the one employed in this work, has been used for segmentation in 

cardiac MRI [14], while variants have been used in CT imaging [15, 16]. To our 

knowledge, the use and performance comparison of CFs, convolutional neural 

networks (CNNs) or MA approaches to perform multi-organ segmentation in whole 

body MRI, has not been described before.  

 

The purpose of this study was to develop and evaluate three robust algorithms for 

automatic, multi-organ segmentation in whole body MRI from healthy volunteers, 

using three state-of-the-art machine leaning approaches. This is a necessary 
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preparatory step towards developing automatic lesion detection methods for whole 

body MRI in oncology. 

 

MATERIALS AND METHODS 

Healthy Volunteers and Imaging Protocol 

The study was approved by the local ethics committee, and written consent was 

obtained from the participants before imaging. Fifty-one healthy volunteers (24 male-

mean age=37, range=23-67 years and 27 female-mean age=39, range=23-68 years) 

were scanned with whole body MRI from February 2012 to May 2014 [17]. 

 

Whole body MRI was performed in a moving-table 1.5T system (Siemens Avanto 

with Syngo MR B17, Erlangen, Germany), using the body coil for transmission and 

the neck/body phased array coils as receive coils. Four different imaging stations 

were used to achieve full body coverage, from the top of the neck to mid-thighs. 

Axial slices were acquired during free-breathing for DWI (b=0, 150, 400, 750 and 

1000 s/mm2), while breath-holds were employed for the three first stations for 

anatomical imaging. DWI slice-matched T1w with DIXON and T2w imaging was also 

performed. Apparent Diffusion Coefficient (ADC) maps were generated online using 

a monoexponential fit to the equation: S=S0·e
-b·ADC. The full imaging protocol is 

shown in Table 1. 
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Table 1. Whole body imaging protocol used for the healthy volunteers. 

Sequence type SS SE EPI a VIBE b with DIXON HASTE c 

FOV (mm) 450×366 450×351 450×366 

Matrix size 
128×128 

interpolated 
320×202 256×256 

No of slices/ 

thickness/distance 

(mm) 

50/5/0% 56/5/20% 50/5/0% 

TR (ms) 9000 7.54 767 

TE (ms) 72 2.38/4.76 92 

Bandwidth 

(Hz/pixel) 
2056 300 399 

Flip Angle 90 10 130 

NA 4 1 2 

Fat suppression 
STIR d

(TI=180 ms) 
N/A N/A 

b-values (s/mm2) 0,150,400,750,1000 N/A N/A 

Parallel Acquisition GRAPPA e 2 GRAPPA 2 GRAPPA 2 

No stations 4, free-breathing 
4, (3 with breath-

holds) 

4, (3 with breath-

holds) 

TA (min)/station 8.17 0.15 1.18 

a
 SS SE EPI=single-shot spin echo echo planar imaging, 

b 
VIBE=3D volumetric interpolated breath-

hold examination, 
c
 HASTE=half-Fourier acquisition single-shot turbo spin-echo, 

d
 STIR=short 

inversion time inversion recovery, 
e
 GRAPPA=generalised autocalibrating partially parallel acquisition 
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 Classification Forests (CFs) algorithm 

CFs are powerful, multi-label classifiers that facilitate simultaneous segmentation of 

multiple organs. They have very good generalisation properties, meaning that the 

algorithm can be effectively trained using a relatively small amount of annotated 

example data, a particularly important advantage in the clinical setting.  

 

CFs is a supervised, discriminative learning technique, which is based on random 

forests (RFs); an ensemble of weak classifiers called decision trees [18]. Each 

decision tree is constructed in a way that it produces a partitioning of the training 

data, e.g., image points that carry organ label information, in a way that training data 

with same labels are grouped together. This is achieved by building the trees from 

the root node down to the leaf nodes. Internal nodes, so called split nodes, separate 

the incoming data into two sets. Leaf nodes then correspond to small clusters of 

training data from which label statistics are computed and are used for predictions at 

testing time. Data splitting in the trees is based on an objective function, which 

maximises the information gain over empirical label distributions. The goal is to 

select discriminative features at split nodes that are best for partitioning the data. 

