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Abstract. We construct a fully collusion resistant tracing traitors sys-
tem with sublinear size ciphertexts and constant size private keys. More
precisely, let N be the total number of users. Our system generates ci-
phertexts of size O(

√
N) and private keys of size O(1). We first introduce

a simpler primitive we call private linear broadcast encryption (PLBE)
and show that any PLBE gives a tracing traitors system with the same
parameters. We then show how to build a PLBE system with O(

√
N)

size ciphertexts. Our system uses bilinear maps in groups of composite
order.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [10], help content
distributors identify pirates. Consider a content distributor who broadcasts en-
crypted content to N legitimate recipients. Recipient i has secret key Ki that
it uses to decrypt the broadcast. As a concrete example, imagine an encrypted
satellite radio broadcast that should only be played on certified radio receivers.
The broadcast is encrypted using a public broadcasting key BK. Any certified
player can decrypt using its embedded secret key Ki. Certified players, of course,
could enforce digital rights restrictions such as “do not copy” or “play once”.

The risk for the distributor is that a pirate will hack a certified player and
extract its secret key. The pirate could then build a pirate decoder that will
extract the cleartext content and ignore any relevant digital rights restrictions.
Even worse, the pirate could make its pirate decoder widely available so that
anyone can extract the cleartext content for themselves. DeCSS, for example, is
a widely distributed program for decrypting encrypted DVD content.

This is where traitor tracing systems come in — when the pirate decoder is
found, the distributor can run a tracing algorithm that interacts with the pirate
decoder and outputs the index i of at least one of the keys Ki that the pirate
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used to create the pirate decoder. The distributor can then try to take legal
action against the owner of this Ki.

We give a precise description of traitor tracing systems in Appendix A. For
now we give some intuition that will help explain our results. A traitor tracing
system consists of four algorithms Setup,Encrypt,Decrypt, and Trace. The setup
algorithm generates the broadcaster’s key BK, a tracing key TK, and N recipient
keys K1, . . . , KN . The encrypt algorithm encrypts the content using BK and the
decrypt algorithm decrypts using one of the Ki. The tracing algorithm is the
most interesting — it is an algorithm that takes TK as input and interacts
with a pirate decoder, treating it as a black-box oracle. It outputs the index
i ∈ {1, . . . , N} of a key Ki that was used to create the pirate decoder.

In this paper we focus on fully collusion resistant traitor tracing systems. That
is, systems that remain secure no matter how many keys are at the disposal of
the pirate. Existing traitor tracing systems are not designed to handle arbitrary
collusions. When the collusion bound t comes close to N , most existing systems
require ciphertext size linear in the number of users, which is no better than the
trivial traitor tracing system.

Our results. We construct a practical fully collusion resistant traitor tracing
system that has sub-linear size ciphertexts. Our system has the following char-
acteristics:

ciphertext-length = O(
√

N) and private-key-length = O(1)

Furthermore, decryption time is constant (i.e. depends on the security parameter,
but not on N). Other properties of this system include: (1) the broadcaster’s
key BK is public, but the tracer’s key TK must be kept secret, (2) the system
is black-box traceable, and (3) is designed for stateless pirate decoders [18]. We
give a precise definition of these properties in Appendix A. The system uses
bilinear groups of composite order introduced in [5].

We prove security of our tracing algorithm using a tracing technique previ-
ously used in [4, 23, 18]. To formalize this technique, we introduce a new prim-
itive called Private Linear Broadcast Encryption, or PLBE for short, which is
conceptually a simpler primitive than traitor tracing. We show that any secure
PLBE gives a (black-box) traitor tracing system. Roughly speaking, a PLBE
is a broadcast encryption system [13] that can only broadcast to “linear” sets,
that is sets of the form {i, i + 1, . . . , N} for some i = 1, . . . , N + 1. Thus, a
PLBE enables the broadcaster to create ciphertexts that can only be decrypted
properly under keys Ki, Ki+1, . . . , KN . A broadcast to everyone, for example, is
encrypted using i = 1. The main security requirement is that the system should
be private [1]: a ciphertext should reveal no non-trivial information about the
recipient set. That is, a broadcast to users {i, . . . , N} should reveal no non-trivial
information about i. We give a precise definition in the next section and show
that any secure PLBE gives a secure (black-box) traitor tracing system. In the
remainder of the paper we focus on constructing a secure PLBE.

