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Fully Automatic Recognition of the
Temporal Phases of Facial Actions
Michel F. Valstar, Member, IEEE, and Maja Pantic, Senior Member, IEEE

Abstract—Past work on automatic analysis of facial expressions
has focused mostly on detecting prototypic expressions of basic
emotions like happiness and anger. The method proposed here
enables the detection of a much larger range of facial behavior
by recognizing facial muscle actions [action units (AUs)] that
compound expressions. AUs are agnostic, leaving the inference
about conveyed intent to higher order decision making (e.g.,
emotion recognition). The proposed fully automatic method not
only allows the recognition of 22 AUs but also explicitly models
their temporal characteristics (i.e., sequences of temporal seg-
ments: neutral, onset, apex, and offset). To do so, it uses a facial
point detector based on Gabor-feature-based boosted classifiers
to automatically localize 20 facial fiducial points. These points
are tracked through a sequence of images using a method called
particle filtering with factorized likelihoods. To encode AUs and
their temporal activation models based on the tracking data, it
applies a combination of GentleBoost, support vector machines,
and hidden Markov models. We attain an average AU recognition
rate of 95.3% when tested on a benchmark set of deliberately
displayed facial expressions and 72% when tested on spontaneous
expressions.

Index Terms—Facial expression analysis, GentleBoost, particle
filtering, spatiotemporal facial behavior analysis, support vector
machine (SVM).

I. INTRODUCTION

FACIAL EXPRESSIONS synchronize the dialogue by
means of brow raising and nodding, clarify the content

and intent of what is said by means of lip reading and emblems
like a wink, signal comprehension, or disagreement, and convey
messages about cognitive, psychological, and affective states
[1], [2]. Therefore, attaining machine understanding of facial
behavior would be highly beneficial for fields as diverse as
computing technology, medicine, and security in applications
like ambient interfaces, empathetic tutoring, interactive gam-
ing, research on pain and depression, health support appliances,
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monitoring of stress and fatigue, and deception detection. Be-
cause of this practical importance [3], [4] and the theoretical
interest of cognitive and medical scientists [5], [6], machine
analysis of facial expressions attracted the interest of many
researchers in computer vision and AI.

Two main streams in the current research on automatic analy-

sis of facial expressions consider facial affect (emotion) detec-

tion and facial muscle action detection [7]–[10]. These streams

stem directly from the two major approaches to facial expres-

sion measurement in psychological research [11]: message and

sign judgment. The aim of the former is to infer what underlies a

displayed facial expression, such as affect or personality, while

the aim of the latter is to describe the “surface” of the shown

behavior, such as facial movement or facial component shape.

Thus, a frown can be judged as “anger” in a message-judgment

approach and as a facial movement that lowers and pulls the

eyebrows closer together in a sign-judgment approach. While

message judgment is all about interpretation, sign judgment is

agnostic, independent from any interpretation attempt, leaving

the inference about the conveyed message to higher order

decision making. Most facial expression analyzers developed

so far adhere to the message judgment stream and attempt to

recognize a small set of prototypic emotional facial expressions

such as the six basic emotions proposed by Ekman [7]–[9], [12].

Even though the automatic recognition of the six basic emotions

from face images and image sequences is considered largely

solved, reports on novel approaches are published even to date

(e.g., [13]–[16]). Exceptions from this overall state of the art in

machine analysis of human facial affect include few tentative

efforts to detect cognitive and psychological states like interest

[17], pain [18], [19], and fatigue [20].

In sign judgment approaches [21], a widely used method

for manual labeling of facial actions is the Facial Action

Coding System (FACS) [22]. FACS associates facial expression

changes with actions of the muscles that produce them. It

defines 9 different action units (AUs) in the upper face, 18

in the lower face, and 5 AUs that cannot be classified as

belonging to either the upper or the lower face. Additionally, it

defines so-called action descriptors, 11 for head position, 9 for

eye position, and 14 additional descriptors for miscellaneous

actions (for examples, see Fig. 1). AUs are considered to be the

smallest visually discernible facial movements. FACS also pro-

vides the rules for the recognition of AUs’ temporal segments

(onset, apex, and offset) in a face video. Using FACS, human

coders can manually code nearly any anatomically possible

facial expression, decomposing it into the specific AUs and

their temporal segments that produced the expression. As AUs

are independent of any interpretation, they can be used as the
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Fig. 1. Examples of upper and lower face AUs defined in the FACS.

basis for any higher order decision making process including

the recognition of basic emotions [22], cognitive states like

(dis)agreement and puzzlement [23], psychological states like

pain [24], and social signals like emblems (i.e., culture-specific

interactive signals like a wink, coded as left or right AU46),

regulators (i.e., conversational mediators like the exchange of

a look, coded by AUs for eye position), and illustrators (i.e.,

cues accompanying speech like raised eyebrows, coded as

AU1+AU2) [25]. Hence, AUs are extremely suitable to be used

as midlevel parameters in an automatic facial behavior analysis

system as they reduce the dimensionality of the problem [26]

(thousands of anatomically possible facial expressions [25] can

be represented as combinations of 32 AUs).

It is not surprising, therefore, that automatic AU coding

attracted the interest of computer vision researchers. Histor-

ically, the first attempts to encode AUs in images of faces

in an automatic way were reported by Bartlett et al. [27],

Lien et al. [28], and Pantic et al. [29]. The focus of the research

efforts in the field was first on automatic recognition of AUs

in either static face images or face image sequences picturing

facial expressions produced on command. Several promising

prototype systems were reported that can recognize deliberately

produced AUs in either (near) frontal view [30]–[32] or profile

view face images [32], [33] (for a survey of the past work on

the topic, see [9] and [10]).

One of the main criticisms that these works received from

both cognitive and computer scientists is that the methods are

not applicable in real-life situations, where subtle changes in

facial expression typify the displayed facial behavior rather than

the exaggerated AU activations typical of deliberately displayed

facial expressions. Hence, the focus of the research in the field

started to shift toward automatic AU recognition in spontaneous

facial expressions (produced in a reflex-like manner). Just

recently, few works have been reported on machine analysis of

AUs in spontaneous facial expression data [34]–[37] (for a sur-

vey, see [8]). These methods employ probabilistic, statistical,

and ensemble learning techniques, which seem to be particu-

larly suitable for automatic AU recognition from face image

sequences [8], [35], and are either feature or appearance based.

Automatic recognition of facial expression configuration (in

terms of AUs constituting the observed expression) has been

the main focus of the research efforts in the field. However,

both the configuration and the dynamics of facial expressions

(i.e., the timing and the duration of various AUs) are important

for the interpretation of human facial behavior. In fact, the body

of research in cognitive sciences, which argues that the dynam-

ics of facial expressions are crucial for the interpretation of the

observed behavior, is ever growing [2], [38]. Facial expression

temporal dynamics are essential for the categorization of com-

plex psychological states like various types of pain and mood

[24]. They are also the key parameter in the differentiation

between posed and spontaneous facial expressions [1]. In spite

of these findings, the vast majority of the past work in the field

does not take the dynamics of facial expressions into account

when analyzing shown facial behavior. Some of the past work

in the field has used aspects of temporal dynamics of facial

expression such as the speed of a facial point displacement or

the persistence of facial parameters over time. However, this

was mainly done either in order to increase the performance

of facial expression analyzers (e.g., [39]–[41]) or in order to

report on the intensity of (a component of) the shown facial

expression (e.g., [41] and [42]), but not in order to analyze

explicitly the properties of facial actions’ temporal dynamics.