Different trees are built by injecting randomness for both feature selection and 

training data subsampling. This ensures decorrelation between trees and has proven 

to yield good generalisation properties. During testing, image points from a new 

image are ‘pushed’ through each tree until a leaf node is reached. The label statistics 

over training data that are stored in the leaf nodes are aggregated over different 

trees by simple averaging, and a final decision on the most likely label is made 

based on this aggregation. Intuitively, image points will fall into leaf nodes that 
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contain similar image points from the training data with respect to the features that 

are evaluated along the path from root to leaf node.  

 

An attractive property of CFs is their ability to automatically select the right image 

features for a given task, from a potentially very large and high-dimensional pool of 

possible features [19]. This is important because pre-selecting or hand-crafting 

image features beforehand can be very difficult, as it is not known in advance which 

features are discriminative for the task at hand. In CFs the user only has to provide 

weak guidance on the ranges of parameters that are used to randomly generate 

potential features. In this work, we make use of the popular offset box-features, 

which have been shown to provide effective means of capturing local and contextual 

information [12]. Box-features are very efficient to compute, which is beneficial for 

training and testing. In box-features, intensity averages are calculated within 

randomly sized and displaced 3D boxes. Two types of features are computed; 

single-box and two-box features. Single-box features simply correspond to the 

average intensity of all voxels from a particular MRI sequence that fall into a 3D box. 

Two-box features return the difference between the averages computed for each of 

the two boxes and generalise intensity gradient features. Here, each box can be 

taken from a different MRI sequence and thus yield cross-sequence information. 

 

Tuning parameters for our algorithm have been set accordingly to knowledge from 

previous applications, such as vertebra localization in whole-body CT scans [9]. We 

have used CFs extensively for related tasks for which cross-validation has been 

used to optimise hyperparameters such as tree depth [9, 12]. In this work, we used 

50 trees with a maximum tree depth of 30. The stopping criterion for growing trees is 
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if either the objective function (information gain) cannot be further improved or the 

number of training samples in a leaf fall below a threshold of four samples. We found 

that neither increasing the number of trees nor the tree depth increases the 

segmentation accuracy of the CFs. 

 

Convolutional Neural Networks (CNNs) algorithm 

CNNs are feed-forward artificial neural networks, which have recently emerged as 

powerful machine learning methods for image analysis tasks, such as segmentation. 

CNNs are capable of learning complex, non-linear data associations between the 

input images and segmentation labels through layers of feature extractors. Each 

layer performs multiple convolutional filter operations on the data coming in from the 

previous layer and outputs feature responses, which are then processed by the next 

layer. The last layer in the network combines all the outputs to make a prediction 

about the most likely class label for each voxel in an image. The parameters of the 

convolutions and weights for combining feature responses are learned during the 

training stage, using an algorithm called back-propagation. The layered architecture 

enables CNNs to learn complex features automatically without any need for 

guidance from the user. The features correspond to a sequence of filter kernels 

learned in consecutive layers of the neural network. A final feature that is used for 

classification thus, can correspond to a non-linear combination of individual features 

that are extracted hierarchically. This is also called features-of-features, as filter 

kernels in deeper layers are applied to the feature responses of earlier layers. This is 

different to CFs, where the user has to define a pool of potential features beforehand 

from which the most discriminative ones are then selected during CF training. 

However, CNNs come with an increased computational cost during training, and they 
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have multiple meta-parameters that need to be highly tuned to achieve optimal 

performance, a process which can be challenging for less experienced users. In 

addition, defining the right network architecture is a challenge on its own and a field 

of active research. 

 

Here, we make use of a recently published CNN approach that we developed 

originally for the task of brain lesion segmentation in multi-parametric MRI [20]. The 

approach, called DeepMedic, uses a dual pathway CNN that processes an image at 

different levels of resolution simultaneously. This has the advantage that features are 

based on both local and contextual information, something that can be particularly 

appealing in the case of whole body multi-organ segmentation. For example, the left 

and right kidneys might look very similar locally and share similar features at small 

scale, but the contextual features that cover larger regions of the images, allow the 

discrimination between the left and right body parts.  

