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Fully automatic wound 
segmentation with deep 
convolutional neural networks
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Acute and chronic wounds have varying etiologies and are an economic burden to healthcare systems 
around the world. The advanced wound care market is expected to exceed $22 billion by 2024. 
Wound care professionals rely heavily on images and image documentation for proper diagnosis and 
treatment. Unfortunately lack of expertise can lead to improper diagnosis of wound etiology and 
inaccurate wound management and documentation. Fully automatic segmentation of wound areas 
in natural images is an important part of the diagnosis and care protocol since it is crucial to measure 
the area of the wound and provide quantitative parameters in the treatment. Various deep learning 
models have gained success in image analysis including semantic segmentation. This manuscript 
proposes a novel convolutional framework based on MobileNetV2 and connected component labelling 
to segment wound regions from natural images. The advantage of this model is its lightweight 
and less compute-intensive architecture. The performance is not compromised and is comparable 
to deeper neural networks. We build an annotated wound image dataset consisting of 1109 foot 
ulcer images from 889 patients to train and test the deep learning models. We demonstrate the 
effectiveness and mobility of our method by conducting comprehensive experiments and analyses on 
various segmentation neural networks. The full implementation is available at https ://githu b.com/
uwm-bigda ta/wound -segme ntati on.

Acute and chronic nonhealing wounds represent a heavy burden to healthcare systems, a�ecting millions of 
patients around the  world1. In the United States, medicare cost projections for all wounds are estimated to be 
between $28.1B and $96.8B2. Unlike acute wounds, chronic wounds fail to predictably progress through the 
phases of healing in an orderly and timely fashion, thus require hospitalization and additional treatment adding 
billions in cost for health services  annually3. �e shortage of well-trained wound care clinicians in primary and 
rural healthcare settings decreases the access and quality of care to millions of Americans. Accurate measure-
ment of the wound area is critical to the evaluation and management of chronic wounds to monitor the wound 
healing trajectory and to determine future interventions. However, manual measurement is time-consuming and 
o�en inaccurate which can cause a negative impact on patients. Wound segmentation from images is a popular 
solution to these problems that not only automates the measurement of the wound area but also allows e�cient 
data entry into the electronic medical record to enhance patient care.

Related studies on wound segmentation can be roughly categorized into two groups: traditional computer 
vision methods and deep learning methods. Studies in the �rst group focus on combining computer vision tech-
niques and traditional machine learning approaches. �ese studies apply manually-designed feature extraction 
to build a dataset that is later used to support machine learning algorithms. Song et al. described 49 features that 
are extracted from a wound image using K-means clustering, edge detection, thresholding, and region growing 
in both grayscale and  RGB4. �ese features are �ltered and prepared into a feature vector that is used to train 
a Multi-Layer Perceptron (MLP) and a Radial Basis Function (RBF) neural network to identify the region of a 
chronic wound. Ahmad et al. proposed generating a Red-Yellow-Black-White (RYKW) probability map of an 
input image with a modi�ed hue-saturation-value (HSV)  model5. �is map then guides the segmentation process 
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using either optimal thresholding or region growing. Hettiarachchi et al. demonstrated an energy minimizing 
discrete dynamic contour algorithm applied on the saturation plane of the image in its HSV color  model6. �e 
wound area is then calculated from a �ood �ll inside the enclosed contour. Hani et al. proposed applying an 
Independent Component Analysis (ICA) algorithm to the pre-processed RGB images to generate hemoglobin-
based images, which are used as input of K-means clustering to segment the granulation tissue from the wound 
 images7. �ese segmented areas are utilized as an assessment of the early stages of ulcer healing by detecting the 
growth of granulation tissue on ulcer bed. Wantanajittikul et al. proposed a similar system to segment the burn 
wound from  images8. Cr-Transformation and Luv-Transformation are applied to the input images to remove the 
background and highlight the wound region. �e transformed images are segmented with a pixel-wise Fuzzy 
C-mean Clustering (FCM) algorithm. �ese methods su�er from at least one of the following limitations: (1) 
as in many computer vision systems, the hand-cra�ed features are a�ected by skin pigmentation, illumination, 
and image resolution, (2) they depend on manually tuned parameters and empirically handcra�ed features 
which does not guarantee an optimal result. Additionally, they are not immune to severe pathologies and rare 
cases, which are very impractical from a clinical perspective, and (3) the performance is evaluated on a small 
biased dataset.

