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PURPOSE. To create and validate software to automatically segment leakage area in real-world
clinical fluorescein angiography (FA) images of subjects with diabetic macular edema
(DME).

METHODS. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME
were retrospectively analyzed. Both video and still-frame images were obtained using a
Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video
by a two-step nonrigid registration method. To remove background artifacts, we subtracted
early and late FA frames. Finally, after postprocessing steps, including detection and inpainting
of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-
lm-radius circular region centered at the fovea. Images were captured at different fields of
view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical
imaging. Our algorithm was applied to these images with no manual input. Separately, all
images were manually segmented by two retina specialists. The sensitivity, specificity, and
accuracy of manual interobserver, manual intraobserver, and automatic methods were
calculated.

RESULTS. The mean accuracy was 0.86 6 0.08 for automatic versus manual, 0.83 6 0.16 for
manual interobserver, and 0.90 6 0.08 for manual intraobserver segmentation methods.

CONCLUSIONS. Our fully automated algorithm can reproducibly and accurately quantify the area
of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The
performance was reliable for different DME subtypes. This approach has the potential to
reduce time and labor costs and may yield objective and reproducible quantitative
measurements of DME imaging biomarkers.

Keywords: leakage segmentation, diabetic macular edema, fundus fluorescein angiography,
nonrigid registration

D iabetic retinopathy is the leading cause of vision loss in
working-age adults, affecting a large subset of the over 24

million diabetics in the United States1,2 and an even greater
number worldwide. Diabetic macular edema (DME) affects over
25% of diabetics with 20 years or more duration,3 and is the
primary cause of central vision loss due to diabetic retinopathy.
Diabetic macular edema results from a combination of
pathologic leakage from damaged retinal microvasculature
and insufficient clearance of plasma by Müller and retinal
pigment epithelial cells.4,5 Vascular leakage and intraretinal
fluid accumulation are imaged clinically using fundus fluores-
cein angiography (FA).

While noninvasive optical imaging systems such as optical
coherence tomography (OCT) provide valuable morphologic
information and are useful to monitor DME and its response to
treatment,6 FA remains essential for diagnosis and characteriza-
tion of DME disease. Fluorescein angiography offers critical
biological information such as location, intensity, and leakage
source; and leakage area as measured by FA continues to be a
relevant secondary endpoint in major studies of DME treat-
ment.7 In addition, various subtypes of DME have been

proposed based on differences in the pattern of fluorescein
leakage as seen by FA.8 For example, focal leakage manifests as
discrete foci of leakage on early FA frames and corresponds to
microaneurysms (MAs). In contrast, the diffuse subtype is
characterized by generalized leakage prominent on late FA
frames without a discretely identifiable source. Eyes with DME
can demonstrate either leakage pattern, or more commonly, a
mixture of both.9

Identification of DME subtypes by FA has potential to guide
therapy and monitor disease activity. While reproducible
quantitative and qualitative analysis of FA is possible by
experienced graders in the setting of a formal imaging reading
center, its use for subtyping in the clinical setting is hindered by
the subjective nature of FA interpretation. Accordingly, there
has been longstanding interest in objective methods for
quantification of leakage by FA. While several investigators
have utilized automated segmentation for automatic analysis of
FA,10–21 MA detection,22–27 extraction of vessels,15,18,19,28 and
foveal avascular zone (FAZ) detection,14,29–33 relatively few
algorithms have been focused on automated leakage detection
or quantification.10,34–39
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Martinez-Costa et al.35 have published a method for detection
of macular angiographic leakage due to retinal vein occlusion.
The foveal center is manually detected, and then images are
aligned automatically. Pixels with a statistically high increment
in gray level along the sequence within the closest area to the
fovea center are segmented as leakage. Another method by Cree
et al.36 assumes that captured images are composed of two
functions, one describing the true underlying image and the
other the incurred degradation due to uneven illumination or
occluded optical pathways. Any leakage of fluorescein dye is
then detected by analyzing the restored data and finding areas of
the image that do not have normal fluorescence intensity
attenuation. The exponential model of fluorescein decay utilized
by Cree et al.36 is an extension of the linear model used by
Philips et al.37,38 In contrast, other researchers claim that the
intensity profile of the hyperfluorescent region is not entirely
predictable,39 especially in cases of late filling vasculature, scars
caused by laser surgery, or late staining of the optic nerve head.
The obtained temporal profiles in the work of Berger,40 after
using a polynomial warping algorithm for FA registration, also
show that simple models are not able to correctly match the
intensity profile of the hyperfluorescent regions.

To address this problem, Buchanan and Trucco39 utilized (1)
contextual knowledge and (2) spatiotemporal features exploit-
ing the evolution of intensity levels over the sequences of ultra-
widefield retinal angiograms to train an AdaBoost algorithm.
More recently, El-Shahawy et al.41 modeled manually cropped
macular image in the early frames by a two-dimensional
Gaussian surface, which is then subtracted from the corre-
sponding area in late frames to segment the leakage area using a
Gaussian mixture model classification algorithm. This algorithm
analyzes only one early frame and one late frame, and along with
the previously noted studies, uses rigid phase correction
registration. All these noted methods either use rigid registra-
tion35–39,41 (the shortcomings of which will be experimentally
proven for our problem) or require manual inputs35,37,38,41 (e.g.,
in the registration step or for fovea detection).