 

The CNN configuration used here follows largely the default configuration that has 

been previously used for brain lesion segmentation [20]. To accommodate for larger 

context in the case of organ segmentation, the receptive field for the low-resolution 

pathway has been increased by using an image downsampling factor of 3. We use a 

dual pathway (two resolutions), 11-layer deep CNN, where the last two layers 

correspond to fully connected layers, which combine the features extracted on the 

two resolution pathways. We employ 50-70 feature maps (that is different kernels) 

for each layer. The network architecture is fully convolutional and there are no max-

pooling layers, which we find to increase segmentation accuracy. The CNN 

architecture is a balance between model capacity, training efficiency, and memory 
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demands. Further details about DeepMedic are provided in [20]. An open source 

implementation is available at URL [21].  

 

Multi-atlas (MA) algorithm 

Our third algorithm is based on a MA label propagation approach [14]. Multi-atlas 

segmentation uses a set of atlases (images with corresponding segmentations) that 

represent the inter-subject variability of the anatomy to be segmented. Each atlas is 

registered to the new image to be segmented using a deformable image registration. 

The MA approach accounts for anatomical shape variability and is more robust than 

single atlas propagation methods in that at any errors associated with propagation, 

are averaged out when combining multiple atlases. The approach employed here 

makes use of efficient 3D-3D intensity-based image registration [22] with free-form 

deformations as the transformation model and correlation coefficient as the similarity 

measure. Majority voting is used to derive the final tissue label at each voxel. 

 

The source code for all the algorithms described in this work is publicly available, 

and we can provide configuration files upon request. 

Training of CFs and CNNs is a demanding process computationally and in our case 

took up to 12 hours for CFs and 30 hours for CNNs for a single fold with 27 images, 

when using a quad-core Intel Xeon 3.5 GHz workstation with 32 GB RAM and an 

NVIDIA Titan X graphics processor unit (GPU). Our CFs implementation uses all 

available central processor units (CPUs), while the CNN implementation runs mostly 

on the GPU. Training only needs to be performed once. Testing of new data points 

to obtain the full segmentation of an image is a particularly efficient process and 

takes about a minute for CFs and CNNs. Note, that the MA algorithm does not 
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require any training, but has considerably longer running time during testing which 

scales linearly with the number of atlases. To segment a single image using 27 

atlases takes about 15 minutes on CPU. Table 2 is comparing the strengths and 

weaknesses of the three algorithms.  

 

Table 2. Strengths and weaknesses of the three developed algorithms, with respect 

to each other. 

 CFs CNNs MA 

Strengths 

• Straightforward 

training 

• Relatively short 

training time 

• Easy to 

implement 

• Runs on standard 

CPU a 

• Automatic 

feature 

learning 

• Capable of 

learning 

complex data 

associations 

• Spatially 

smooth 

predictions 

• No training 

required 

• Straightforward to 

add new atlases 

• Very intuitive as 

based on image 

alignment 

• Preserves 

anatomical 

structure 

Weaknesse

s 

• Limited feature 

complexity 

• Noisy predictions 

• Complexity of 

training 

configuration 

• Increased 

training time 

• Requires 

high-end 

GPUs b 

• Difficult to 

implement 

• Increased testing 

time 

• Not so good 

generalisation 

• Misses fine 

details in 

structural 

variation 

a
 CPU: Central processing unit, 

b
 GPU: Graphics processing unit 
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DICOM data from individual imaging stations were stitched into single NIfTI volumes 

(https://nifti.nimh.nih.gov/). The MRI data were used as input data to the algorithms, 

while training was based on manual annotation of the anatomies of interest on the 

T2-weighted volumes, first segmented by two radiology trainees (HM and AS) and 

an MR physicist (IL, 5 years of experience in whole body MRI). An MRI expert (AR, 

17 years of experience in MRI) then checked the segmentations, which were 

adjusted, if needed, and agreed in consensus. When multi-modal MRI data were 

used as input to CFs and CNNs (for example, T2w+T1w+DWI data-where T1w 

refers to T1w in- and opposed-phase images from the DIXON acquisitions and DWI 

refers to b=1000 s/mm2 images and ADC maps) an extra, registration, step was 

added to the data preparation pipeline. During this step, T1w and DWI volumes were 

affinely registered to the T2w volumes. A schematic overview of the data preparation 

process, including the registration step, is given in Figure 1. 
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artefacts or DWI data sets with severe distortion artefacts, and therefore severe 

misalignment, were excluded from validation.  