Related work. Traitor tracing systems generally fall into two categories: com-
binatorial, as in [10, 24, 31, 32, 14, 15, 11, 28, 2, 30, 29, 23], and algebraic, as
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in [21, 4, 25, 20, 12, 22, 34, 9]. The broadcaster’s key BK in combinatorial systems
can be either secret or public. Algebraic traitor tracing use public-key techniques
and are often more efficient than the public-key instantiations of combinatorial
schemes. Some systems, including ours, only provide tracing capabilities. Other
systems [25, 23, 17, 16, 12] combine tracing with broadcast encryption to obtain
trace-and-revoke features — after tracing, the distributor can revoke the pirate’s
keys without affecting any other legitimate decoder.

Kiayias and Yung [20] describe a black-box tracing system that achieves con-
stant rate for long messages, where rate is measured as the ratio of ciphertext
length to plaintext length. For full collusion resistance, however, the ciphertext
size is linear in the number of users N . For comparison, our new system gener-
ates ciphertexts of size O(

√
N) and achieves constant rate (rate = 1) for long

messages by using hybrid encryption (i.e. encrypting a short message-key using
the traitor tracing system and encrypting the long data by using a symmetric
cipher with the message-key).

Many traitor tracing systems, including ours, assume that the tracer is a
trusted party and require that the tracer’s key TK be kept secret. Some excep-
tions are [26, 27, 35, 19, 9]. Similarly, many traitor tracing systems, including
ours, assume that the pirate decoder is stateless. Kiayias and Yung [18] show
how to strengthen traitor tracing systems to handle stateful decoders.

Finally, we note that binary fingerprinting codes [8, 33] are closely related to
traitor tracing (binary refers to the fact that the code is defined over a binary
alphabet). In fact, it is known [6] that any binary fingerprinting code gives rise to
a fully collusion-resistant traitor tracing system with constant size ciphertexts.
The private key size, unfortunately, is quite large. Using [8] the private key size
is Õ(N3) and using [33] it is Õ(N2).

2 Traitor Tracing and Private Linear Broadcast
Encryption

In Appendix A we review the precise definition of a traitor tracing system.
However, instead of directly building a traitor tracing system we build a simpler
primitive called Private Linear Broadcast Encryption (PLBE). We first define
secure PLBEs below and then briefly explain how a PLBE is used for traitor
tracing. The resulting tracing algorithm makes explicit a tracing technique used
in [4, 23, 18]. Then in the remainder of the paper we build a secure PLBE.

2.1 Description of Private Linear Broadcast Encryption

A PLBE is comprised of the following four algorithms:

SetupLBE(N, λ). The setup algorithm takes as input N , the number of users in
the system, and the security parameter λ. The algorithm runs in polynomial
time in λ and outputs a public key PK, a secret key TK, and private keys
K1, . . . , KN , where Ku is given to user u.
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EncryptLBE(PK, M). Takes as input a public key PK, and a message M and
outputs a ciphertext C. This algorithm is used to encrypt a message to all
N users.

TrEncryptLBE(TK, i, M). Takes as input a secret key TK, an integer i satis-
fying 1 ≤ i ≤ N + 1, and a message M . It outputs a ciphertext C. This
algorithm encrypts a message to a set {i, . . . , N} and is primarily used for
traitor tracing. We will require below that TrEncryptLBE(TK, 1, M) outputs
a distribution on ciphertexts that is indistinguishable from the distribution
generated by EncryptLBE(PK, M).

DecryptLBE(j, Kj , C, PK). Takes as input a private key Kj for user j, a cipher-
text C, and the public key PK. The algorithm outputs a message M or ⊥.

The system must satisfy the following correctness property:
for all i, j ∈ {1, . . . , N + 1}, where j ≤ N , and all messages M :

Let
(
PK, TK, (K1, . . . , KN )

) R← SetupLBE(N, λ)

and let C
R← TrEncryptLBE(TK, i, M).

If j ≥ i then DecryptLBE(j, Kj , C, PK) = M .