Since the successes  AlexNet9 achieved in the 2012 Imagenet large scale visual recognition  challenge10, the 
application of deep  learning11 in the domain of computer vision sparked interests in semantic  segmentation12 
using deep convolutional neural networks (CNN)13. Typically, traditional machine learning and computer vision 
methods make decisions based on feature extraction. To segment the region of interest, one must guess a set of 
important features and then handcra� sophisticated algorithms that capture these  features14. However, a CNN 
integrates feature extraction and decision making. �e convolutional kernels of CNN extract the features and 
their importance is determined during the training of the network. In a typical CNN architecture, the input 
are processed by a sequence of convolutional layers and the output is gernerated by a fully connected layer that 
requires �xed-sized input. One successful variant of CNN is fully convolutional neural networks (FCN)15. A 
FCN is composed of convolutional layers without a fully connected layer as the output layer. �is allows arbitrary 
input sizes and prevents the loss of spatial information caused by the fully connected layers in CNNs. Several 
FCN-based methods have been proposed to solve the wound segmentation problem. For example, Wang et al. 
estimated the wound area by segmenting  wounds16 with the vanilla FCN  architecture15. With time-series data 
consisting of the estimated wound areas and corresponding images, wound healing progress is predicted using 
a Gaussian process regression function model. However, the mean Dice accuracy of the segmentation is only 
evaluated to be 64.2%. Goyal et al. proposed to employ the FCN-16 architecture on the wound images in a 
pixel-wise manner that each pixel of an image is predicted to which class it  belongs17. �e segmentation result 
is simply derived from the pixels classi�ed as a wound. By testing di�erent FCN architectures they are able to 
achieve a Dice coe�cient of 79.4% on their dataset. However, the network’s segmentation accuracy is limited in 
distinguishing small wounds and wounds with irregular borders as the tendency is to draw smooth contours. 
Liu et al. proposed a new FCN architecture that replaces the decoder of the vanilla FCN with a skip-layer con-
catenation upsampled with bilinear  interpolation18. A pixel-wise so�max layer is appended to the end of the 
network to produce a probability map, which is post-processed to be the �nal segmentation. A dice accuracy 
of 91.6% is achieved on their dataset with 950 images taken under an uncontrolled lighting environment with 
a complex background. However, images in their dataset are semi-automatically annotated using a watershed 
algorithm. �is means that the deep learning model is learning how the watershed algorithm labels wounds as 
opposed to human specialists.

To better explore the capacity of deep learning on the wound segmentation problem, we propose an e�cient 
and accurate framework to automatically segment wound regions. �e segmentation network of this framework 
is built above  MobileNetsV219. �is network is light-weight and computationally e�cient since signi�cantly fewer 
parameters are used during the training process.

Our contributions can be summarized as follows:

1. We build a large dataset of wound images with segmentation annotations done by wound specialists. �is is 
by far the largest dataset focused on wound segmentation (to the best of our knowledge).

2. We propose a fully automatic wound segmentation framework based on MobileNetsV2 that balances com-
putational e�ciency and accuracy.

3. Our proposed framework shows high e�ciency and accuracy in wound image segmentation.

Dataset
Dataset construction. �ere is currently no public dataset large enough for training deep-learning-based 
models for wound segmentation. To explore the e�ectiveness of wound segmentation using deep learning mod-
els, we collaborated with the Advancing the Zenith of Healthcare (AZH) Wound and Vascular Center, Milwau-
kee, WI. Our chronic wound dataset was collected over 2 years at the center and includes 1109 foot ulcer images 
taken from 889 patients during multiple clinical visits. �e raw images were taken by Canon SX 620 HS digital 
camera and iPad Pro under uncontrolled illumination conditions, with various backgrounds. Figure 1 shows 
some sample images in our dataset.