 

We report six metrics (three overlap and three surface distance based measures) to 

assess the agreement between automatic segmentation results from our algorithms 

and the manual segmentations performed by the clinical experts. The Dice similarity 

coefficient (DSC) quantifies the match between the two segmentations (1=complete 

overlap, 0=no overlap). Recall (RE) can be expressed in terms of sensitivity (1=no 

misses) and precision (PR) can be expressed in terms of specificity (1=no false 

positives). The average surface distance (ASD) is the average of all the distances 

from points on the boundary of the automatic segmentation to the boundary of the 

manual segmentation (0=perfect match), the root mean surface distance (RMSSD) is 

calculated in the same way as the ASD, except that the distances are now squared 

(0=perfect match). Finally, the Hausdorff distance (HD) or maximum surface 

distance, is the maximal distance from a point in the first segmentation to a nearest 

point in manual segmentation (0=perfect match) [23]. The three surface distance 

metrics are expressed in mm and are unbounded. 

 

We measured the above metrics for the right and left lungs (RLNG and LLNG), liver 

(LVR), gallbladder (GBLD), right and left kidneys (RKDN and LKDN), spleen (SPLN), 

pancreas (PNCR), bladder (BLD), spine (SPN) and pelvic bones, including the 

femurs (PLVS) for all three algorithms, when using T2w volumes as inputs. Then, we 

did the same when using all imaging combinations (T2w+T1w+DWI) as inputs to 

CFs and CNNs. 
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Statistical Analysis 

One-way analysis of variances (ANOVA) was used to compare the mean metrics for 

all the examined structures between the three algorithms. Post hoc analysis (multiple 

comparisons) was performed with a Tukey test. In cases where the homogeneity of 

variances was violated, a Kruskal-Wallis test was used. A Mann-Whitney U test was 

used to compare the performance between CFs and CNNs when using T2w volumes 

as input to the algorithms and when using all imaging combinations 

(T2w+T1w+DWI). ANOVA and Mann-Whitney U tests were similarly used to 

compare the DSC of individual anatomical labels between the three algorithms and 

between CFs and CNNs when using different imaging inputs. Finally, a Mann-

Whitney U test was used to compare the DSC between CFs with all imaging 

combinations (T2w+T1w+DWI) as input and CNNs with T2w images as input only, 

for each anatomical label. A significance level of 0.05 was used for all tests. 

Statistical analysis was performed in SPSS 21.0 for Windows (SPSS, Chicago, Ill). 

 

RESULTS 

A visual example of automatic segmentation results from the three algorithms in the 

coronal and axial plane is shown in Figure 2.  
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the analysis of variances when comparing the metrics between the three algorithms 

(ANOVA for DSC, RE and PR and Kruskal-Wallis for ASD, RMSSD and HD). 

Significant values are shown in bold. 

 DSC RE PR 
ASD 

(mm) 

RMSSD 

(mm) 
HD (mm) 

CFs 0.70±0.18 0.73±0.18 0.71±0.14 13.5±11.3 34.6±37.6 185.7±194.0 

CNNs 0.81±0.13 0.83±0.14 0.82±0.10 5.48±4.84 17.0±13.3 199.0±101.2 

MA 0.71±0.22 0.70±0.24 0.77±0.15 4.22±2.42 6.13±2.55 38.9±28.9 

P 0.271 0.294 0.185 0.005 0.004 0.001 

 

 

It is seen that CNNs provide the highest mean DSC (0.81±0.13), RE (0.83±0.14) and 

PR (0.82±0.10) than CFs and the MA algorithm, but not statistically significant 

(P=0.271, 0.294 and 0.185 respectively). On the contrary, the MA algorithm returns 

the lowest ASD (4.22±2.42 mm), RMSSD (6.13±2.55 mm) and HD (38.9±28.9 mm), 

when compared to CFs and CNNs, which is statistically significant (P=0.005, 0.004 

and 0.001 respectively). 

 

Table 4 reports the DSC, the most commonly used metric to assess agreement 

between manual and automatic segmentations, for individual anatomical structures 

(labels) when the three algorithms (CFs, CNNs and MA) are using the T2w images 

as inputs only. It also shows the P values from the analysis of variances, when 

comparing the DSC between the three algorithms for each anatomical label. 
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Table 4. DSC ± standard deviation for each anatomical label, segmented by the 

three algorithms (CFs, CNNs and MA), when using T2w images as input only. In 

addition, P values from the analysis of variances when comparing the DSC between 

the three algorithms (ANOVA for DSC, RE and PR and Kruskal-Wallis for ASD, 

RMSSD and HD). Significant values are shown in bold. 