Security. We define security of a PLBE system using three games. The first game
just captures a consistency property which says that TrEncryptLBE(TK, 1, M)
outputs a distribution on ciphertexts that is indistinguishable from the distrib-
ution generated by EncryptLBE(PK, M). The second game is a message hiding
game and says that a ciphertext created using index i = N +1 is unreadable by
anyone. The third game is an index hiding game and captures the intuition
that a broadcast ciphertext created using index i reveals no non-trivial informa-
tion about i. We will consider all these games for a fixed number of users N .

Game 1 – Indistinguishability. The first game says that the output of algo-
rithm TrEncryptLBE(TK, 1, M) is indistinguishable from EncryptLBE(PK, M).
The game proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and the set of all private keys

{
K1, . . . , KN

}
.

– Challenge. The adversary gives the challenger a message M . The challenger
flips a coin β ∈ {0, 1} and computes

c
R←

{
TrEncryptLBE(TK, 1, M) if β = 0,
EncryptLBE(PK, M) if β = 1.

It gives C to the adversary.
– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvCG = | Pr[β′ = β] − 1/2|.
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Game 2 – Message Hiding. The second game says that an adversary cannot
break semantic security when encrypting using index i = N + 1. The game
proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and all secret keys {K1, . . . , KN}.

– Challenge. The adversary outputs two equal length messages M0, M1. The
challenger flips a coin β ∈ {0, 1} and sets C

R← TrEncryptLBE(TK, N+1, Mβ).
The challenger gives C to the adversary.

– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvMH = | Pr[β′ = β] − 1/2|.

Game 3 – Index Hiding. The third game says that an adversary cannot distin-
guish between an encryption to index i and one to index i + 1 without the key
Ki. The game takes as input a parameter i ∈ {1, . . . , N} which is given to both
the challenger and the adversary. The game proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and the set of private keys

{
Kj s.t. j �= i

}
.

– Challenge. The adversary outputs a message M . The challenger flips a coin
β ∈ {0, 1} and computes C

R← TrEncryptLBE(TK, i + β, M). The challenger
returns C to the adversary.

– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvIH[i] = | Pr[β′ = β] − 1/2|.

Now that the three games are established we are ready to define secure PLBE.

Definition 1. We say that an N -user Private Linear Broadcast System (PLBE)
is secure if for all polynomial time adversaries A we have that AdvCG, and
AdvMH, and AdvIH[i] for i = 1, . . . , N , are negligible functions of λ.

2.2 Reducing Traitor Tracing to PLBE

We briefly show that a secure PLBE gives a secure traitor tracing system. The
complete details and proofs are given in the full version of the paper [7]. Let
E = (SetupLBE,EncryptLBE,TrEncryptLBE,DecryptLBE) be a secure PLBE system.
The derived traitor tracing system is defined as follows (we use the notation of
Appendix A):

– Setup simply runs SetupLBE with the same parameters, and outputs PK as
the public encryption key, TK as the secret tracing key, and the user keys
identically to the PLBE scheme.

– Encrypt and Decrypt run algorithms EncryptLBE and DecryptLBE respectively
with the same parameters.

– TraceD(TK, ε), when called with oracle D, and inputs TK and ε > 0, does
the following:
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1. For i = 1 to N + 1, do the following:
(a) The algorithm repeats the following 8(N ln N)λ/ε times:

i. Sample M from the finite message space at random.
ii. Let C

R← TrEncryptLBE(TK, i, M).
iii. Call oracle D on input C, and compare the output of D to M .

(b) Let p̂i be the fraction of times that D decrypted the ciphertexts
correctly.

2. Let S be the set of all i ∈ {1, . . . , N} for which p̂i − p̂i+1 ≥ ε/(4N).
3. Output the set S as the set of guilty colluders.

Note that the running time of Trace is quadratic in N . It can be made O(N log N)
using binary search instead of a linear scan.

Security. We prove that this traitor tracing scheme is secure. We argue that the
system is semantically secure and provides secure tracing. Note that we did not
explicitly require that a PLBE be semantically secure against a chosen plaintext
attack to an outsider who possess no secret keys. Nevertheless, semantic security
does follow straightforwardly from the three games used to define PLBE using
a hybrid argument by means of the Index Hiding game.