In this paper, we present a fully automated image
segmentation algorithm (which does not require manual
inputs) for reproducible and accurate quantification of leakage
area in DME. An exciting characteristic of our algorithm is its
applicability to real-world clinical images, which often include
low-quality images with various sources of outliers, without
requiring any manual input.

METHODS

Study Subjects

This study was approved by the Duke University Health System
Institutional Review Board (IRB) in accordance with Health
Insurance Portability and Accountability Act (HIPAA) regulations
and the standards of the 1964 Declaration of Helsinki. Twenty-
four eyes of 24 subjects were included in the study. Only images
obtained from the transited eye were analyzed. In order to be
included, subjects had to be diagnosed with DME based on
clinical exam, FA, and OCT imaging. Exclusion criteria included
other causes of macular edema, globally poor image quality (due
to media opacity or patient cooperation), missing early- or late-
frame images, or photographer error that made accurate
segmentation even by manual graders impossible in the opinion
of the expert graders. In order to test the performance of the
algorithm over a wide spectrum of DME subtypes, efforts were
made to include representative subjects with predominantly
focal, predominantly diffuse, and mixed pattern leakage (as
determined by expert clinicians) in the study.

Data Acquisition

Expert clinicians retrospectively identified FA images obtained
during routine clinical care at the Duke Eye Center. All images
were obtained using a Heidelberg Spectralis 6-mode HRA/OCT
unit (Heidelberg Engineering, Heidelberg, Germany). The first
minute of the study was captured in movie mode using the
high-resolution setting (4.7 frames per second), and subse-
quent late-phase images were captured as single images in ART
mode (averaging nine images). Each grayscale image in the
sequence was composed of 768-3 768-pixel images. The FOVs
of the early movie and the late-phase images were 308, 358, and
558 (Table 1). Following acquisition, image files were
deidentified and exported in E2E format for further analysis.

Image Processing Algorithms

A block diagram of our proposed method for leakage detection
from FA images of DME patients is shown in Figure 1. The first
step in our algorithm is accurate registration of the FA image
sequence for each patient, where we register a set number of
frames in the video (called registered frames) to one reference
frame in the sequence. After accurate registration of the FA
sequence, we estimate the normalized difference between the
early and late FA images. After several postprocessing steps
including detection and inpainting of vessel regions, we find an
initial estimate of the leakage area. Finally, we utilize the robust
active contour method42 to accurately detect the boundaries of
the leakage region. These steps are discussed in more detail in
the following subsections.

Registration. Accurate registration is a critical step
because (1) fluorescence level in FA images is different from
one subject to another and (2) nonleakage areas (e.g., vessels)
also fluoresce. Since the contrast agent accumulates slowly, the
leakage area appears most prominently in the later frames of
the FA video sequence, as opposed to MAs, vessels, or laser
scars, which are more prominent in earlier frames. Thus, a
logical approach for detecting the actual leakage area is to

TABLE 1. FOV of FA Images and Video in This Study

Data

FOV of the Early-Phase

FA Videos

FOV of the Late-Phase

Images in ART Mode

Diffuse 1 30 55

Diffuse 2 55 55

Diffuse 3 55 55

Diffuse 4 55 55

Diffuse 5 55 55

Diffuse 6 55 55

Diffuse 7 30 30

Focal 1 55 55

Focal 2 35 35

Focal 3 55 55

Focal 4 30 55

Focal 5 55 55

Focal 6 30 30

Focal 7 30 35

Focal 8 55 55

Focal 9 55 55

Focal 10 55 55

Mixed 1 55 55

Mixed 2 30 30

Mixed 3 55 55

Mixed 4 30 35

Mixed 5 30 30

Mixed 6 30 30

Mixed 7 30 55
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compare the fluorescence levels of geographically similar areas
of the retina at different time points.

Registration of an FA sequence, which may span a few
minutes, is in general a challenging problem since (1) global
and local illumination of frames in an FA video (spanning up to
a few minutes) cannot be considered constant; (2) MAs,
leakage, and vessels appear and disappear throughout the
video; and (3) interframe motion cannot be modeled as rigid
(see discussion of Multiresolution Nonrigid Local Registration
and Fig. 5 below).

This problem is even more challenging for datasets from a
real-world clinical setting (as opposed to a controlled
experiment) due to the following issues: (1) different FOVs
in FA videos in the same clinical practice (e.g., 308, 358, and 558
FOVs); (2) severe distortion of images due to eye movement
and blinking; and (3) obstructed view or high levels of noise in
a selected number of frames (Fig. 2).

