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Abstract—Cardiac ultrasound measurements such as left
ventricular volume, ejection fraction (EF) and mitral annular
plane systolic excursion (MAPSE) are time consuming and highly
observer dependent. In this work, we investigate if deep neural
networks can be used to fully automate cardiac ultrasound
measurements in real-time while scanning. One neural network
was used for identifying and separate the cardiac views while
a second neural network performed segmentation of the left
ventricle. By using TensorFlow, FAST and the highly optimized
cuDNN backend real-time runtime of the entire pipeline was
achieved with an average frames per second of 43, thus enabling
these measurements to be performed while an operator is
scanning. The measurement accuracy was evaluated using a
Bland-Altmann analysis on a dataset of 75 patients resulting
in (−13.7± 8.6)% for EF and (−0.9± 4.6) mm for MAPSE. It
is concluded that deep learning can be used to fully automate
these measurements, however more work remains to improve the
accuracy.

I. INTRODUCTION

Automated measurements in echocardiography has

the potential of improving workflow by reducing time

spent on manual annotation and contouring. It can also

reduce interobserver variability known to be significant in

echocardiography. In order to fully automate measurements

such as volume, ejection fraction (EF) and mitral annular plane

systolic excursion (MAPSE) several automated components

are needed.

In order to estimate the left ventricle (LV) volume in

2D echocardiography, a typical convention is to acquire two

standard views of the heart. The most common views for

this task are the apical four-chamber (A4C) and two-chamber

(A2C) views. A fully automated system needs to recognize

these views, which has shown to be possible with deep

neural networks [1], [2]. Another essential step for automating

cardiac measurements is image segmentation. This has been

an active research area for several decades for both 2D and 3D

ultrasound, and recently it has been shown that deep neural

networks can also perform this efficiently and accurately

[3–6]. In addition to view classification and segmentation,

the estimation of end-diastole and end-systole, as well as

extraction of apex and base landmarks is needed.

This paper presents methods for automating all of these

necessary steps in real-time using deep convolutional neural

networks. The accuracy and speed of the methods were

measured, and a video posted online demonstrates the software

while it is used to perform cardiac measurements real-time by

streaming ultrasound images directly from a GE Vivid E95

scanner.

II. METHODS

A. View classification

As mentioned, volume and MAPSE measurements are

typically performed on apical four- and two-chamber views,

thus a detection of views are needed for storing valid data

in a buffer. In this work, the view classification network of

Østvik et al. [1] was used. It uses inception blocks and a

dense connectivity pattern, and was trained with images from

about 200 patients, and validated on an independent dataset

of equal size giving an accuracy of approximately 98%. The

network can recognize eight different cardiac views: 1) apical

four-chamber (A4C), 2) apical two-chamber (A2C), 3) apical

long axis, 4) parasternal short axis, 5) parasternal long axis,

6) subcostal four-chamber, 7) subcostal vena cava and 8)

unknown view.



B. Segmentation

For every frame recognized as either A4C or A2C,

segmentation was also performed. Segmentation was done

using a U-net type architecture optimized for both accuracy

and speed [3]. This network classifies each pixel into one of

four classes: 1) background, 2) left ventricle, 3) myocardium

and 4) left atrium. The network was trained with dice loss

and the Adam optimizer using a dataset consisting of A4C

and A2C images from both ED and ES of 500 patients [6].

Fig. 1 shows an example of segmentations performed by this

method.

C. End-diastole and -systole detection

End-diastole (ED) and end-systole (ES) are the two time

points in the cardiac cycle corresponding to mitral and

aortic valve closure respectively. Both indicate the start of

isovolumetric phases, and for volumetric measures, the time

points can be approximated to LV volume extrema. The LV

area in each view should be roughly proportional to the

volume, thus it can be used to determine ED and ES. After

segmentation, the LV area is calculated and stored for each

frame. The ED and ES frames are then determined by the

maximum and minimum LV area respectively.

D. Measurements

Contours of the endocardium were extracted using

morphological erosion on the segmentation of the LV at ED

and ES. These contours were used to extract three basal

landmarks (left, right and mid) and one apex landmark.

A contour point was determined to be at the base if any

pixels immediately below was segmented as the left atrium.

From these base contour points, the left, right and mid base

landmarks were extracted. The apex landmark was the contour

point furthest away from the base mid landmark.

Using these landmarks, the ED and ES volume was

estimated using Simpson’s biplane method of 20 discs, as

is clinical practice in echocardiography [7]. In this method,

the diameter d is calculated at 20 steps perpendicular to the

midaxis of the LV. This is done in both the A4C and A2C

views.

V =
max(LA4C, LA2C)

20

20∑

i=1

π
dA4C(i)dA2C(i)

4
(1)

From the ED and ES volumes, the ejection fraction was

calculated as 100 · (VED − VES)/VED.