We now briefly explain why traceability against arbitrary collusion follows
from the security of the PLBE scheme. We show that the probability of winning
the traceability game defined in Appendix A is negligible.

Let pi = Pr[D(TrEncryptLBE(TK, i, M)) = M ]. We know that that p1 ≥ ε and
pN+1 is negligible. The former follows from the fact that D is a useful decoder.
The later follows directly from the PLBE message hiding game. Then there must
exist some j ∈ {1, . . . , N} such that pj −pj+1 ≥ ε/(2N). By the Chernoff bound
it follows that with overwhelming probability, p̂j − p̂j+1 ≥ ε/(4N). Hence, the
set S output by TraceD(SD, TK, ε) is non-empty.

Using the notation of Game 2 from Appendix A, it remains to show that
whenever p̂j − p̂j+1 > ε/(4N) we have that j ∈ T . For such j we know, by
Chernoff, that with overwhelming probability pj − pj+1 ≥ ε/(8N). Hence, D
is able to distinguish TrEncryptLBE(TK, j, M) from TrEncryptLBE(TK, j +1, M)
for random M . But since the PLBE is secure, the index hiding game implies
that these two distributions are indistinguishable, unless one has Kj . It follows
that the pirate who built D must have had Kj and therefore j ∈ T , as required.
We give the full proof details in the full version of the paper.

3 Background and Complexity Assumptions

3.1 Bilinear Maps

We review some general notions about bilinear maps and groups, with an em-
phasis on groups of composite order which will be used in our construction. We
follow [5] in which composite order bilinear groups were first introduced.

Consider two finite cyclic groups G and GT of same order n = pq, where p and
q are distinct primes, and in which the respective group operation is efficiently
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computable and denoted multiplicatively. Assume the existence of an efficiently
computable function e : G × G → GT , with the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product in
the exponent is defined modulo n;

– (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

We will use the notation Gp, Gq to denote the respective subgroups of order p
and order q of G.

We now review three assumptions we will use for proving our security. The
first two assumptions are in prime order subgroups and the last two are over a
composite group G.

3.2 Decision 3-Party Diffie-Hellman Assumption

The decision 3-party Diffie-Hellman problem is stated as follows. Given a group
Gp of prime order p and random elements gp, A = ga

p , B = gb
p, C = gc

p of G

distinguish between T = gabc
p and T = gz

p, where z is random in Zp.
We say that an algorithm A has advantage ε in solving the problem if

∣
∣
∣
∣Pr[A(gp, g

a
p , gb

p, g
c
p, g

abc
p ) = 1] − Pr[A(gp, g

a
p , gb

p, g
c
p, g

z
p) = 1]

∣
∣
∣
∣ ≥ ε

The (t, ε)-decision 3-party Diffie-Hellman assumption (D3DH) is that no t-
time adversary has advantage more than ε. Note that the decision 3-party Diffie-
Hellman assumption implies the decision Bilinear Diffie-Hellman assumption. It
also implies the standard linear assumption defined in [3].

3.3 Subgroup Decision Problem

The Subgroup Decision (SD) problem is stated as follows. Given a group G of
composite order n = pq, where p, q are distinct (unknown) primes, and generators
gp ∈ Gp and g ∈ G, distinguish between whether an element T is a random
member of the subgroup Gp or a random element of the full group G. That is
distinguish whether T is a random element of Gp or G.

We say that an algorithm A has advantage ε in solving the Subgroup Decision
Problem if

∣∣
∣
∣ Pr[A(n, gp, g, T ) = 1 : T

R← Gp] − Pr[A(n, gp, g, T ) = 1 : T
R← G]

∣∣
∣
∣ ≥ ε.

The (t, ε)-subgroup decision assumption is that no t-time adversary has advan-
tage more than ε.

3.4 Bilinear Subgroup Decision Problem

The Bilinear Subgroup Decision (BSD) problem is stated as follows. Given a
group G of composite order n = pq, where p, q are distinct (unknown) primes,
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and generators gp ∈ Gp and gq ∈ Gq, distinguish a random order p element in
the group GT from a uniform element in the group GT . More precisely, we say
that an algorithm A has advantage ε in solving the problem if

∣
∣∣
∣ Pr[A(n, g, gp, gq, e(T, g)) = 1 : T

R← Gp]−

Pr[A(n, g, gp, gq, e(T, g)) = 1 : T
R← G]

∣
∣
∣
∣ ≥ ε.