To address these problems, several algorithms with varied
levels of success have been proposed through the years.21,43–51

In our method, to accurately register relatively low-quality
clinical FA images, we utilize a two-step nonrigid registration
approach: a robust global vessel-based registration method
based on the RANdom SAmpling & Consequence (RANSAC)
algorithm,52 followed by a more accurate nonrigid intensity
multiresolution registration of FA images.

Frame Selection. The first step of our registration algorithm
is removing corrupted frames (especially due to eyelid
twitching, blinking, and exceptionally high noise levels) from
the registration process (Fig. 2). We achieve this by removing
frames with a correlation less than 0.7 with the last frame from
the registration process (Fig. 3).

Global Rigid Registration. Once the FA sequence is pruned
of the outlier frames, we find a pilot global transform that
registers the remaining frames. Our global registration algorithm
is based on finding a geometric transformation corresponding to
the matching point pairs using a variant of the RANSAC method
called the statistically robust M-estimator SAmple Consensus
(MSAC) algorithm.53 The iterative RANSAC method estimates
parameters of a mathematical model from a set of observed data
that are contaminated with outliers. In MSAC the cost function is
modified, whereas inliers are scored according to their fitness to
the model while the outliers are given a constant weight. In

order to find the matching point pairs, we first roughly segment
the vessels in each image. While virtually any vessel detection
algorithm can be employed for this task,28,54–56 in this paper we
use the exploratory Dijkstra forest algorithm of Estrada et al.54 In
this method, after preprocessing, in each iteration the best
unvisited vessel pixel in the image is chosen as a starting point
for a dynamic-programming exploration of the unvisited part of
the image, which results in a new tree in the growing forest of
vessels. A threshold is chosen as stop criterion, which stops
forest growth when the best unvisited vessel pixel is worse than
this threshold.

After this pilot vessel detection step, we utilize the scale
and rotation-invariant interest point detector/descriptor
Speeded-Up Robust Features (SURF) on the binary vessel
map to extract blob features.57–60 A blob is a region with a
(relatively) constant value in properties such as brightness or
color compared to areas surrounding that region, which can
be utilized as a salient point for registration. In SURF, the
determinant of Hessian (DoH) is utilized as the blob detector,
computed from the sum of the Haar wavelet response around
the point of interest. Figure 4e shows the output of blob
detection for two FA frames of a DME patient, and the
strongest SURF features are shown in Figure 4f. Next, outliers
in blob maps are excluded by using the MSAC algorithm.58–60

Finally, the remaining blob regions are matched by finding a
geometric transformation based on an affine model. This
transform was estimated using the estimateGeometricTrans-
form function in MATLAB (MathWorks, Natick, MA, USA) with
the parameters of maximum distance threshold, maximum
number of random trials for finding the inliers, and desired
confidence (in percentage) for finding the maximum number
of inliers set at 5, 1000, and 99, respectively. Figure 4 shows
an example of global rigid registration between two FA frames
of a DME patient. Although global registration improves
spatial matching of similar regions in an FA sequence, Figures
5a and 5c show that in some regions further refinement steps
are necessary.

Multiresolution Nonrigid Local Registration. To improve
the gross global registration results of the previous subsection,
we utilize patch-based local registration. After the pilot global
registration step, we focus on analyzing local 40- 3 40-pixel
rectangular patches centered at similarly indexed pixels in the

FIGURE 1. Block diagram of proposed method for segmentation of fluorescein leakage areas from FA images of DME patients. In Registration Box,
selected frames are registered together using a two-step registration method including global and local registration. Two normalized mean early and
late frames produced after registration are subtracted in the next stage (Difference Image Box). Finally, after thresholding and applying the Chan-
Vese segmentation method, segmented leakage is extracted (Segmentation Box).
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reference and registered images. We use the intensity multi-

resolution registration method (implemented utilizing MAT-

LAB’s imregister function) on the corresponding local patches.

To achieve optimal results, in each patch we utilized a

multiresolution decomposition approach, with three resolu-

tion scales, and iterated 100 times in each pyramidal scale. This

procedure can be repeated to obtain the registration param-

eters of all pixels. However, we empirically found out that for

faster registration, we needed to register only one out of every

20 pixels and used the nearest neighbor coefficients for the

FIGURE 2. Example individual frames of an FA video in our dataset demonstrating the variability of image quality and frequent outliers of FA images
captured in a real-world clinical setting. Outlier frames can appear at any time point, complicating development of fully automated software for
leakage quantification. (a) A low-intensity frame at time point 8 00. (b) A frame with acceptable quality at time point 35 00. (c–e) Completely unusable
(outlier) frames at time points 39 00, 40 00, 41 00. (f) A frame with acceptable quality at time point 56 00. The correlations of these six frames to the last
frame are 0.61, 0.84, 0.43, 0.44, 0.46, 0.99.

FIGURE 3. Correlation of the 500 frames in the FA sequence (start point is second 11 and end point is second 65) of Figure 2 with the last frame of
that sequence. Corrupted frames (corresponding to orange circle) with low-correlation values are treated as outliers and are excluded from analysis.
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rest of the pixels. Figures 5b and 5d show the effectiveness of

the proposed technique in correcting the slight misalignments

in the rigid registration step.