The only work reported up to date that addresses the problem

of modeling semantic and temporal relationships between AUs

forming a facial expression is that by Tong et al. [40]. Note,

however, that this work does not report on the explicit analysis

of temporal segments of AUs (e.g., the duration and the speed

of the onset and offset of the actions).

Exceptions from this overall state of the art in the field in-

clude three studies on automatic segmentation of AU activation

into temporal segments (neutral, onset, apex, and offset) in

frontal- [43], [44] and profile-view [33] face videos. The works

by Pantic and Patras [33], [44] employ rule-based reasoning

and geometry-based features to encode AUs and their temporal

segments, while Koelstra and Pantic [43] use appearance-based

features and hidden Markov models (HMMs).

Fig. 2 outlines our fully automatic detector of 22 AUs and

their temporal activation models (from, in total, 27 upper and

lower face AUs defined in FACS [22]). This set of 22 AUs

contains all upper and lower face AUs that can be robustly

recognized based upon movements of 20 facial characteristic

points shown in Fig. 2. Although this set is incomplete, the

system can be used to encode all but three AUs necessary for

the recognition of basic emotions [22], all AUs necessary for

the recognition of pain [24], all but one AUs necessary to detect

cluelessness [23], and 2/3 of the AUs involved in speech [22]

(see Table I for a detailed list).

The method operates under the assumption that the first

frame of an input video sequence shows a nonoccluded
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Fig. 2. Outline of the proposed fully automated system for recognition of AUs
and their temporal activation models.

TABLE I
AUs DEFINED IN FACS [22], THOSE THAT OUR SYSTEM

CAN AUTOMATICALLY ENCODE, AND LISTS OF AUs
INVOLVED IN SOME EXPRESSIONS

expressionless face in near-frontal view. While the method can

handle occlusions like facial hair and glasses in general, it

cannot handle large amounts of facial hair and/or sunglasses

covering one or more facial components completely. Also,

while it can handle brief interim occlusions (e.g., by hand), it

cannot handle an occluded face in the first frame. After the

face region is detected in the first frame, we employ a facial

point detector based on Gabor-feature-based boosted classifiers

to automatically localize 20 facial fiducial points in the detected

face region. To track these points in the rest of the sequence,

we exploit a tracking scheme based on particle filtering with

factorized likelihoods (PFFL). Using the tracking data, we

first detect the presence (i.e., activation) of 22 AUs. We do

so by using a combination of GentleBoost ensemble learning

and support vector machines (SVMs). For each activated AU,

we determine the temporal activation model as a sequence of

temporal segments (neutral, onset, apex, and offset). To attain

this, we combine GentleBoost, SVMs, and HMMs.

The authors have developed three earlier versions of the AU

detector presented in this paper, a 2005 version [45], a 2006

version [46], and a 2007 version [47]. The 2005 version was

aimed at automatic recognition of 15 AUs, it was not fully

automated, and it did not deal with any temporal informa-

tion. The 2006 version of the system was aimed at automatic

recognition of 15 AUs and their temporal segments (rather than

their temporal activation models). Differently from previous

versions, the current version is fully automated and aimed at

the recognition of 22 AUs and their temporal activation models.

The system described in this work is the first that is able to

explicitly model the temporal dynamics of AUs in terms of

its temporal phases. Also, this work describes extensive tests

on databases of posed facial expression data as well as on

spontaneous facial expression data. To allow future work to

evaluate their methods against the one proposed here, we will

make frame-by-frame labeling of the temporal AU segments

publicly available (see Section V).

The outline of this paper is as follows. Section II provides an

explanation of the employed facial point detector. Section III

presents the utilized facial point tracking scheme. Section IV

explains the methodology used to detect AUs and their temporal

activation models. Section V describes the data sets we used

in our validation studies, which are discussed in Section VI.

Section VII concludes this paper.

II. FACIAL POINT DETECTION

The first step in any facial information extraction process

is face detection, i.e., the identification of all regions in the

scene that contain a human face. The second step in facial

expression analysis is to extract geometric features (facial

points and shapes of facial components) and/or appearance

features (descriptions of the texture of the face such as wrinkles

and furrows). The work presented here is a typical example

of a geometric-feature-based method. Typical examples of

appearance-based methods are those of Bartlett et al. [35], [42],

[48], who used Gabor filters, or of Anderson and McOwan

[14], who used a holistic monochrome spatial-ratio face tem-

plate, and Jiang et al. who used local binary patterns, local

phase quantization, and their temporal extensions [49]. Typical

examples of hybrid, geometric-, and appearance-feature-based

methods are those of Tian et al. [31], who used shapes of facial

components and transient features like crowfeet wrinkles, or

of Zhang and Ji [41], who used 26 facial points and the same

transient features as those used by Tian et al. [31].

A. Face Detection

Because of its practical importance and relevance to face

recognition and, in turn, for security, face detection received

a lot of attention. Numerous techniques have been developed

[50]–[52]. However, virtually all of them can detect only (near-)

upright faces in (near-) frontal view. Most of these methods

emphasize statistical learning techniques and use appearance
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Fig. 3. Outline of the fully automated fiducial facial point detection method.

features, including the real-time Viola–Jones face detector [53],

which is arguably the most commonly employed face detector

in automatic facial expression analysis.

The Viola–Jones face detector consists of a cascade of clas-

sifiers trained by AdaBoost. Each classifier employs integral

image filters, which remind of Haar basis functions and can be

computed very fast at any location and scale. This is essential to

the speed of the detector. For each stage in the cascade, a subset

of features is chosen using a feature selection procedure based

on AdaBoost. We employed a version of this face detector [54],

which was trained on 5000 faces and 8000 nonface images.

For images of faces in near-frontal view, it performs very well;

for example, when tested on the Cohn–Kanade (CK) database

(CK-db) [55], it attained a 100% detection rate [56]. The C++

code of the face detector runs at about 500 Hz on a 3.2-GHz

Pentium 4.

B. Characteristic Facial Point Detection

Methods for facial feature point detection can be classified

as either texture-based methods (modeling local texture around

a given facial point) or shape-based methods (which regard all

facial points as a shape that is learned from a set of labeled

faces). A typical texture-based methods is that of Holden and

Owens [57], who used log-Gabor filters. Typical texture- and

shape-based methods are those of Chen et al. [58], who applied

AdaBoost to determine facial feature point candidates for each

pixel in an input image and used a shape model as a filter to se-

lect the most likely position of feature points, and of Cristinacce

and Cootes [59], [60], who experimented with various facial

point template representations and various search algorithms

for finding the best matching shape.