 
DSC

CFs CNNs MA P 

RLNG 0.92±0.03 0.95±0.01 0.93±0.01 <0.001 

LLNG 0.92±0.03 0.95±0.01 0.93±0.01 <0.001 

LVR 0.85±0.03 0.93±0.01 0.86±0.04 <0.001 

GBLD 0.38±0.26 0.56±0.19 0.24±0.26 <0.001 

RKDN 0.75±0.09 0.87±0.03 0.77±0.07 <0.001 

LKDN 0.65±0.19 0.84±0.11 0.72±0.13 <0.001 

SPLN 0.57±0.18 0.79±0.11 0.58±0.14 <0.001 

PNCR 0.47±0.13 0.62±0.09 0.40±0.14 <0.001 

BLD 0.65±0.22 0.75±0.21 0.69±0.23 0.162 

SPN 0.80±0.04 0.87±0.01 0.87±0.02 <0.001 

PLVS 0.73±0.05 0.81±0.03 0.79±0.06 <0.001 

 

It is worth noting that CNNs performed significantly better (P<0.001) than CFs and 

the MA algorithm in segmenting all the anatomies of interest, except for the bladder 

(P=0.162). 

 

A bar chart that provides a pictorial representation of the mean metrics (DSC, RE, 

PR, ASD, RMSSD and HD) for the segmented organs when using T2w volumes and 
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combinations (T2w+T1w+DWI) as inputs. It also shows the P values from the Mann 

Whitney U test when comparing the two input cases for CFs and CNNs. 

 

Table 5. Pooled mean metrics ± standard deviation from all the segmented 

structures for CFs and CNNs, when using T2w only volumes and all imaging 

combinations (T2w+T1w+DWI) as inputs. In addition, P values from the Mann-

Whitney U test when comparing the two input cases for CFs and CNNs. 

 

It is confirmed that the performance of CFs is improved when all imaging 

combinations are used (T2w+T1w+DWI) as input, when compared to using T2w 

volumes only. This is reflected in all metrics (DSC=0.74±0.16 vs. 0.70±0.17, 

RE=0.78±0.16 vs. 0.73±0.18, PR=0.74±0.13 vs. 0.71±0.14, ASD=7.89±7.55 mm vs. 

13.5±11.2 mm, RMSSD=20.9±27.1 mm vs. 34.6±37.6 mm and HD=170.7±194.0 mm 

vs. 185.7±194.0 mm). On the contrary, the performance of CNNs is better when 

using T2w volumes only as input, rather than using all imaging combinations 

(T2w+T1w+DWI). This is again reflected in all metrics (DSC=0.81±0.12 vs. 

 DSC RE PR 
ASD 

(mm) 

RMSSD 

(mm) 

HD  

(mm) 

CFs_T2w 0.70±0.17 0.73±0.18 0.71±0.14 13.5±11.2 34.6±37.6 185.7±194.0

CFs_all 0.74±0.16 0.78±0.16 0.74±0.13 7.89±7.55 20.9±27.1 170.7±194.0

P 0.491 0.412 0.533 0.039 0.309 0.974 

CNNs_T2w 0.81±0.12 0.82±0.14 0.82±0.10 5.48±4.84 17.0±13.3 199.0±101.2

CNNs_all 0.77±0.14 0.79±0.15 0.79±0.11 9.23±8.04 25.2±19.1 215.9±98.6 

P 0.412 0.450 0.450 0.178 0.224 0.224 
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0.77±0.14, RE=0.82±0.14 vs. 0.79±0.15, PR=0.82±0.10 vs. 0.79±0.11, 

ASD=5.48±4.84 mm vs. 9.23±8.04 mm, RMSSD=17.0±13.3 mm vs. 25.2±19.1 mm 

and HD=199.0±101.2 mm vs. 215.9±98.6 mm). No significant differences were found 

in the performance of CFs and CNNs, when using different T2w only and all imaging 

combinations (T2w+T12w+DWI) as inputs. 