Background Normalization. Following injection of the

fluorescent dye, vessels appear in the earlier frames of the FA

sequence, followed by MAs, and then leakage areas. In later FA

frames, leakage areas are amplified while vessel and MA

luminance are attenuated (i.e., early frames show vessels; middle

frames show vessels and MAs; and late frames show vessels, MAs,

and leakages). Thus, by comparing the FA images captured at

different time points, leakage areas can be distinguished from

other bright areas in the image. We implement such a

background normalization process in the following three steps.

Pilot Background Normalization. Imaging conditions often
vary during acquisition of a single FA sequence, which can take
several minutes. For example, the incident angle of the laser
beam may be different at different time points. Alternately,
features such as vessels are attenuated in the later frames as
compared to the frames appearing in themiddle of the sequence.
Thus, the background intensity of the image at local and global
scales might be different for different images in a sequence,
requiring intensity normalization across all frames. An initial step
for intensity normalization is to estimate and subtract the
background of each frame. We achieve this by subtracting a
morphologically opened variant of each image from itself.
Opening in grayscale images is defined as the erosion of image
f(x, y) by the structuring element61 b followed by the dilation of

FIGURE 4. An illustrative example of the global (rigid) registration steps for averaged early and late frames of a DME patient. (a) Mean early FA
frame. (b) Late FA frame. (c) Unregistered images overlaid. (d) Unregistered vessels overlaid. (e) Initial SURF features of the two frames overlaid. (f)
Strongest SURF features overlaid. (g) Rigidly registered vessels. (h) Rigidly registered images. Perfectly registered vessels appear in white in (g) and
(h).

FIGURE 5. Comparison between the results of global rigid registration and nonrigid registration for the image in Figure 4. (a) Overlay of the rigidly
registered images. (b) Overlay of the nonrigidly registered images. (c, d) Segmented vessels in the yellow square section of (a, b), respectively,
where white indicates better matching.
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the result with b. In our implementation, the erosion and dilation
operators are defined as min(s,t)�b{ f (x þ s, y þ t)} and
max(s,t�)b{ f(x � s, y � t)}, respectively, where b is a flat, disk-
shaped structuring element with a radius of 20 pixels. Such a
relatively large structuring element decreases the intensity of
bright features (e.g., vessels and leakage) in our FA images while
having a relatively negligible effect on dark features (e.g., FAZ).
Thus, by subtracting the opened version of an image from itself,
we improve the background intensity uniformity across all
images in a sequence. To further improve background uniformi-
ty, after background removal we adjust the gray level of each
image by local histogram equalization.62As an example, Figure 6a
is the background-normalized version of Figure 4a.

Pilot Vessel and MA Removal. We accentuate the leakage
area in the late FA images by subtracting other fluorescing
features, which appear more prominently in earlier frames,
such as vessels and MAs. However, individual early FA images
are often dominated by image acquisition noise. Thus, instead
of subtracting individual frames, we use two representative
frames: the averaged early and late frames. The averaged early
frame is created by averaging frames 70 to 140. By subtracting
mean early FA from late FA image, vessels and MAs in most
regions will be significantly attenuated, while leakage areas will
be less affected (Fig. 6, first row).

Vessel Masking and Postprocessing. While the previous
step eliminates larger vessels, it occasionally fails to remove
smaller ones. Moreover, removing vessels located inside a
leakage region partitions a continuous leakage area into
critically smaller (and undetectable) regions (Fig. 6c). We
address this problem by creating an auxiliary image in a two-
step set of morphologic operations:

- Removing small objects (e.g., small vessel branches) by
applying an opening operation utilizing a disk-shaped
structuring element with a radius of 2 pixels; and

- Inpainting the removed vessels by dilating, followed by
eroding the image utilizing disk-shaped structuring
elements with radii of 5 and 3 pixels, respectively.

Then, we substitute the grayscale values of the pixels in the
subtracted image, which correspond to vessels (attained in the

registration step) with corresponding values in the auxiliary
image (Fig. 6d). Thus, only vessels overlying areas of leakage
are filled, without reducing the specificity of the algorithm by
filling other dark area such as FAZ. We remove the remaining
small outlier objects by applying an opening morphologic
operator utilizing a disk-shaped structuring element with a
radius of 2 pixels (Fig. 6e).

Leakage Segmentation. We deem all pixels with positive
gray-level values in the resulting image as pilot estimates of the
leakage area. We then utilize the contour of these pilot leakage
regions to initialize Chan-Vese’s active contour segmentation
algorithm.42 We empirically chose the parameters of the Chan-
Vese algorithm (500 iterations and 0.8 for the smoothing
parameter).