�e raw images collected are of various sizes and cannot be fed into our deep learning model directly since 
our model requires �xed-size input images. To unify the size of images in our dataset, we �rst localize the wound 
by placing bounding boxes around the wound using an object localization model we trained de novo,  YOLOv320. 
Our localization dataset contains 1010 images, which are also collected from the AZH Wound and Vascular 
Center. We augmented the images and built a training set containing 3645 images and a testing set containing 
405 images. For training our model we have used  LabelImg21 to manually label all the data (both for training 
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and testing). �e YOLO format has been used for image labelling. �e model has been trained with a batch size 
of 8 for 273 epochs. With an intersection over union (IoU) rate of 0.5 and non-maximum suppression of 1.00, 
we get the mean Average Precision (mAP) value of 0.939. In the next step, image patches are cropped based on 
the bounding boxes result from the localization model. We unify the image size (224 pixels by 224 pixels) by 
applying zero-padding to these images, which are regarded in our dataset data points. We con�rm that the data 
collected was de-identi�ed and in accordance to relevant guidelines and regulations and the patient’s informed 
consent is waived by the institutional review board of University of Wisconsin-Milwaukee.

Data annotation. During training, a deep learning model is learning the annotations of the training data-
set. �us, the quality of annotations is essential. Automatic annotation generated with computer vision algo-
rithms is not ideal when deep learning models are trained to learn how human experts recognize the wound 
region. In our dataset, the images were manually annotated with segmentation masks that were further reviewed 
and veri�ed by wound care specialists from the collaborating wound clinic. Initially only foot ulcer images were 
annotated and included in the dataset as these wounds tend to be smaller than other types of chronic wounds, 
which makes it easier and less time-consuming to manually annotate the pixel-wise segmentation masks. In the 
future we plan to create larger image libraries to include all types of chronic wounds, such as venous leg ulcers, 
pressure ulcers, and surgery wounds as well as non-wound reference images. �e AZH Wound and Vascular 
Center, Milwaukee, WI, had consented to make our dataset publicly available.

Methods
In this section we describe our method with the architecture of the deep learning model for wound segmentation. 
�e transfer learning used during the training of our model and the post-processing methods including hole �ll-
ing and removal of small noises are also described. We con�rm that the research is approved by the institutional 
review board of University of Wisconsin-Milwaukee.

Pre-processing. Besides cropping and zero-padding discussed in the dataset construction section, stand-
ard data augmentation techniques are applied to our dataset before being fed into the deep learning model. 
�ese image transformations include arbitrary rotations in the range of + 25 to − 25 degrees, random le�–right 
and top-down �ippings with a probability of 0.5, and random zooming within 80% of the original image area. 
Random zooming is performed as the only non-rigid transformation because we suspect that other non-rigid 
transformations like shearings do not represent common wound shape variations. Eventually, the training data-
set is augmented to around 5000 images. We keep the validation dataset unaugmented to generate convincing 
evaluation outcomes.

Model architecture overview. A convolutional neural network (CNN),  MobileNetV219, is adopted to 
segment the wound from the images. Compared with conventional CNNs, this network substitutes the funda-
mental convolutional layers with depth-wise separable convolutional  layers22 where each layer can be separated 
into a depth-wise convolution layer and a point-wise convolution layer. A depth-wise convolution performs 
lightweight �ltering by applying a convolutional �lter per input channel. A point-wise convolution is a 1 × 1 
convolution responsible for building new features through linear combinations of the input channels. �is sub-
stitution reduces the computational cost compared to traditional convolution layers by almost a factor of  k2 
where k is the convolutional kernel size. �us, depth-wise separable convolutions are much more computation-
ally e�cient than conventional convolutions suitable for mobile or embedded applications where computing 
resource is limited. For example, the mobility of MobileNetV2 could bene�t medical professionals and patients 
by allowing instant wound segmentation and wound area measurement immediately a�er the photo is taken 

Figure 1.  An illustration of images in our dataset. �e �rst row contains the raw images collected. �e second 
row consists of segmentation mask annotations we create with the AZH wound and vascular center.
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Figure 2.  �e encoder–decoder architecture of  MobilenetV219.