Although these detectors can be used to localize the

20 facial characteristic points illustrated in Fig. 3, none perform

the detection with high accuracy. They usually regard the

localization of a point to be successful if the distance between

the automatically labeled point and the manually labeled point

is less than 30% of the true interocular distance DI (the distance

between the eyes, more specifically between the inner eye

corners). However, this is an unacceptably large error in the

case of facial expression analysis since subtle changes in the

facial expression will be missed due to the errors in facial point

localization.

We therefore adopt the fiducial facial point detector proposed

by Vukadinovic and Pantic [56]. When used to initialize a point

tracking algorithm, this method is accurate enough to allow

geometric-feature based expression recognition (see the results

in Section VI). The outline of the developed fully automated

method for the detection of the target 20 facial characteristic

points is illustrated in Fig. 3. The method first detects the face

and divides the face region into three areas that contain the left

eye, the right eye, and the mouth. The locations of these facial

components are approximated by analyzing the histograms in

the regions. Based on this approximate location, search regions

are defined for every point to detect. In these regions of interest

(ROIs), a sliding window approach search is performed. At

each location of the ROI, Gabor-filter responses are calculated

and fed into the GentleBoost-based point detectors. The lo-

cation with the highest output determines the predicted point

location.

Typical results of this algorithm are illustrated in Fig. 4. The

point detection algorithm is tolerant to changes in illumination

as long as they remain locally constant. If illumination is

uneven in the direct neighborhood of a facial point, the point

detector may fail for that point. A compiled version of the

point detector is available from the authors’ Web pages. The

nonoptimized Matlab code of our face point detector runs at

0.03 Hz on a 3.2-GHz Pentium 4.

III. PFFL FOR FACIAL POINT TRACKING

After the fiducial facial points are found in the first frame,

we track their positions in the entire image sequence. Standard

optical flow techniques [61]–[63] are commonly used for facial

point tracking in facial expression analysis (e.g., standard

Lucas–Kanade optical flow [64] is used in [28], [31], and

[34], and an “inverse compositional” extension to this is used

in [65]).

To omit the limitations inherent in optical flow methods, such

as the accumulation of error and the sensitivity to noise, oc-

clusion, clutter, and changes in illumination, some researchers

used sequential state estimation techniques to track facial points

in image sequences. Both Zhang and Ji [41] and Gu and Ji

[20] used facial point tracking based on a Kalman filtering

scheme. The derivation of the Kalman filter is based on a state-

space model governed by two assumptions [66]: 1) linearity

of the model and 2) Gaussianity of both the dynamic noise

in the process equation and the measurement noise in the

measurement equation. Under these assumptions, the derivation

of the Kalman filter leads to an algorithm that propagates the

mean vector and covariance matrix of the state estimation error

in an iterative manner and is optimal in the Bayesian setting. To

deal with the state estimation in nonlinear dynamical systems,

the extended Kalman filter has been proposed, which is derived

through the linearization of the state-space model. However,

many of the state estimation problems, including human fa-

cial expression analysis, are nonlinear and non-Gaussian. To

overcome the limitations of the classical Kalman filter and its

extended form in general, particle filters have been proposed.

For a detailed overview of the various facets of particle filters,

see [67].



32 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 1, FEBRUARY 2012

Fig. 4. Typical first-effort results of the proposed facial-point detector for samples from (left to right): CK-db, the MMI database (posed expressions), two images
of the MMI database (spontaneous expressions), the triad data set, and two images from a cell phone camera.

The tracking scheme that we adopt is based on particle

filtering. The main idea behind particle filtering is to main-

tain a set of solutions that are an efficient representation of

the conditional probability p(α|Y ), where α is the state of a

temporal event to be tracked given a set of noisy observations

Y = {y1, . . . , y
−, y} up to the current time instant. This means

that the distribution p(α|Y ) is represented by a set of pairs

{sk, πk} such that, if sk is chosen with probability equal to

πk, then it is as if sk was drawn from p(α|Y ). By maintaining

a set of solutions instead of a single estimate (as is done by

Kalman filtering), particle filtering is able to track multimodal

conditional probabilities p(α|Y ), and it is therefore robust

to missing and inaccurate data and particularly attractive for

estimation and prediction in nonlinear non-Gaussian systems.

In the particle filtering framework, our knowledge about the a

posteriori probability p(α|Y ) is updated in a recursive way.

Several researchers used the condensation algorithm to track

facial features in face image sequences (e.g., [68] and [69]).

However, the algorithm has three major drawbacks. The first

is that a large amount of particles that result from sampling

from the proposal density p(α|Y −) might be wasted because

they are propagated into areas with small likelihood. Second,

the scheme ignores the fact that, while a particle sk = 〈sk1,
sk2, . . . , skN 〉 might have low likelihood, parts of it might be

close to the correct solution. Finally, the estimation of the par-

ticle weights does not take into account the interdependences

between the different parts of α.

The extension to the condensation algorithm that we adopt

here for facial point tracking is the PFFL proposed by Patras

and Pantic [70]. The PFFL algorithm addresses all of the afore-

mentioned problems inherent in the condensation algorithm by

extending the auxiliary particle filtering, which addresses the

first drawback of the condensation algorithm [71], to take into

account the interdependences between the different parts of the

state α.

The PFFL tracking scheme assumes that the state α can be

partitioned into substates αi (which, in our case, correspond to

the different facial points) such that α = 〈α1, . . . , αn〉. At each

frame of the input image sequence, we obtain a particle-based

representation of p(α|Y ) in two stages. First, each partition

αi is propagated and evaluated independently by applying one

complete step of the auxiliary particle filtering algorithm. This

creates a particle-based representation of p(αi|Y ). In other

words, at the first stage of the PFFL tracking scheme, each

facial point i is tracked for one frame independently from

the other facial points. At the second stage, interdependences

between the substates are taken into account by means of a

scheme that samples complete particles from the proposal dis-

tribution g(α), which is defined as the product of the posteriors

of each αi given the observations, i.e., g(α) =
∏

i p(αi|Y ).
Finally, each of the particles produced in this way is reweighted

by evaluating the joint probability p(α|α−) so that the set of

particles with their new weights represents the a posteriori

probability p(α|Y ).
The adopted observation model [72] is robust to changes

in illumination, and it can deal with large occlusions. This

polymorphic aspect is necessary as many areas around facial

points change their appearance when a facial action occurs

(e.g., the mouth corner in a smile).

IV. RECOGNITION OF AUS AND THEIR

TEMPORAL ACTIVATION MODELS

Contractions of facial muscles alter the shape and location of

the facial components. Some of these changes are observable

from the movements of 20 facial points, which we track in the

input sequence. To classify the movements of the tracked points

in terms of AUs and their temporal activation models, changes

in the position of the points over time are first represented as a

set of midlevel parameters.

A. Registration and Smoothing

Before the midlevel parameters can be calculated, all rigid

head motions in the input sequence must be eliminated. Oth-

erwise, we would not be certain whether the value of a given

parameter had changed due to facial muscle contraction or

due to rigid head movement. We register each frame of the

input image sequence with the first frame using an affine

transformation T1 based on three referential points: the nasal

spine point and the inner corners of the eyes (see Fig. 3). We

use these points as the referential points because contractions

of the facial muscles do not affect these points.