The (t, ε)-bilinear subgroup decision assumption is that no t-time adversary has
advantage more than ε.

4 A
√

N Size Private Linear Broadcast Encryption
System

In this section we show how to construct a Private Linear Broadcast Encryption
(PLBE) system with O(

√
N) size ciphertext. We can then apply the results

of Section 2 and use this to build a traitor tracing scheme with O(
√

N) size
ciphertexts.

Before we describe our construction we give some intuition as to why con-
structing PLBE systems with sublinear ciphertext size is difficult and describe
the framework for which we will construct our PLBE system.

PLBE with Sublinear Ciphertext Size. The primary difficulty in constructing a
PLBE system is to provide the Index Hiding property. Using linear size cipher-
texts this is easy: each user has a unique portion of the ciphertext assigned to
them, which is used to encrypt the message (or session key) to just that user. If
an encryptor replaces the ciphertext component of user u with a random encryp-
tion, only user u can tell the difference. All other users will be associated with a
completely different portions of the ciphertext and changing u’s component has
no effect on their ability to decrypt.

To construct a PLBE system with sublinear size ciphertexts we must use a
fundamentally different approach than the one above. Since the ciphertexts are
sublinear in size, we cannot let every user have a component of the ciphertext
that is dedicated for them alone. Intuitively, ciphertext components must be
“shared” amongst users. Therefore, we cannot use the simple strategy of com-
pletely randomizing a portion of the ciphertext to prevent a particular user u
from decrypting, since this will inherently effect the ability of other users to
decrypt.

Our Framework. We now give a framework for our PLBE system. We assume
that the number of users, N in the system equals m2 for some m. If the number
of real users is not a square we can add “dummy” users to pad out to the next
square. We arrange the users in an m × m matrix. Each user is assigned and
identified by an unique tuple (x, y) where 1 ≤ x, y ≤ m.
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Since we will be constructing a Private Linear Broadcast Encryption system,
we must have a linear ordering of the users that we can traverse. The first user in
the system will be the user at matrix position (1, 1) and from there we will order
the users by traversing one row at a time. More precisely, the user at matrix
position (x, y) will have the index u = (x − 1)m + y in our ordering. We can
think of this as a “row-major” ordering.

We can now refer to our Private Linear Broadcast Encryption scheme in terms
of positions on the matrix. An encryption to position (i, j) means that a user at
position (x, y) will be able to decrypt the message if either x > i or both x = i
and y ≥ j. With this notation, the Index Hiding game property states that:

– For j < m it is difficult to distinguish between an encryption of a message
to (i, j) from (i, j + 1) without the key of user (x = i, y = j).

– For j = m it is difficult to distinguish an encryption of a message to position
(i, j = m) to that of one to (i + 1, j = 1) without the key of user (i, j = m).

The use of pairwise notation for referring to users and encryptions will be a
purely notational convenience for describing our system.

4.1 Our Construction

Our construction makes use of bilinear maps of composite order n, where n = pq
and p and q are primes. In describing our scheme we will often use p or q in
a subscript to denote if a group element is in the subgroup of order p or order
q. The key algebraic fact that underlies our scheme is that if gp is any element
from the order p subgroup (which we call Gp) and gq is any element from the
order q subgroup (which we call Gq), then we have: e(gp, gq) = 1.

When the TrEncryptLBE algorithm encrypts to an index (i, j) it creates ci-
phertext components for every column and every row. The keys of user (x, y)
are structured in such a way that in order to decrypt he must pair the ciphertext
components from row x, with the ciphertext components from column y. The
encryption algorithm works by creating ciphertexts in the following way.

Column Ciphertext Components. (1) Ciphertexts for columns greater than
or equal to j are “well formed” in both subgroups. (2) However, for a column
that is less than j, the encryption algorithm will create a ciphertext that is well
formed in the Gq subgroup, but random in the Gp subgroup.