Figure 3.  (a) A depth-separable convolution block. �e block contains a 3 × 3 depth-wise convolutional layer 
and a 1 × 1 point-wise convolution layer. Each convolutional layer is followed by batch normalization and 
Relu6 activation. (b) An example of a convolution layer with a 3 × 3 × 3 kernel. (c) An example of a depth-wise 
separable convolution layer equivalent to (b).
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using mobile devices like smartphones and tablets. An example of a depth-wise separable convolution layer is 
shown in Fig. 3c, compared to a traditional convolutional layer shown in Fig. 3b.

�e model has an encoder-decoder architecture as shown in Fig. 2. �e encoder is built by repeatedly applying 
the depth-separable convolution block (marked with diagonal lines in Fig. 2). Each block, illustrated in Fig. 3a, 
consists of six layers: a 3 × 3 depth-wise convolutional layer followed by batch normalization and Relu  activation23, 
and a 1 × 1 point-wise convolution layer followed again by batch normalization and Relu. To be more speci�c, 
 Relu624 was used as the activation function. In the decoder, shown in Fig. 2, the encoded features are captured 
in multiscale with a spatial pyramid pooling block, and then concatenated with higher-level features generated 
from a pooling layer and a bilinear up-sampling layer. A�er the concatenation, we apply a few 3 × 3 convolutions 
to re�ne the features followed by another simple bilinear up-sampling by a factor of 4 to generate the �nal output. 
A batch normalization layer is inserted into each bottleneck block and a dropout layer is inserted right before 
the output layer. In MobileNetV2, a width multiplier α is introduced to deal with various dimensions of input 
images. we let α = 1 thus the input image size is set to 224 pixels × 224 pixels in our model.

Transfer learning. To make the training more e�cient, we used transfer learning for our deep learning 
model. Instead of randomly initializing the weights in our model, the MobileNetV2 model, pre-trained on the 
Pascal VOC segmentation  dataset25 was loaded before training. Transfer learning with the pre-trained model is 
bene�cial to the training process in the sense that the weights converge faster and better.

Post-processing. �e raw segmentation masks predicted by our model are grayscale images with pixel 
intensities that range from 0 to 255. In the post processing step, binary segmentation masks are �rst generated 
from thresholding with a �xed threshold of 127, which is half the max intensity. �e binary masks are further 
processed by hole �lling and removal of small regions to generate the �nal segmentation masks as shown in 
Fig. 4. We notice that abnormal tissue like �brinous tissue within chronic wounds could be identi�ed as non-
wound and cause holes in the segmented wound regions. Such holes are detected by �nding small connected 
components in the segmentation results and �lled to improve the true positive rate using connected component 
labelling (CCL)26. �e small false-positive noises are removed in the same way. �e images in the dataset are 
cropped from the raw image for each wound. So, we simply remove noises in the segmentation results by remov-
ing the connected component small enough based on adaptive thresholds. To be more speci�c, a connected 
region is removed when the number of pixels within the region is less than a threshold, which is adaptively 
calculated based on the total number of pixels segmented as wound pixels in the image.

Figure 4.  An illustration of the segmentation result and the post processing method. �e �rst row illustrates 
images in the testing dataset. �e second row shows the segmentation results predicted by our model without 
any post processing. �e holes are marked with red boxes and the noises are marked with yellow boxes. �e 
third row shows the �nal segmentation masks generated by the post processing method.
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Results
We describe the evaluation metrics and compare the segmentation performance of our method with several 
popular and state-of-the-art methods. Our deep learning model is trained with data augmentation and preproc-
essing. Extensive experiments were conducted to investigate the e�ectiveness of our network. FCN-VGG-16 is a 
popular network architecture for wound image  segmentation17,27. �us, we trained this network on our dataset 
as the baseline model. For fairness of comparison, we used the same training strategies and data augmentation 
strategies throughout the experiments.

Evaluation metrics. To evaluate the segmentation performance, Precision, Recall, and the Dice coe�cient 
are adopted as the evaluation  metrics28.