Interperson variations in size and location of the facial points

are minimized by applying an affine transformation T2 to every

tracked facial point in each frame. T2 is obtained by comparing

the locations of the referential points of a given subject in

the first frame with the corresponding points in a selected

expressionless “standard” face (the choice of the subject to be

used as this “standard” face does not influence the process).

Thus, after tracking any of 20 characteristic facial points in

an input sequence containing k frames, we obtain a set of

coordinates 〈p1, . . . , pk〉 corresponding to the locations of the

pertinent point p in each of k frames. Then, the registered

coordinates pr
i are obtained as

pr
i (t) = T2 (T1 (pi(t))) . (1)
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Using this registration technique, four out of six degrees

of freedom of head movements can be dealt with, and the

remaining two can be handled partially. All three head trans-

lation degrees of freedom can be handled completely, as well

as all in-plane head rotations (i.e., head roll). Out-of-plane

rotations (i.e., head pitch and head yaw) can be dealt with

as long as the rotation in these dimensions is smaller than

approximately 20◦.

The tracked points returned by the PFFL tracker contain ran-

dom noise occurring due to the probabilistic nature of particle

filtering. Therefore, we apply a temporal smoothing filter to

arrive at a registered set of points P ′ that contains less noise

p′i(t) =
1

2ws + 1

t+ws
∑

t−ws

pr
i (t) (2)

where t denotes the frame number and p′ and pr are elements

of the collections P ′ and Pr, respectively. The window sidelobe

size ws to which we apply the temporal smoothing was chosen

after visual inspection of the smoothed tracker’s output. For the

experiments discussed in this work, ws = 1 has been chosen.

B. Midlevel Parametric Representation

Our midlevel parametric representation is inspired by our

earlier work [46], [47]. The most basic features that can be

computed from the tracked point information are the positions

of the points and the distances between pairs of points. We also

compute the angle that the line connecting two points makes

with the line y = 0 (the horizontal axis).

For each point p′i, where i = [1 : 20], the first two features

are simply its x and y position. We compute the features f1 and

f2 for every frame t

f1 (p′i(t)) = p′i,x(t) (3)

f2 (p′i(t)) = p′i,y(t) (4)

where p′i,x and p′i,x are the x and y positions of a point,

respectively. For all pairs of points {pi, pj}, i �= j, we compute

in each frame two features

f3

(

p′i(t), p
′
j(t)

)

=
∥

∥p′i(t) − p′j(t)
∥

∥ (5)

f4

(

p′i(t), p
′
j(t)

)

= arctan

(

p′i,y(t) − p′j,y(t)

p′i,x(t) − p′j,x(t)

)

(6)

where arctan is the modified inverse tangent function that

corrects for the quadrant that a point is in (i.e., solves the arc-

tangent problem). Feature f3 describes the distances between

two points p′i and p′j , and feature f4 describes the angle that the

line connecting p′i with p′j makes with the horizontal axis.

The features 〈f1, . . . , f4〉 contain only the information about

the positions of the points, the distances between them, and

the angles that they make with the horizontal at the current

instance in time. No information about the relation of these

measurements to their values in a frame displaying a neutral

expression is encoded. Neither do they encode any information

about the rate of change of the values of these features in

consecutive frames (e.g., the velocity of a point). To capture

this temporal information, we create a new set of features based

on the single-frame-based features described earlier.

First, we compute features that describe how much the

feature values have changed, relative to their value at the first

neutral frame. We do so using the difference function κ(x(t))

κ (x(t)) = x(t) − x(0) (7)

where x is any time sequence. Using this definition, we com-

pute the following features:

〈f5(t) . . . f8(t)〉 = 〈κ (f1(t)) . . . κ (f4(t))〉 . (8)

To determine the rate of change of the feature values at a

given time instance t, we compute their first derivative with

respect to time. For discretely sampled data, this becomes

d (x(t))

dt
= v (x(t) − x(t − 1)) (9)

where v is the sampling rate of the corresponding recording.

We use this definition to compute the features

〈f9(t) . . . f12(t)〉 = 〈d (f1(t)) /dt . . . d (f4(t)) /dt〉 . (10)

Finally, we calculate three additional temporal features.

Within a certain period wt, we fit the values of the midlevel fea-

tures parameters fj , j ∈ [1 : 4], to a second-order polynomial:

fj(t) = at2 + bt + c. In this function, t is the frame number at

the center of wt. In our experiments, the temporal window wt

was seven frames long, which we based on research findings

that suggest that temporal changes in neuromuscular facial

activity last from 1/4 of a second (a blink) to several minutes (a

jaw clench) [22], and a frame rate of 25 Hz of our data. Then,

for each d and for each fj , j = [1 : 4], we define the following

midlevel parameters relating to temporal changes in the value

of the midlevel parameters 〈f1, . . . , f4〉:

f10+3∗j(fj) = a, f11+3∗j(fj) = b, f12+3∗j(fj) = c.
(11)

In total, this results in a 2520-dimensional feature vector for

each frame of our input image sequence.

C. Facial AU Classification

Our approach to AU recognition from input image sequences

is based on SVMs. SVMs are very well suited for this task

because the high dimensionality of the feature space (represen-

tation space) does not affect the training time, which instead

depends only on the number of training examples. Furthermore,

SVMs generalize well even when few training data are pro-

vided. However, note that classification performance decreases

when the dimensionality of the feature set is far greater than

the number of samples available in the training set [73]. The

data sets that we use in this study consist typically of less than

250 image sequences of which 10–20 are positive examples

with the remainder being negative examples (see Section V).

Given that the dimensionality of the utilized feature set is

2520 (see Section IV-B), overfitting to the training set is rather

probable. One way to address this problem is to reduce the
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number of features to be used to train the SVM. We do so by

means of GentleBoost, which is employed in this stage of the

system’s processing as a feature selection scheme [74].

An advantage of feature selection by a boosting algorithm

is that it tries to optimize the actual classification problem

instead of reducing the variability in the data overall, which is

done by feature reduction techniques such as PCA. As shown

by Littlewort et al. [42], when an SVM classifier is trained

using the features selected by a boosting algorithm (they used

AdaBoost in their study), it outperforms both the SVM and the

boosting classifier applied directly to facial expression data.

The implementation of the feature selection has been done

as follows. As the weak classifier, we use a linear regression

function. For every d ∈ D, where D is the set of 22 AUs

that our system can recognize in an input sequence, we apply

GentleBoost resulting in a set of selected features Gd. To detect

22 AUs occurring alone or in combination in the current frame

of the input sequence (i.e., to classify the current frame into one

or more of the d ∈ D), we train a separate SVM to detect the

activity for every AU. More specifically, we use Gd to train and

test the SVM classifier for the relevant AU (i.e., the relevant

d ∈ D). The kernel that we have chosen for the SVM was the

radial basis function (RBF) kernel, as this performed best in a

pilot study comparing the RBF, polynomial, and linear kernels.