MAPSE was calculated in A4C view using the base left

and right landmarks �PL, �PR at ED and ES and the probe

origin position �PO. Septal and lateral MAPSE was calculated

as |�PL,ED− �PO|−|�PL,ES− �PO| and |�PR,ED− �PO|−|�PR,ES− �PO|
respectively.

E. Real-time implementation

All methods described so far, including streaming of

ultrasound images was implemented in C++ using the FAST

framework [8] which features GPU optimized processing and

visualization for real-time applications. The view classification

and segmentation neural networks were exported as a

TensorFlow graph and stored together with the learned

weights in a single file. This file is loaded in FAST

which uses the TensorFlow C++ API with the NVIDIA

cuDNN backend to perform high performance inference

of the neural networks. The data streaming, visualizations

and computations happens in three different threads. This

enables visualization of the ultrasound data and measurements,

while the view classification, segmentation, area calculations,

landmark extraction, and measurements are running. Fig. 1

is a screenshot of the software implementation showing the

measurement summary for one patient. A video showing this

implementation used in real-time while scanning is available

online1.

III. RESULTS

A separate dataset of 75 patients was used to evaluate

the measurement accuracy. The dataset consists of images

from the A4C and A2C views acquired with a GE Vivid E9

US scanner (GE Vingmed Ultrasound, Horten, Norway) with

GE M5S phased-array transducer. The images were manually

segmented by another expert than the segmentation training

dataset, but using the same protocol. The recordings were

streamed through the application as if it were coming from

an ultrasound scanner and the measurements were stored

for each patient. The segmentation failed in 3 of the 75

patients, and were thus excluded from the evaluation. This was

due to movement of the probe during the recording, thereby

moving the heart out of the image plane and creating incorrect

segmentations. A Bland-Altman analysis of EF and MAPSE

was performed on the remaining 72 patients and is depicted in

Fig. 2 and Fig. 3. The analysis showed a mean difference of

-13.7% and standard deviation of 8.6% for EF and -0.9 mm

and 4.6 mm for MAPSE.

An analysis of the ED and ES volumes revealed that the

volumes are being underestimated with a mean difference and

standard deviation of (16± 22) mL and (26± 19) mL.

The average number of frames per second was measured to

be 43 on an Alienware laptop with an Intel i7-6700 CPU and

an NVIDIA Geforce GTX 980M GPU. View classification and

segmentation were the most computational intensive tasks with

respective average runtimes of 10 and 9 ms. The landmark

extraction and volume calculations took about 4 ms on

average.

IV. DISCUSSION

The results revealed a large bias in the measurements. One

possible reason for this bias is that the segmentation sometimes

struggles when the mitral valve opens. This can cause the

segmentation of the LV to become smaller than it should

in the systolic phase. The fact that the mean difference of

the ES volume is larger (26 mL) than the ED volume (16

mL) support this. The results is an overestimation of the

1https://www.youtube.com/watch?v=EgoTX75KhxE



Fig. 1. Screenshot of the software which uses the proposed methods. The screenshot shows the measurements and ultrasound images with the segmentations
on top of ED and ES of A4C (top row) and A2C (bottom row). The horizontal lines are used for Simpson’s method of discs, and the vertical lines starting
from the probe origin are the MAPSE measurements.

Fig. 2. Bland-Altmann plot of manual versus automated ejection fraction.
The green lines represent the standard deviation, while the red lines are the
95% limits of agreement.

ejection fraction. Another reason is the interobserver variablity

in the annotations, as two different experts were used for the

segmentation training and test set.

Simultaneously with this work, Zhang et al. [2] published

a study on automated cardiac measurements such as volume

and ejection fraction with deep neural networks using a large

Fig. 3. MAPSE Bland-Altmann plot of manual versus automated MAPSE in
millimeters. The green lines represent the standard deviation, while the red
lines are the 95% limits of agreement.

dataset. Their result shows a comparable standard deviation to

this work on ejection fraction, but with a lower bias. Again,

the higher bias in this work may be due to the use of an

independent test dataset annotated by another person.

In clinical practice, MAPSE is measured using M-mode

scanlines through the mitral annulus. In this work, the septal



and lateral base points of the segmentation have been used to

calculate MAPSE. These points are not necessarily the same

as the annulus. Also, the detected base points may not be

consistent over time, and ideally tracking should be used to

improve this.

The measured runtime show that automatic real-time

ejection fraction and MAPSE measurements are feasible by

using deep convolutional neural networks and a modern GPU.

This could have major implications on the clinical workflow

and might enable novice users to do echocardiography, but

quality assurance of the ultrasound images is still necessary

to make this happen. Additional future work includes adding

support for apical long axis views, which can also be used

for volume estimation, improving the segmentation, and ED

and ES estimation which currently is only based on the

segmentation.

V. CONCLUSION

Methods for fully automating volume, ejection fraction and

MAPSE measurements using deep learning were presented. It

was demonstrated that these methods can be used in real-time

in a complete software that streams images directly from an

ultrasound scanner. The accuracy results are promising, but

more work remains to validate the methods on a larger dataset

and reduce the large bias in the measurements.
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