 

Table 6 shows the DSC for all the anatomical labels, when CFs and CNNs are being 

used with T2w images only (CFs_T2w and CNNs_T2w) as inputs and when using all 

imaging combinations (T2w+T1w+DWI) as input to the two algorithms (CFs_all and 

CNNs_all). It also shows the P values from the Mann-Whitney U tests when 

comparing the DSC between CFs and CNNs used with different imaging inputs. 

 

Table 6. DSC ± standard deviation from CFs and CNNs for all the anatomical labels, 

when using T2w only images (CFs_T2w and CNNs_T2w) and when using all 

imaging combinations (T2w+T1w+DFWI) as inputs (CFs_all and CNNs_all). In 

addition, P values from the Mann-Whitney tests. Significant values are shown in 

bold. 

 
DSC DSC  

CFs_T2w CFs_all P CNNs_T2w CNNs_all P 

RLNG 0.92±0.03 0.92±0.02 0.564 0.95±0.01 0.94±0.01 0.001 

LLNG 0.92±0.03 0.92±0.02 0.500 0.95±0.01 0.93±0.03 0.003 

LVR 0.85±0.03 0.90±0.02 <0.001 0.93±0.01 0.91±0.03 <0.001 

GBLD 0.38±0.26 0.38±0.25 0.976 0.56±0.19 0.49±0.18 0.079 

RKDN 0.75±0.09 0.79±0.06 0.093 0.87±0.03 0.84±0.05 <0.001 

LKDN 0.65±0.19 0.73±0.13 0.023 0.84±0.11 0.78±0.13 <0.001 
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SPLN 0.57±0.18 0.67±0.15 <0.001 0.79±0.11 0.69±0.13 <0.001 

PNCR 0.47±0.13 0.55±0.11 0.017 0.62±0.09 0.57±0.11 0.051 

BLD 0.65±0.22 0.74±0.18 0.046 0.75±0.21 0.74±0.16 0.411 

SPN 0.80±0.04 0.83±0.03 <0.001 0.87±0.01 0.85±0.05 0.044 

PLVS 0.73±0.05 0.74±0.05 0.135 0.81±0.03 0.78±0.06 0.069 

 

It is seen that the addition of extra imaging modalities (T1w+DWI) as input to 

CFs_T2w, significantly improves the segmentation performance (P<0.046) for many 

anatomical structures (LVR, LKDN, SPLN, PNCR, BLD and SPN). By contrast, the 

addition of T1w+DWI to CNNs_T2w, significantly deteriorates the DSC (P<0.044) for 

most the examined anatomies of interest (RLNG, LLNG, LVR, RKDN, LKDN, SPLN 

and SPN). 

 

Finally, Table 7 shows and compares the DSC from all anatomical labels, when 

segmented by the two algorithms with the best DSC performance as reported above, 

namely CFs_all and CNNs_T2w. It also shows the P values from the Mann-Whitney 

U tests to compare the DSC between the two algorithms for all the examined 

structures. 
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Table 7. DSC ± standard deviation from all the examined structures for CFs_all and 

CNNs_T2w algorithms. Also, P values from the Mann-Whitey U tests to compare the 

DSC between the two algorithms for each segmented structure. Significant values 

are shown in bold. 

 
DSC

CFs_all CNNs_T2w P

RLNG 0.92±0.02 0.95±0.01 <0.001

LLNG 0.92±0.02 0.95±0.01 <0.001

LVR 0.90±0.02 0.93±0.01 <0.001

GBLD 0.38±0.25 0.56±0.19 0.002 

RKDN 0.79±0.06 0.87±0.03 <0.001

LKDN 0.73±0.13 0.84±0.11 <0.001

SPLN 0.67±0.15 0.79±0.11 <0.001

PNCR 0.55±0.11 0.62±0.09 0.008

BLD 0.74±0.18 0.75±0.21 0.384 

SPN 0.83±0.03 0.87±0.01 <0.001

PLVS 0.74±0.05 0.81±0.03 <0.001

 

It is striking that CNNs_T2w scored significantly better DSCs than CFs_all in all the 

examined organs (P<0.008), apart from the bladder (P=0.384). The segmentation 

performance was notably improved when using CNNs_T2w, even for organs with 

great variability in appearance, such as the gallbladder (0.38±0.25 for CNNs_T2w 

vs. 0.56±0.19 for CFs_all, P=0.002). 
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DISCUSSION  