Detection of the Region of Interest (ROI) for Quanti-
tative Analysis. We focused our quantitative analysis on a
1500-lm-radius circle around the fovea, which is of most
significance for clinical diagnosis and treatment. Automatic
designation of this region required detection of the fovea.
Foveal identification on FA, regardless of utilization of
automatic or manual methods, is a challenging problem
especially in noisy real-world clinical data. We have
developed an objective automatic algorithm to segment the
fovea based on early FA frames, which are less affected by
capillary nonperfusion and leakage as compared to later
frames. We utilized this objective method only to determine
the ROI for quantitative comparison of manual versus
automatic grading. Indeed, better estimates for the center
of the fovea can be attained by using alternative imaging
modalities such as OCT.

Our automatic detection of fovea based on early FA frames
was accomplished in the following steps: (1) applying an
opening operation utilizing a disk-shaped structuring element
with a radius of 50 pixels and (2) attaining the location of the
fovea by averaging the coordinates of the darkest pixels in the
central region of the image (defined as pixels with gray-level
values less than 0.04 of the maximum intensity pixel in the
region). Figure 6f illustrates the final extracted leakage area
after applying the Chan-Vese algorithm on Figure 6e.

FIGURE 6. Background normalization steps for the image in Figure 4. (a) Pilot background normalized mean early FA frame. (b) Pilot background
normalized late FA frame. (c) Pilot vessel and MA removed frame attained by subtracting (b) from (a). (d) Vessel inpainted frame. (e) Removing small
objects. (f) Automatically segmented leakage in the 1500-lm-radius ROI.
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Manual Segmentation. Total leakage was segmented in
the late-phase FA images by two independent expert graders
(MJA and PSM, both expert medical retina specialists) using
the DOCTRAP software.63 DOCTRAP has a graphic user
interface (GUI) for manual segmentation extensively used and
validated in previous studies.64 Before commencing to grade
the test dataset, manual graders met and agreed upon similar
leakage definition and segmentation protocol defined by the
senior clinician (SWC). To define intraobserver reliability, one
manual grader repeated his grading on the same images at
least 6 weeks after the initial grading. While grading, both
early- and late-phase FA images were available to the
reviewers on separate computer screens. Graders identified
leakage as increased hyperfluorescence above the general
choroidal background level present in the late but not the
early phase. Early hyperfluorescent structures that did not
leak, such as staining laser scars and nonleaking MAs, were
not segmented as leakage. Similarly, preretinal neovascular-
ization, identified as early bright hyperfluorescence with
extensive, bright late leakage, was not considered leakage due
to DME.

Quantitative Measures of Performance. In order to
evaluate the performance of our algorithm, we calculated the
specificity and sensitivity as follows. True positive (TP) was
defined as the common segmented area (the number of

corresponding pixels in the ROI) by both the algorithm and
the ophthalmologist. False positive (FP) was defined as an
automatically segmented leakage area that does not belong to
the leakage region as determined by the ophthalmologist. True
negative (TN) is the area that does not belong to the detected
leakage areas as determined by both the ophthalmologist and
our algorithm. False negative (FN) is the area that was marked as
a leakage region by the ophthalmologist but was missed by our
algorithm. Sensitivity (TP/[TPþFN]), specificity (TN/[TNþFP]),
and accuracy ([TPþTN]/[TPþTNþFPþFN]) for all data were
calculated and compared to inter- and intraobserver errors.

Reproducibility Analysis. To test the reproducibility of
the proposed algorithm, we divided each FA sequence into two
separate sequences. One sequence included only the odd-
numbered frames and the other included only the even-
numbered frames of the original sequence. We compared the
performance of the automatic algorithm in segmenting leakage
area in these two sets of images from the same patient.

RESULTS

Figure 7 qualitatively compares the performance of our
algorithm to the segmentation of manual graders. Table 2 lists
the sensitivity, specificity, and accuracy of the automatic and
manual grading for all datasets. The interobserver columns

FIGURE 7. Comparison of leakage segmentation by manual graders (green labels) and automated method (red labels) in the ROI marked by the
3000-lm-diameter yellow circle centered at the fovea. (a) Late FA frame. (b) Segmented leakage by grader 1. (c) Segmented leakage by grader 2. (d)
Resegmented leakage by grader 2 (at least 6 weeks later). (e) Segmented leakage by our algorithm. The FA videos in the first and fourth rows were
captured at 308 FOV while the FA videos in the second and third rows were captured at 558 FOV.
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compare the performance of the two manual graders, while
the intraobserver columns compare the performance of the
same grader at two different time points at least 6 weeks apart.
In our dataset, two subjects had evidence of prior macular
photocoagulation (laser), five subjects had enlarged or
irregular FAZs, two subjects had extrafoveal nonperfusion
within the ROI, and seven subjects had definite foci of
hemorrhage within the ROI. The mean area of leakage was
2.29 mm2 in the ROI.

Note that no algorithmic parameter in our method was
optimized based on the dataset that was used in our
quantitative comparison.