For each fold of the validation procedure (see Section VI), the

SVM parameters were determined independently of the test

data in separate cross-validation loops.

D. Temporal Activation Models of Facial AUs

To encode the temporal segments of the AUs found to be

activated in the input image sequence, we proceed as follows.

An AU can either be in the following phases: 1) the onset

phase, where the muscles are contracting and the appearance

of the face changes as the facial action grows stronger;

2) the apex phase, where the facial action is at a peak and

there are no more changes in facial appearance due to this

particular facial action; 3) the offset phase, where the muscles

are relaxing and the face returns to its neutral appearance; or

4) the neutral phase, where there are no signs of activation of

this particular facial action. Often, the order of these phases

is neutral–onset–apex–offset–neutral, but other combinations

such as multiple-apex AUs are also possible. Note that AUs

having multiple apices are characteristic for spontaneous facial

expressions [75].

As every facial action can be divided into the four temporal

segments, we consider the problem to be a four-valued mul-

ticlass classification problem. In this paper, we compare two

approaches to detect an AU temporal model.

1) mc-SVMs: In the first approach, we employ a one-versus-

one strategy to multiclass SVMs (mc-SVMs). For each AU and

every pair of temporal segments, we train a separate subclassi-

fier specialized in the discrimination between the two temporal

segments. This results in |C|(|C| − 1)/2 subclassifiers that

need to be trained, with C = {neutral, onset, apex, offset} and

| · | being the cardinality of a set. For each frame t of an

input sequence, every subclassifier returns a prediction of the

class c ∈ C, and a majority vote is cast to determine the final

output ct of the mc-SVM for the current frame t. To train the

subclassifiers, we apply the following procedure using the same

set of midlevel parameters that was used for AU detection (see

Section IV-B). For each classifier separating classes ci, cj ∈ C,

i �= j, we apply GentleBoost, resulting in a set of selected fea-

tures Gi,j . We use Gi,j to train the subclassifier specialized in

discriminating between the two temporal segments in question.

2) Hybrid SVM-HMM: In the second approach, we propose

to apply hybrid SVM-HMMs to the problem of AU temporal

model detection. Traditionally, HMMs have been used very

effectively to model time in classification problems. However,

while the sequence of the temporal phases of a facial action

over time can be represented very well by HMMs, the HMM

suffers from poor discrimination between temporal phases at

a single moment in time. The emission probabilities, which

are computed for each frame of an input video for the HMM

hidden states, are normally modeled by fitting Gaussian mix-

tures on the features. These Gaussian mixtures are fitted using

likelihood maximization, which assumes the correctness of

the models (i.e., the feature values should follow a Gaussian

distribution) and thus suffers from poor discrimination [76].

Moreover, it results in mixtures trained to model each class and

not to discriminate one class from the other.

SVMs, on the other hand, are not suitable for modeling time,

but they discriminate extremely well between classes. Using

them as emission probabilities might very well result in an

improved recognition. We therefore again train one-versus-one

SVMs to distinguish the temporal phases neutral, onset, apex,

and offset, just as described in Section IV-D1. We then use

the output of the component SVMs to compute the emission

probabilities. In this way, we arrive at a hybrid SVM-HMM

system. This approach has been previously applied with success

to speech recognition [77].

HMMs work in a probabilistic framework. On the other

hand, the output of an SVM is not a probability measure. The

(unsigned) decision function value output h(x) of an SVM is

a distance measure between a test pattern and the separating

hyperplane defined by the support vectors. There is no clear

relationship with the posterior class probability p(y = +1|x)
that the pattern x belongs to the class y = +1. However, Platt

proposed an estimate for this probability by fitting the SVM

output h(x) with a sigmoid function [78]

p(y = +1|x) = g (h(x), A,B) ≡
1

1 + exp (Ah(x) + B)
.

(12)

The parameters A and B of (12) are found using maximum

likelihood estimation of the SVM output on the same data that

is used for training each SVM.

As explained in Section IV-D1, we use one-versus-one mc-

SVMs to distinguish between temporal phases. This approach

is to be preferred over the one-versus-all approach as it aims

to learn the solution to a more specific problem, namely,

distinguishing between two specific classes. This is in line with

our idea of using SVMs for high discriminative power between

classes and HMMs to model time.

Our (fully observed) HMM consists of four states, one for

each temporal phase. From each SVM, we get, using Platt’s
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method, pairwise class probabilities µij ≡ p(ci|ci or cj ,x) of

the class (HMM state) ci given the feature vector x and that

x belongs to either ci or cj . These pairwise probabilities are

transformed into posterior probabilities p(ci|x) by

p(ci|x) = 1/





|C|
∑

j=1,j �=i

1

µij

− (|C| − 2)



 . (13)

Finally, the posteriors p(ci|x) have to be transformed into

emission probabilities by applying Bayes’ rule

p(x|ci) ∝
p(ci|x)

p(ci)
(14)

where the a priori probability p(ci) of class ci is estimated by

the relative frequency of the class in the training data.

E. Emotion Detection

To detect the six basic emotions, we use the same set of

features, described in Section IV-B. We approach the problem

as a dynamic multiclass event detection problem, i.e., for every

video, we determine to which class it belongs. To do so, we

train an multi-class GentleBoost Support Vector Machines and

Hidden Markov Models (MC-GentleSVMs), with a similar

structure as the AU temporal segment detector. Again, we train

one-versus-one GentleBoost Support Vector Machines (Gen-

tleSVMs) to distinguish between pairs of emotions. Because

the neutral expression is also present in every video, we also

learn classifiers that distinguish between each emotion and the

neutral expression. We thus learn 21 binary classifiers. We

again use (13) and (14) to determine the emission probabilities

used by the SVM. In contrast with the AU temporal segment

detector, we do not use the emotions as the state variables,

instead we learn the optimal number of states.

V. UTILIZED FACIAL EXPRESSION DATA SETS

In our study, we used four different data sets: the CK-db of

volitional facial displays [55], the MMI facial expression data-

base (MMI-db) [79], [80], the DS118 data set of spontaneous

facial displays [81], and the triad data set of spontaneous human

behavior [82].

The CK-db was developed for research in the recognition

of the six basic emotions and their corresponding AUs. The

database contains over 2000 near-frontal-view videos of facial

displays produced by 210 adults being 18 to 50 years old, 69%

female, 81% Caucasian, 13% African, and 6% from other eth-

nic groups. From this database, 480 gray scale videos have been

made publicly available. It is currently the most commonly used

database for studies on automatic facial expression analysis.

All facial displays were made on command, and the recordings

were made under constant lighting conditions. Two certified

FACS coders provided AU coding for all videos. Interobserver

agreement was expressed in terms of Cohen’s kappa coefficient

[83], which is the proportion of agreement above what would be

expected to occur by chance. The mean kappa for interobserver

reliability was 0.82 for AUs at the apex. In the publicly available

version of this database, the expressions are shown until the

beginning of the apex phase.

The MMI facial expression database has five parts (see [80]).