Precision. Precision shows the accuracy of segmentation. More speci�cally, Precision measures the percentage 
of correctly segmented pixels in the segmentation and is computed by:

Recall. Recall also shows the accuracy of segmentation. More speci�cally, it measures the percentage of cor-
rectly segmented pixels in the ground truth and is computed by:

Dice coe�cient (Dice). Dice shows the similarity between the segmentation and the ground truth. Dice is also 
called F1 score as a measurement balancing Precision and Recall. More speci�cally, Dice is computed by the 
harmonic mean of Precision and Recall:

Experiment setup. �e deep learning model in the presented work was implemented in python with 
 Keras29 and  Tensor�ow30 backend. To speed up the training, the models were trained on a 64-bit Ubuntu PC with 
an 8-core 3.4 GHz CPU and a single NVIDIA RTX 2080Ti GPU. For updating the parameters in the network, we 
employed the Adam optimization  algorithm31, which has been popularized in the �eld of stochastic optimiza-
tion due to its fast convergence compared to other optimization functions. Binary cross entropy was used as the 
loss function and we also monitored Precision, Recall, and the Dice score as the evaluation matrices. �e initial 
learning rate was set to 0.0001 and each minibatch contained only 2 images for balancing the training accuracy 
and e�ciency. �e convolutional kernels of our network were initialized with HE  initialization32 to speed up the 
training process and the training time of a single epoch took about 77 s. We used early stopping to terminate the 
training so that the best result was saved when there was no improvement for more than 100 epochs in terms of 
Dice score. Eventually, our deep learning model was trained for around 1000 epochs before over�tting.

To evaluate the performance of the proposed method, we compared the segmentation results achieved by our 
methods with those by FCN-VGG-1617,27,  SegNet16, and Mask-RCNN33,34. We also added 2D U-Net35 to the com-
parison due to its outstanding segmentation performance on biomedical images with a relatively small training 
dataset. �e segmentation results predicted by our model are demonstrated in Fig. 4 along with the illustration of 
our post processing method. Quantitative results evaluated with the di�erent networks are presented in Table 1 
where bold numbers indicate the best results among all the models.

Comparing our method to the others. In the performance measures, the Recall of our model was evalu-
ated to be the second highest among all models, at 89.97%. �is was 1.32% behind the highest Recall, 91.29%, 
which was achieved by U-Net. Our model also achieved the second highest Precision of 91.01%. Overall, the 
results show that our model achieves the highest accuracy with a mean Dice score of 90.47%. the VGG16 was 
shown to have the worst performance among all the other CNN architectures. Mask-RCNN achieved the highest 
Precision of 94.30%, which indicates that the segmentation predicted by Mask-RCNN contains the highest per-

Precision =
True positives

True positives + False positives

Recall =
True positives

True positives + False negtives

Dice =
2 × True positives

2 × True positives + False negtives + False positives

Table 1.  �e precision, recall, and dice score evaluated using various models on our dataset. Bold values 
indicate the best performance among the present models

Model VGG16 (%) SegNet (%) U-Net (%) Mask-RCNN (%) MobileNetV2 (%) MobileNetV2 + CCL (%)

Precision 83.91 83.66 89.04 94.30 90.86 91.01

Recall 78.35 86.49 91.29 86.40 89.76 89.97

Dice 81.03 85.05 90.15 90.20 90.30 90.47
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centage of true positive pixels. However, the Recall is only evaluated to 86.40%, meaning that more false negative 
pixels are undetected compared to U-Net and MobileNetV2. Our accuracy was slightly higher than U-Net and 
Mask-RCNN, and signi�cantly higher than SegNet and VGG16.

Comparison within the Medetec Dataset. Apart from our dataset, we also conducted experiments 
on the Medetec Wound  Dataset36 and compared the segmentation performance of these methods. �e results 
are shown in Table 2. We annotated the dataset in the same way that our dataset was annotated and trained 
the networks with the same experimental setup. �e highest Dice score is evaluated to 94.05% using Mobile-
NetV2 + CCL. �e performance evaluation agrees with the conclusion drawn from our dataset where our method 
outperforms the others regardless of which chronic wound segmentation dataset is used, thereby demonstrating 
that our model is robust and unbiased.