According to Table 2, the mean accuracy was 0.86 6 0.08
for automatic versus manual, 0.83 6 0.16 for manual
interobserver, and 0.90 6 0.08 for manual intraobserver
segmentation methods. To be more specific, the (sensitivity,
specificity) of automatic versus manual grading for matching
308, 358, and 558 FOVs were (0.60, 0.88), (0.60, 0.97), and
(0.73, 0.91), respectively. The (sensitivity, specificity) of
manual interobserver grading for matching 308, 358, and 558
FOVs were (0.97, 0.58), (0.99, 0.85), and (0.94, 0.75),
respectively. The (sensitivity, specificity) of manual intraob-
server grading for matching 308, 358, and 558 FOVs were (0.80,
0.91), (0.88, 1), and (0.80, 0.92), respectively.

The reproducibility of the proposed algorithm in terms of
accuracy, sensitivity, and specificity of detected leakage by our
algorithm on average was 0.0034 6 0.012, 0.0367 6 0.0393,
and 0.0152 6 0.0239 pixels, respectively.

To facilitate comparison and future studies by other groups,
we have made all the images used in the study (including raw
FA videos and composite images) and their corresponding
manual and automatic segmentation available at http://www.
duke.edu/~sf59/Rabbani_IOVS_2014_dataset.htm.

DISCUSSION

We have presented a novel fully automatic algorithm for
segmentation of leakage area on real-world clinical FA images,
which was congruent with expert manual segmentation.
Noting the quantitative results of Table 2, illustrated visually
in Figure 7, although both graders followed the same protocol
in identifying leakage, it is noteworthy that the interobserver
accuracy was lower than for our automatic method. Moreover,
the accuracy of our algorithm was close to the intraobserver
accuracy (one grader versus himself), which is the highest
practical value for accuracy (it is meaningless for an automatic
algorithm to have higher accuracy than the gold standard of
human grading, to which it is being compared). These results
were achieved despite the fact that our (non-‘‘cherry-picked’’)
dataset suffered from noise and other distortions common in
real-world clinical imaging. Figure 8 shows that in these
situations, even intraobserver accuracy decreased greatly. We
used the exact same algorithmic parameters for all experiments
even though there was significant difference between imaging
conditions (e.g., FOV) of different subjects. Indeed, we expect
that we could have achieved better performance if we had
selected images from a strict imaging protocol. However, our
goal was to develop an algorithm that is useful for real-world
clinical data, which are often far from the ideal situations
considered in some clinical trials.

The main limitation of our algorithm is its inaccuracy in
segmentation of relatively small leakage areas (e.g., Focal 5 and
Mixed 2), resulting in lower reported sensitivity in subjects
with relatively small leakage areas. However, as expected, the
specificity values for these subjects are equal to if not better
than the average specificity values across all subjects.

Another problem, which can be solved using high-speed
computers, is the computational time of our algorithm due to
registration of frames (which is around 2 minutes using

TABLE 2. Quantitative Analysis of the Performance of the Proposed Automated Segmentation and Manual Grading of the Leakage Area in FA Images

Data

Automatic vs. Manual Manual Interobserver Manual Intraobserver

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Diffuse 1 0.91 0.98 0.98 0.99 0.95 0.95 0.94 0.99 0.99

Diffuse 2 0.96 0.89 0.96 0.96 0.89 0.95 0.71 0.99 0.73

Diffuse 3 0.87 0.93 0.93 0.85 0.96 0.96 0.71 0.99 0.98

Diffuse 4 0.91 0.60 0.67 0.93 0.56 0.65 0.87 0.84 0.85

Diffuse 5 0.51 0.97 0.80 0.88 0.88 0.88 0.76 0.97 0.89

Diffuse 6 0.79 0.77 0.79 0.98 0.12 0.77 0.77 0.75 0.77

Diffuse 7 0.70 0.80 0.74 0.99 0.08 0.63 0.78 0.87 0.81

Focal 1 0.62 0.95 0.87 0.87 0.79 0.81 0.65 0.97 0.90

Focal 2 0.60 0.97 0.96 0.99 0.85 0.85 0.88 1 0.99

Focal 3 0.73 0.77 0.77 0.93 0.91 0.91 0.64 0.99 0.96

Focal 4 0.55 0.92 0.75 0.89 0.81 0.85 0.61 0.97 0.81

Focal 5 0.35 0.99 0.97 0.95 0.95 0.95 0.78 0.99 0.99

Focal 6 0.77 0.88 0.87 0.97 0.90 0.91 0.77 0.99 0.97

Focal 7 0.82 0.91 0.90 0.95 0.92 0.92 0.64 1 0.98

Focal 8 0.82 0.98 0.97 0.98 0.94 0.95 0.88 0.98 0.97

Focal 9 0.62 0.95 0.89 0.98 0.70 0.74 0.82 0.93 0.91

Focal 10 0.66 0.97 0.94 0.94 0.93 0.93 0.85 0.96 0.95

Mixed 1 0.70 0.95 0.82 0.84 0.69 0.76 0.73 0.74 0.74

Mixed 2 0.39 0.87 0.85 0.91 0.97 0.96 0.76 0.99 0.98

Mixed 3 0.80 0.98 0.90 1 0.59 0.78 0.92 0.97 0.95

Mixed 4 0.78 0.95 0.93 0.99 0.86 0.87 0.79 0.98 0.96

Mixed 5 0.56 0.92 0.82 0.99 0.55 0.68 0.81 0.85 0.84

Mixed 6 0.56 0.95 0.81 0.98 0.38 0.59 0.87 0.86 0.86

Mixed 7 0.67 0.97 0.80 0.97 0.27 0.58 0.86 0.89 0.88

Mean 6 SD 0.69 6 0.16 0.91 6 0.09 0.86 6 0.08 0.95 6 0.05 0.73 6 0.27 0.83 6 0.16 0.78 6 0.09 0.94 6 0.08 0.90 6 0.08