Two FACS experts AU-coded the database. The mean kappa for

interobserver reliability was 0.77 for AUs at the apex. The two

coders made the final decisions on AU coding by consensus,

and this final AU coding was used for the study presented

in this paper. The mean kappa for interobserver reliability on

Parts I and II of the database was 0.91 for AUs at the apex.

In our study, we use Parts I, II, and IV. Parts I and II

contain deliberately displayed facial expressions: 2397 videos

depicting facial expressions of single AU activation, multiple

AU activations, and six basic emotions. The subjects were

52 adults of 19 to 62 years of age, with 48% being female,

81% Caucasian, 14% Asian, and 5% African. All facial displays

were made on command, and the recordings were made under

constant lighting conditions from frontal, profile, or dual view

orientation. The database contains a large amount of displays of

single AU and action descriptor activations. In turn, the MMI

data set enables us to learn to recognize every AU independent

of other AUs. Part IV of the MMI facial expression database

contains currently 65 videos of spontaneous facial displays.

Subjects were 18 adults of 21 to 45 years old, with 48% being

female, 66% Caucasian, 30% Asian, and 4% African.

To stimulate research into the automatic analysis of AU tem-

poral dynamics, we have made the manual onset–apex–offset

coding of Parts I and II publicly available. They can be down-

loaded from the MMI facial expression database Web site. This

will also allow researchers to compare their work against the

method proposed here.

The DS118 data set has been collected to study facial ex-

pression in patients with heart disease [81]. The subjects were

85 men and women with a history of transient myocardial

ischemia who were interviewed on two occasions at a four-

month interval. They averaged 59 years of age (std = 8.24) and

were predominantly Caucasian. Spontaneous facial displays

were video recorded during a clinical interview that elicited

AUs related to disgust, contempt, and other negative emotions

as well as smiles. The facial actions displayed in the data are

often very subtle. Due to confidentiality issues, this FACS-

coded data set is not publicly available. Only the AU coding

made by human observers and the tracking data were made

available to us.

The triad data set was collected to study the effects of

alcohol on the behavior of so-called social drinkers [82]. The

subjects were three young Caucasian men, who were recorded

simultaneously by three different cameras while drinking and

interacting. The recordings are long (over 15 min) and contain

displays of diverse facial and bodily gesturing. No AU coding

of the data was made publicly available.

VI. VALIDATION STUDIES

We conducted five sets of experiments to evaluate the per-

formance of different parts of the system: the facial point

detector, the facial point tracker, the AU detector, the AU

temporal activation model detector, and the six-basic-emotion

detector.
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TABLE II
AVERAGE CLASSIFICATION RATE OF POINT DETECTION ON

MMI FACIAL EXPRESSION DATABASE CK-db

A. Evaluations of Facial Point Detector

We conducted two experiments to evaluate the performance

of our facial point detector: one using the first frames of

300 randomly picked image sequences from the CK-db and

the other using the first frames of the 244 image sequences

from the MMI-db Part I that will later be used in AU detection.

In the experiment with the CK-db images, the proposed facial

point detector was evaluated by threefold cross-validation. In

the experiment with the MMI-db images, the point detector was

trained using all images from the CK-db and tested on the MM-

db images. In this way, we were able to test how well the point

detector generalizes to entirely different data.

To evaluate the performance of the method, each of the

automatically located facial points was compared with the

manually annotated point. The error margin was defined in

terms of the interocular distance DI measured in a test image.

An automatically detected point displacing ed pixels from the

true facial point is regarded as SUCCESS if ed < 0.05DI . This

means that, e.g., for DI = 100 pixels (a typical value for the

CK-db), a bias of up to 5 pixels for an eye corner is regarded as

SUCCESS.

Overall, we achieved an average recognition rate of 93% for

the samples from the CK-db and 96% for the samples from

the MMI-db for 20 facial feature points using the previously

described evaluation scheme. The detection rates for each point

are given in Table II. The low scores for points D and D1

(the inner eyebrow points) are caused by a slight difference

in the definition used during the manual annotation of the two

databases: They were labeled slightly beneath the eyebrows for

the CK-db and slightly above the eyebrows for the MMI-db.

Facial point detectors developed elsewhere attain 93% to

96% average recognition rate for subsets of the 20 facial points

illustrated in Fig. 3 when considering ed < 0.3DI as the rule for

successful point detection (e.g., [58], [59], and [84]). Hence, the

method presented in this work is approximately six times more

accurate than the previously reported methods. Typical results

of our facial point detector are illustrated in Fig. 4.

B. Evaluations of Facial Point Tracker

We tested the tracking accuracy of the proposed PFFL point

tracking algorithm by applying it to several different samples

from four different data sets: the CK-db, the MMI Part I and

Fig. 5. Mean and standard deviation of the tracking error in units of the
interocular distance DI of selected points. The error is computed over
100 videos taken from the MMI facial expression database.

Part II data sets, and the triad data set. We randomly selected

5% of samples from each data set, in such a way that these data

are completely independent of the data that we used to model

the transition probability models of the tracking algorithm (see

Section III). To provide ground truth for our experiments, each

frame of each test sequence was labeled by a human observer,

provided that all 20 facial points are visible. In case of an

occlusion, the location of an occluded point was determined

based on its location in the last frame in which the relevant

point was visible. The distance metric for a given point pi is

defined per frame as follows:

e(pi, j) =
‖pi,j − p̂i,j‖2

DI(j)
(15)

where DI(j) is the interocular distance, measured at frame j of

the test sequence, pi,j is the location of point pi, i ∈ [1 : 20]
in frame j determined by the tracking algorithm, and p̂i,j is

the manually labeled ground truth for the same point at that

frame. Fig. 5 shows the mean tracking error for a number of

facial points, computed by evaluating the tracking results of

100 videos from the MMI-db. We compute the average error

E over all points per frame j as follows:

E(j) =
1

n

n
∑

i=1

e(pi, j) (16)

where n = 20 is the number of points that we track. To de-

termine a classification rate for our tracking result, we use

the same measure of success as that which we applied to the

point detection results, i.e., a point is tracked successfully in a

frame if E(j) <= 0.05DI . Given that the tracking algorithm

was trained on samples from the MMI Part I data set (near-

frontal views of deliberately displayed facial expressions), it

is not surprising that the best results were attained for similar

data, i.e., for samples from the CK-db and the MMI Part I

data sets, where all points were tracked successfully in 93%

and 91% of frames, respectively. On the spontaneous facial

data, the tracking algorithm performed less accurately. For the
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TABLE III
SUBJECT-INDEPENDENT CROSS-VALIDATION RESULTS FOR AU
ACTIVATION DETECTION PER FRAME ON 244 EXAMPLES FROM

THE MMI FACIAL EXPRESSION DATABASE

MMI Part II data set and the triad data set, the tracking of all

points was successful in 77% and 52% of frames, respectively.

Note, however, that samples from both of these data sets of

spontaneous facial data contain instances of occluded facial

points, which had a large influence on the average distance

metric E(j).