Discussion
Comparing our method to VGG16, the Dice score is boosted from 81.03 to 90.47% tested on our dataset. Based 
on the appearance of chronic wounds, we know that wound segmentation is complicated by various shapes, 
colors, and the presence of di�erent types of tissue. �e patient images captured in clinic settings also su�er from 
various lighting conditions and perspectives. In MobileNetV2, the deeper architecture has more convolutional 
layers than VGG16, which makes MobileNetV2 more capable to understand and solve these variables. Mobile-
NetV2 utilizes residual blocks with skip connections instead of the sequential convolution layers in VGG16 to 
build a deeper network. �ese skip connections bridging the beginning and the end of a convolutional block 
allows the network to access earlier activations that weren’t modi�ed in the convolutional block and enhance 
the capacity of the network.

Another comparison between U-Net and SegNet indicates that the former model is signi�cantly better in 
terms of mean Dice score. Similar to the previous comparison, U-Net also introduces skip connections between 
convolutional layers to replace the pooling indices operation in the architecture of SegNet. �ese skip connections 
concatenate the output of the transposed convolution layers with the feature maps from the encoder at the same 
level. �us, the expansion section which consists of a large number of feature channels allows the network to 
propagate localization combined with contextual information from the contraction section to higher resolution 
layers. Intuitively, in the expansion section or “decoder” of the U-Net architecture, the segmentation results are 
reconstructed with the structural features that are learned in the contraction section or the “decoder”. �is allows 
the U-Net to make predictions at more precise locations. �ese comparisons have illustrated the e�ectiveness of 
skip connections for improving the accuracy of wound segmentation.

Besides the performance, our method is also e�cient and lightweight. As shown in Table 3, the total number 
of trainable parameters in the adopted MobileNetV2 was only a fraction of the numbers in U-Net, VGG16, and 
Mask-RCNN. �us, the network took less time during training and could be applied to mobile devices with 
less memory and limited computational power. Alternatively, higher-resolution input images could be fed into 
MobileNetV2 with less memory size and computational power comparing to the other models.

Conclusions
We attempted to solve the automated segmentation problem of chronic foot ulcers in a dataset we built on our 
own using deep learning. We conducted comprehensive experiments and analyses on SegNet, VGG16, U-Net, 
Mask-RCNN, and our model based on MobileNetV2 and CCL to evaluate the performance of chronic wound 
segmentation. In the comparison of various neural networks, our method has demonstrated its e�ectiveness 
and mobility in the �eld of image segmentation due to its fully convolutional architecture consisting of depth-
wise separable convolutional layers. We demonstrated the robustness of our model by testing it on the foot ulcer 
images in the publicly available Medetec Wound Dataset where our model still achieves the highest Dice score. 
In the future, we plan to improve our work by a novel multi-stream neural network architecture that extracts 
the shape features separately from the pixel-wise convolution in our deep learning model. A sketch of this idea 
is demonstrated in Fig. 5. With the advance of hardware and mobile computing, larger deep learning models 

Table 2.  �e precision, recall, and dice score evaluated using various models on the Medetec dataset. Bold 
values indicate the best performance among the present models

Model VGG16 (%) SegNet (%) U-Net (%) Mask-RCNN (%) MobileNetV2 (%) MobileNetV2 + CCL (%)

Precision 77.84 72.03 86.84 98.40 93.69 93.84

Recall 80.69 73.87 81.33 88.60 94.06 94.27

Dice 79.24 72.94 84.01 93.20 93.88 94.05

Table 3.  Comparison of total numbers of trainable parameters.

Model name FCN-VGG16 SegNet U-Net Mask-RCNN MobileNetV2

Number of parameters 134,264,641 902,561 4,834,839 63,621,918 2,141,505
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will be runnable on mobile devices. Another future reseach is testing deeper neural networks on our dataset. 
Also, we will include more data in the dataset to improve the robustness and prediction accuracy of our method.

Data availability
�e dataset generated and analysed during the current study is available in the repository, �e Foot Ulcer Dataset  
(https ://githu b.com/uwm-bigda ta/wound -segme ntati on/tree/maste r/data/wound _datas et).

Received: 7 May 2020; Accepted: 30 November 2020
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