SD, standard deviation.
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MATLAB R2013b for 8-bit 512 3 512 grayscale frames on a
desktop PC with an Intel Core i7-4770 CPU @ 3.40 GHz, 8 GB
RAM, 64-bit Windows 7 OS). Of course, this issue can be
addressed in a commercial setting by coding this method for a
graphics processing unit (GPU).

We also note that despite the robustness of our method to
various sources of outliers, naturally the performance of our
algorithm is negatively affected when dealing with significantly
lower signal-to-noise ratio images. As part of our future work,
to improve the signal-to-noise ratio of captured images, we will
adapt a novel sparsity-based image enhancement algorithm,
which has already demonstrated to be effective in enhance-
ment of OCT images.65,66

Although FA provides additional information about DME
that is complementary to OCT, change in leakage in FA is
considered by many to be a more valuable metric than the
absolute leakage at a single time point. This is in part because
quantification of features on FA is typically not as reproducible
compared to other imaging modalities such as OCT. The
current study can be considered the first step toward
automatic quantification of change in leakage over time.

Although several studies have been performed on quanti-
tative analysis of various pathologies in FA images10–12,67 (and
other modalities including color fundus images68–70 and
OCT63,71), only a few papers have addressed automatic leakage
detection for DME using FA.10,34–39 Robust segmentation of
leakage in clinical-grade data is a very difficult proposition, in
part because of the challenging problem of FA sequence
registration. This registration problem is challenging because
(1) the deformation model is nonrigid, (2) the intensity of the
images both locally and globally changes through time, (3)
different sources of outliers locally (e.g., eye lashes) and
globally (eye blinking) occlude the FOV, (4) the dynamic scene
changes (e.g., leakage appears in the later frames). While each
of these problems individually has been addressed in literature,
a unique feature of our algorithm is its capability to fully
automatically register FA images in the presence of outliers and
significant leakage.

Attainment of an appropriate dataset for evaluating the
reproducibility of our leakage detection algorithm was a
challenging problem. Because FA imaging is invasive, repeated
injection of fluorescein dye for research purposes was not
permitted by the IRB. Moreover, even if repeated imaging of
subjects was possible, repeatability in FA imaging is more an
issue of variability in the imaging condition at two different
time points (e.g., angle of incident of the laser) than of the
robustness of the segmentation technique. To address this
issue, we divided the images from the same imaging session
into two nonoverlapping groups to demonstrate the repeat-
ability of the algorithm without significant variability in
imaging conditions.

In summary, here we introduce a new algorithm for
automatic quantification of leakage in FA images of DME
patients. The algorithm was based on nonrigid registration of
FA frames, producing mean early FA and late FA images,
obtaining the difference image, vessel filling and postprocessing,
thresholding for obtaining the initial contour of the active
contour, and leakage extraction in ROI using the Chan-Vese
algorithm. While some of the algorithmic steps developed here
were previously described by others, the overall algorithm is
unique and novel, and shows unparalleled performance for
segmenting leakage from real-world clinical FA images. This
algorithm is implemented as MATLAB-based, user-friendly
software, which has the potential to replace or aid subjective
and time-consuming manual segmentation. Evaluation of usabil-
ity and validation of this software for automatic classification of
DME patients into focal, diffuse, and mixed categories in a
clinical trial is part of our ongoing work. This novel, computer-
aided technology will ultimately help us better understand the
underlying mechanisms of diabetic retinopathy, which in turn
may facilitate the optimal therapeutic strategy personalized for
an individual’s particular DME disease.
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46. Domingo J, Ayala G, Simó A, de Ves E, Mart́ınez-Costa L, Marco
P. Irregular motion recovery in fluorescein angiograms.
Pattern Recognit Lett. 1997;18:805–821.

47. Nunes JC, Bouaoune Y, Delechelle E, Bunel P. A multiscale
elastic registration scheme for retinal angiograms. Comput Vis
Image Underst. 2004;95:129–149.

48. Kubecka L, Jan J, Kolar R, Jirik R. Elastic registration for auto-
fluorescence image averaging. Conf Proc IEEE Eng Med Biol
Soc, 2006:1948–1951.

49. Tsai C-L, Li C-Y, Yang G, Lin K-S. The edge-driven dual-
bootstrap iterative closest point algorithm for registration of
multimodal fluorescein angiogram sequence. IEEE Trans Med
Imaging. 2010;29:636–649.