C. Frame-Based AU Detection Evaluation

We tested our AU detector system on both the MMI-db and

the CK-db, measuring for each frame of a video whether it was

correctly classified as containing an active AU or not (regardless

of the temporal phase). On the MMI-db, we tested it for all

22 AUs that can be detected using a geometric-feature-based

approach. The set was created so that it includes for every AU

at least 15 examples. For AU13 (a smile with the mouth corners

sharply pulled upward), we could find only 14 examples, and

for AU46 (wink), we could find only 6. Some AUs always occur

in combination with others. For instance, AU22, which puffs

the lips as in pronouncing the word “flirt,” will always cause

the lips to part and thus to display AU25. Thus, for some AUs,

we have more occurrences than for others. In the CK-db, not

all 22 target AUs are present in sufficient numbers. Hence, we

have tested our AU detector on the CK-db only for those AUs

that were present with at least 15 examples.

All studies were performed by leave-one-subject-out cross-

validation, which ensures that we train and evaluate a subject-

independent system. Results for the MMI-db are shown in

Table III, and those for the CK-db are shown in Table IV. The

number of videos in which each AU occurs is listed in the

second column of the tables, and the total number of frames

in which an AU is active is given in the third column. For

comparison with older works, we show the classification rate

TABLE IV
SUBJECT-INDEPENDENT CROSS-VALIDATION RESULTS FOR

AU ACTIVATION DETECTION PER FRAME ON 153 EXAMPLES

FROM THE CK-db

in the fourth column. Because of the highly unbalanced nature

of our data, this performance measure is overly optimistic.

More detailed frame-based AU detection performance results

are provided in terms of ROC curves in Fig. 6.

Although precision and recall are better measures of perfor-

mance when dealing with unbalanced data sets, it is difficult to

compare performances using two measures. Therefore, we have

also included the F1 measure, which favors precision (p) and

recall (r) equally. The F1 measure is defined as 2pr/(p + r).
The results show that the AUs 1, 2, 4, 6, 12, 13, 18, 20,

25, 27, 30, 43, 45, and 46 are detected well. AU5 and AU7

both involve only the movements of the upper and the lower

eyelid. The eyelids move up or down only very little when

these AUs are activated, and we believe that our tracker is

not sensitive enough to attain highly accurate results for these

AUs. AU26 (jaw dropped) is very similar to AU27 (mouth

stretched open). In fact, in an activation of AU27, the facial

points around the mouth will go through all the positions that

they would go through in case of AU26 activation. Therefore,

the two AUs are hard to separate. Similarly, AU10 and AU16

are characterized by point displacements that are very similar

to point displacements caused by other AUs that also raise the

upper lip (AU10) or lower the lower lip (AU16).

D. AU Temporal Model Detection Evaluation

We evaluated the performance of our temporal model de-

tector on examples from the MMI-db only. This is because

the CK-db videos were cut after the expressions reached the

apex phase. Therefore, they do not display the full temporal

model of facial expressions. Fig. 7 compares the F1 measures

attained by the two tested approaches (see Section IV-D): multi-

class GentleBoost Support Vector Machines only and the hybrid

GentleBoost Support Vector Machines approach. The accuracy

was measured per frame (i.e., for each frame, we checked

whether it was assigned the correct phase label).

We see that, compared with the multiclass GentleSVM

method, the detection of the apex phase has benefited most from

introducing the HMM. The apex phase had an increase in F1
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Fig. 6. ROC curves of AU activation detection per frame on the MMI and the CK data sets. For AU13, AU16, AU18, AU22, AU30, and AU43, the CK data set
did not contain enough examples to perform AU detection.

of 8%, the offset 6.8%, the onset phase 3.6%, and the neutral

phase 3.4% (relative to mc-SVM). The fact that the neutral

phase benefits least from the addition of the HMM is expected

because this is not a dynamic part of the facial action. The effect

of applying the grammatical rules is less successful. While it

attains good results for the offset phase and, in a limited way,

for the neutral phase, it actually decreases the accuracy of the

onset and apex phase recognition.

Detailed results per AU are shown for the SVM-HMM

approach in Table V. Fig. 8 shows one example of the recog-

nition of the temporal phases of a video containing an AU 25

activation. The figure shows that the prediction (red dotted line)

is one frame late at predicting the first and second apex phases.

It also predicts the last offset phase to stop six frames too early.

The SVM-HMM system did recognize correctly that there are

two apex phases.

We also looked into the durations of the facial actions, both

the total duration of an AU (i.e., the number of consecutive

frames that were predicted to be nonneutral) and the durations

of the temporal phases separately. Fig. 9 shows the statistics

for this analysis. The duration error is measured in frames. The

figure shows the average number of frames that a temporal

phase duration or the entire AU activation duration is off,

averaged per AU. We can see that, for most AUs, the average

error per temporal phase is less than four frames. The apex

temporal phase has the largest error. We can also see from Fig. 9

that the error of the total AU activation duration is far less than

the sum of the temporal phase duration errors. This is because,
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Fig. 7. Comparison of the F1 measures attained by the two temporal model
detector approaches, measured per frame.

TABLE V
F1-MEASURE CLASSIFICATION ACCURACY OF HYBRID SVM-HMM FOR

DISTINGUISHING THE FOUR TEMPORAL PHASES

usually, if the apex phase has been predicted to last too long,

consequently, the offset phase will start late and results in an

error in the offset phase duration; thus, the error is effectively

double counted.

E. Event-Based AU Detector Evaluation

Aside from AU detection per frame, we also want to be able

to perform the so-called event coding, i.e., we want to determine

which AUs were active in an entire image sequence.

1) Within-Database Evaluation: The simplest way to per-

form event detection is to use a threshold on the number of

frames predicted active by the frame-based AU detector. As the

SVM classifier adds an a priori unknown amount of noise to its

output in the form of false positives and false negatives, fixing

a threshold based on, for example, the minimal duration of an

AU as observed by psychologists will not necessarily achieve

optimal results. To overcome this problem, we add a decision

layer that will empirically learn a threshold θ based on the AUs

automatically detected per frame.

Another way to determine whether an AU was present in

a video is to analyze the output of the AU temporal model

detector. When doing this, we regard an AU to be present if the

temporal model detector predicted a correct sequence of phases

(e.g., neutral → onset → apex → offset). Table VI compares

the AU event detection results of the simple threshold-based

method with that of the temporal model detector method, where

we have used the SVM-HMM approach to detect the temporal

phases of each AU. As the table shows, using the hybrid

SVM-HMM method for AU event detection results in a 17.1%

improvement in F1 measure, clearly showing the benefit of this

approach.

2) Cross-Database Evaluation: A cross-validation study on

data from a single database might attain very good results, but it

does not guarantee that the evaluated system performs well on

novel data. To test the generalizability of the results, we train

the system on data from one database and test it on data from a

second database. Both databases must be recorded completely

independently of each other. That exactly is the case for the

MMI-db and the CK-db.