All the algorithms tested in this study, permitted automatic, multi-organ segmentation 

in whole body MRI of healthy volunteers with very good agreement to the 

segmentations, performed manually by clinical experts. Accurate, multi-organ, 

automatic segmentation in whole body MRI is the first step in training machine-

learning algorithms to recognise normality. This will lead the way to developing 

automatic identification and segmentation algorithms for lesions, such as primary or 

metastatic tumours, with increased sensitivity and specificity. These algorithms could 

ultimately facilitate the process of reading whole body scans in cancer patients by 

reducing the reading time and, possibly, improving the diagnostic accuracy of whole 

body MRI. These algorithms may also assist in quantifying the extent of normal 

tissues such as muscle or fat. 

 

Our analysis showed that CNNs outperformed CFs and the MA algorithm when T2w 

volumes were used as input to the algorithms and when using pooled overlap 

evaluation metrics (DSC, RE and PR) to assess the accuracy of segmentation. 

When the performance of the algorithms was assessed with pooled surface distance 

metrics (ASD, RMSSD and HD), it was the MA algorithm, that performed best. Single 

misinterpreted voxels in CFs and CNNs can greatly elevate ASD, RMSSD and HD; 

these metrics are particularly sensitive to outliers.  

 

We then assessed the pooled metrics performance of CFs and CNNs when using all 

imaging combinations (T2w+T1w+DWI) as input, arguing that maximisation of 

training information to the algorithms might improve the performance of 

segmentation [12]. We found that the performance of CFs was improved, however 
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not significantly, when using all imaging combinations as input for training. The 

opposite was observed for CNNs.  

 

The findings for the pooled metrics analysis, described above, were corroborated by 

a ‘per-organ’ quantitative analysis of the commonly used DSC, to assess the 

performance of our segmentation algorithms. This analysis confirmed that for all 

individual anatomical structures (except for the bladder), the algorithm that returned 

the greatest DSC was CNNs with T2w images only used as input. 

 

Because our structural scans were acquired using breath-holds and the DWI ones 

with free breathing, we found that there was significant displacement between soft 

tissues in anatomical areas adjacent to the diaphragm between these types of 

scans.  As the employed affine registration method [24] cannot fully compensate for 

non-linear motions caused by breathing, we assume that misregistration could be the 

reason why the performance of CNNs, despite performing better than the other two 

algorithms when using T2w volumes as input only, was degraded when using all 

imaging combinations as input for training. A more robust, non-linear registration 

method could improve the accuracy of CNNs and further improve the performance of 

CFs, so we are currently looking into methods to address this issue. Alternatively, we 

could have generated training data by manually segmenting the structures of interest 

on each sequence type separately, but this would be a rather strenuous and time-

consuming approach. 

 

The performance of our methods cannot be directly compared to similar methods in 

the literature because there is no previous work describing automatic, simultaneous 
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segmentation of healthy organs and bones in multi-parametric whole body MRI. We 

believe, however, that our methods may compare favourably to other machine 

learning methods for detection and segmentation in medical imaging in that our 

classifiers are inherently multi-label and have shown that can be effectively trained 

when using a relatively small number of data sets, something that is very important 

in the clinical setting. However, we would still need to address the performance 

limitations of our algorithms when segmenting organs with big variability in 

appearance (for example, the gallbladder or the pancreas).  

 

CONCLUSIONS 

In conclusion, we have developed and evaluated three state-of-the-art algorithms 

that automatically segment healthy organs and bones in whole body MRI with 

accuracy comparable to the one achieved manually by clinical experts. An algorithm 

based on CNNs and trained using T2w only images as input, performs favourably 

when compared to CFs or a MA algorithm, trained with either T2w only images or a 

combination of imaging inputs (T2w+T1w+DWI). Using multi-modal MRI data as 

input for training the developed algorithms did not improve the segmentation 

performance in this work, but it is anticipated to improve the segmentation 

performance if more effective whole body registration between the various imaging 

modalities can be performed. This investigation is the first step towards developing 

robust algorithms for the automatic detection and segmentation of benign and 

malignant lesions in whole body MRI scans for staging of cancer patients. 
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