50. Stewart CV, Tsai C-L, Roysam B. The dual-bootstrap iterative
closest point algorithm with application to retinal image
registration. IEEE Trans Med Imaging. 2003;22:1379–1394.

51. Perez-Rovira A, Cabido R, Trucco E, McKenna SJ, Hubschman
JP. RERBEE: Robust Efficient Registration via Bifurcations and
Elongated Elements applied to retinal fluorescein angiogram
sequences. IEEE Trans Med Imaging. 2012;31:140–150.

52. Fischler MA, Bolles RC. Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM.
1981;24:381–395.

53. Torr PH, Zisserman A. MLESAC: a new robust estimator with
application to estimating image geometry. Comput Vision
Image Underst. 2000;78:138–156.

54. Estrada R, Tomasi C, Cabrera MT, Wallace DK, Freedman SF,
Farsiu S. Exploratory Dijkstra forest based automatic vessel
segmentation: applications in video indirect ophthalmoscopy
(VIO). Biomed Opt Express. 2012;3:327–339.

55. Esmaeili M, Rabbani H, Mehri A, Dehghani A. Extraction of
retinal blood vessels by curvelet transform. 2009 16th IEEE
International Conference on Image Processing (ICIP). 2009:
3353–3356.

56. Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD.
Comparative study of retinal vessel segmentation methods on
a new publicly available database. Medical Imaging 2004.
2004:648–656.

57. Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust
features (SURF). Comput Vis Image Underst. 2008;110:346–
359.

58. Mikolajczyk K, Schmid C. A performance evaluation of local
descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27:
1615–1630.

59. Alahi A, Ortiz R, Vandergheynst P. Freak: fast retina keypoint.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2012:510–517.

60. Lowe DG. Distinctive image features from scale-invariant
keypoints. Int J Comput Vis. 2004;60:91–110.

61. Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed.
Upper Saddle River, NJ: Prentice Hall; 2008:665–679.

62. Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram
equalization and its variations. Comput Vis Graph Image
Process. 1987;39:355–368.

63. Chiu SJ, Izatt JA, O’Connell RV, Winter KP, Toth CA, Farsiu S.
Validated automatic segmentation of AMD pathology including
drusen and geographic atrophy in SD-OCT images. Invest
Ophthalmol Vis Sci. 2012;53:53–61.

64. Lee JY, Chiu SJ, Srinivasan PP, et al. Fully automatic software
for retinal thickness in eyes with diabetic macular edema from
images acquired by Cirrus and Spectralis systems. Invest
Ophthalmol Vis Sci. 2013;54:7595–7602.

65. Fang L, Li SH, McNabb RP, et al. Fast acquisition and
reconstruction of optical coherence tomography images via
sparse representation. IEEE Trans Med Imaging. 2013;32:
2034–2049.

66. Kafieh R, Rabbani H, Selesnick IW. Three dimensional data-
driven multi scale atomic representation of optical coherence
tomography. IEEE Trans Med Imaging. In press.

67. Friedman D, Parker JS, Kimble JA, Delori FC, McGwin G Jr,
Curcio CA. Quantification of fluorescein-stained drusen
associated with age-related macular degeneration. Retina.
2012;32:19–24.

68. Smith R, Chan J, Nagasaki T, Sparrow J, Barbazetto I. A method
of drusen measurement based on reconstruction of fundus
background reflectance. Br J Ophthalmol. 2005;89:87–91.

69. Smith RT, Chan JK, Nagasaki T, et al. Automated detection of
macular drusen using geometric background leveling and
threshold selection. Arch Ophthalmol. 2005;123:200–206.

70. Sohrab MA, Smith RT, Salehi-Had H, Sadda SR, Fawzi AA. Image
registration and multimodal imaging of reticular pseudodru-
sen. Invest Ophthalmol Vis Sci. 2011;52:5743–5748.

71. Farsiu S, Chiu SJ, O’Connell RV, et al. Quantitative classification
of eyes with and without intermediate age-related macular
degeneration using optical coherence tomography. Ophthal-
mology. 2014;121:162–172.

Automatic Leakage Segmentation in DME IOVS j March 2015 j Vol. 56 j No. 3 j 1492


	t01
	f01
	f02
	f03
	f04
	f05
	f06
	f07
	t02
	b01
	b02
	b03
	b04
	b05
	f08
	b06
	b07
	b08
	b09
	b10
	b11
	b12
	b13
	b14
	b15
	b16
	b17
	b18
	b19
	b20
	b21
	b22
	b23
	b24
	b25
	b26
	b27
	b28
	b29
	b30
	b31
	b32
	b33
	b34
	b35
	b36
	b37
	b38
	b39
	b40
	b41
	b42
	b43
	b44
	b45
	b46
	b47
	b48
	b49
	b50
	b51
	b52
	b53
	b54
	b55
	b56
	b57
	b58
	b59
	b60
	b61
	b62
	b63
	b64
	b65
	b66
	b67
	b68
	b69
	b70
	b71