We performed two tests. In the first experiment, we train

the AU detector on all data from the MMI-db and test it on

data from the CK-db. Vice versa, in the second experiment,

we train on the CK-db and test on the MMI-db. The results,

measured per image sequence (event detection) in terms of the

F1 measure, are shown in Table VII. The performance of the

MMI-trained system is almost 10% higher than that of the CK-

trained system. We believe that this is due to the low variability

of facial expressions in the latter database. As AUs in the CK-

db occur frequently in very similar configurations (e.g., AU1 +

AU2 + AU5 + AU25 + AU27 for the expression of surprise),

an AU detection system trained on this data will expect AUs to

be produced in a similar fashion in the test examples. However,

this is not the case for the MMI-db data, where individual AU

activations often occur. On the other hand, we see that the

MMI-trained system generalizes reasonably well on data from a

completely different database, although the F1 measure is still

a good 22% lower than that attained when performing event

detection within the MMI-db (see Table VI), and thus, high

generalization has not yet been achieved.

3) Spontaneous Data Evaluation: The AU detection evalu-

ations presented so far were performed on acted data. That is,

the expressions shown in the data were produced on command.

Spontaneous expressions, however, are different both in their

composition of AUs as well as in their temporal dynamics

[85]. Ultimately, we would like to deploy our facial expression

analysis system in such real-world situations. As mentioned in

the introduction, very few works have focused on the problem

of spontaneous facial expression recognition so far, and results

have been quite limited (see [8] for an overview).

We tested our system on the DS118, Triad, and MMI-db

part II databases (see Section V). We trained the system on all
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Fig. 8. Example of temporal phase recognition for AU25. The solid line shows the ground truth labeling per frame, and the dotted line shows the prediction by
the SVM-HMM. Horizontal lines depict either a neutral or an apex phase, upward slopes an onset phase, and downward slopes an offset phase.

Fig. 9. Temporal segment (onset, apex, and offset) duration error and the entire facial action duration error. Results are averaged per AU and measured in frames.

TABLE VI
COMPARISON OF AU EVENT DETECTION METHODS ON THE

MMI FACIAL EXPRESSION DATABASE

TABLE VII
F1 MEASURE FOR CROSS-DATABASE AU DETECTION PER VIDEO.

SYSTEM WAS EITHER TRAINED ON 244 EXAMPLES FROM THE MMI
FACIAL EXPRESSION DATABASE AND TESTED ON 153 EXAMPLES

FROM THE CK-db OR VICE VERSA

available posed data from the MMI-db part I. On spontaneous

data of smiles, taken from the triad database and the MMI-db

part II, AU6 was recognized correctly 77% of the times, AU12

TABLE VIII
CONFUSION MATRIX OF EMOTION DETECTION ON THE CK-db.
ROWS INDICATE GROUND TRUTH, AND COLUMNS INDICATE

DETECTED EMOTIONS

in 54%, and AU13 in 85% of the videos. The reason why AU12

has a rather low classification rate is that AU12 and AU13 are

very similar. Both involve movement of the mouth corners. The

difference lies in the horizontal movement: With AU12, the

mouth corners move further out while, with AU13, the mouth

corners are pulled up sharply.

On the DS118 database, we tested for brow-related AUs only

(i.e., AU1, AU2, and AU4). We achieved a 50.4% classification

rate for AU event detection (i.e., detecting the presence of an

AU within a video). Although this is not a very high result,

it is promising considering that we were not able to use any
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TABLE IX
COMPARISON OF CLASSIFICATION RATE OF EXISTING WORKS THAT REPORT AU DETECTION ON EITHER THE MMI FACIAL EXPRESSION DATABASE

OR CK-db. FOURTH COLUMN INDICATES IF THE SYSTEM IS CAPABLE OF DETECTING THE TEMPORAL PHASES OF AN AU

spontaneous training data. Other researchers reported between

26% [35] and 76% [34] classification rate for brow actions in

widely varying data sets.

F. Emotion Detection Evaluation

The detection of six basic emotions in posed facial expres-

sion databases is considered to be largely solved, particularly

when the subject being tested is known and was part of the

training data. However, for optimal comparability with existing

automatic facial expression recognition works, we evaluate our

six-basic-emotion detection system on 171 videos taken from

the CK-db. The videos were selected with the criterion that two

coders were able to attain a consensus on what emotion was

shown in that video. This is a stricter ground truth criterion than

using the ground truth provided with the CK-db. This strategy

was used to reduce the label error in the data set.

Table VIII shows the confusion matrix and classification

rates of all emotions. Emotions are detected per video, i.e.,

the table shows event detection results. From the results, we

have to conclude that it is very hard to distinguish between

the emotions angry and sadness. The reason for this is that

both expressions often incur similar brow movements. From a

geometric point point of view, the difference is in the downward

motion of the lip corners, and unfortunately, that motion can be

very subtle. It also shows that fear is often confused with either

disgust or happiness. While the confusion with fear is common,

the confusion with happiness is somewhat surprising. Again,

the explanation lies in the displacement of the lip corners. The

motion of the lip corners caused by AU20 and AU12 can be

quite similar, particularly if the tracking is slightly off. We

believe that this is an indication that four points is insufficient

to capture the different shapes of the mouth. Moving toward

eight or more points would allow a geometric-based approach

to better distinguish between AU12, AU20, and AU15, which

we believe are the main culprits in the confusions made by our

emotion detection system.

G. Performance Comparison With Previous Works

Although there is still no standardized method for the evalu-

ation of automatic facial expression recognition systems, many

works have reported the performance of their system on one

or more publicly available databases. More specifically, many

works have used the CK-db [55], the MMI facial expression

database [79], or both. Therefore, a comparison is possible

to a certain extent, although using the same database does

not guarantee that the systems were trained and tested with

the same number of videos from each database nor does it

guarantee that the same rules, e.g., for the optimization of

parameters, were adhered to.

Table IX gives an overview of the existing systems that report

their performance in terms of AU event detection on either

the CK-db, the MMI facial expression database, or both. For

[86], we are unable to report a classification rate on either

databases, as the authors only mention the achieved area under

the ROC curve in their paper. As we can see, our proposed

approach outperforms all other methods on the MMI facial

expression database, and of the methods capable of detecting

temporal segments, it also scores the highest on the CK-db.

Although this is not a comparison in a controlled experiment, it

still shows that the proposed system performs well compared

to existing approaches. It also shows that appearance-based

approaches do not necessarily outperform geometric-feature-

based approaches.

VII. CONCLUSION

Accurate fully automatic facial expression analysis would
have many real-world applications. In this paper, we have
shown that not only fully automatic highly accurate AU activa-
tion detection based on geometric features is possible but also
that it is possible to detect the four temporal phases of an AU
with high accuracy and that geometric features are very well
suited for this task. The proposed system was tested extensively
on multiple databases and was shown to generalize well when
trained on data from one database and tested on data from
another. This being said, generalization to completely novel
data is not possible yet without some loss of accuracy. At
this point, a major limitation of the system is that it can only
recognize facial expressions as long as the face is viewed from
a pseudofrontal view. If the head has an out-of-plane rotation
greater than 20◦, the system will fail. This is something that we
wish to address in our future research.
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