Row Ciphertext Components. (1) Ciphertexts for rows less than i are com-
pletely random. Therefore, any user whose row index is less than x will not be
able to decrypt. (2) The ciphertext components for row i are well formed in
both subgroups. A user with row index i will be able to decrypt if his column
index is greater than or equal to j. If it is less than j, the randomized (Gp)
part of the column ciphertext will scramble the result of pairing the row and
column ciphertexts together. (3) Finally, for rows greater than i the ciphertext
components will be well formed elements in the Gq subgroup only. A user with
row index greater than i will be able to decrypt no matter what his column is,
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because the pairing will “cancel out” the randomized (Gp) part of any column
ciphertext component with the row ciphertext component that lives in Gq.

The decryption algorithm for a user (x, y) will attempt to decrypt a ciphertext
in the same manner no matter what the target index (i, j) is. The structure of the
ciphertext will restrict decryption to only be successful for a user (x, y) if x > i
or x = i and y ≥ j. Additionally, since the attempted decryption procedure is
independent of (i, j) a user can only learn whether his decryption was successful
or not and the system will be private.

We describe the four algorithms that compose our PLBE system:

SetupLBE(N = m2, 1κ). The setup algorithm takes as input the number of users
N and a security parameter κ. It first generates an integer n = pq where p, q
are random primes (whose size is determined by the security parameter). The
algorithm creates a bilinear group G of composite order n. It next creates random
generators gp, hp ∈ Gp and gq, hq ∈ Gq and sets g = gpgq, h = hphq ∈ G. Next it
chooses random exponents r1, . . . , rm, c1, . . . , cm, α1, . . . , αm ∈ Zn and β ∈ Zq.

The public key PK includes the description of the group and the following
elements:

[
g, h, E = gβ, E1 = gβr1

q , . . . , Em = gβrm
q , F1 = hβr1

q , . . . , Fm = hβrm
q ,

G1 = e(gq, gq)βα1 , . . . , Gm = e(gq, gq)βαm , H1 = gc1 , . . . , Hm = gcm

]

The private key for user (x, y) is generated as Kx,y = gαxgrxcy . Finally, the
authority’s secret key K includes factors p, q along with exponents used to gen-
erate the public key.

TrEncryptLBE(K, M, (i, j)). The TrEncryptLBE algorithm is a secret key algo-
rithm used by the tracing authority. The algorithm encrypts a message M to the
subset of receivers that have row values greater than i or both row value equal
to i and column values greater than or equal to j.

The encryption algorithm will take as input the secret key, a message M ∈
GT and an index i, j. The encryption algorithm first chooses random t ∈ Zn,
w1, . . . , wm, s1, . . . , sm ∈ Zn, zp,1, . . . , zp,j−1 ∈ Zp, and (v1,1, v1,2, v1,3) , . . . ,
(vi−1,1, vi−1,2, vi−1,3) ∈ Z

(3)
n .

For each row x we create four ciphertext components (Rx, R̃x, Ax, Bx) as follows:

if x > i : Rx = gsxrx
q R̃x = hsxrx

q Ax = gsxt
q Bx = Me(gq, g)αxsxt

if x = i : Rx = gsxrx R̃x = hsxrx Ax = gsxt Bx = Me(g, g)αxsxt

if x < i : Rx = gvx,1 R̃x = hvx,1 Ax = gvx,2 Bx = e(g, g)vx,3

For each column y the algorithm creates values Cy, C̃y as:

if y ≥ j : Cy = gcythwy C̃y = gwy

if y < j : Cy = gcytg
zp,y
p hwy C̃y = gwy

Note that the ciphertext contains 5
√

N elements in G and
√

N elements of GT .
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In the above description there are three classes of rows. A row x > i will
have all its elements in the Gq subgroup, while the “target” row i will have its
components in the full group G. A row x < i will essentially have its group
elements randomly chosen. A column y ≥ j will be well formed, while a column
y < j will be well formed in the Gq subgroup, but not in the Gp subgroup.

EncryptLBE(PK, M). The EncryptLBE algorithm is used by an encryptor to en-
crypt a message such that all the recipients can receive it. This algorithm is used
during normal (non-tracing) operation to distribute content to all the receivers.
The EncryptLBE algorithm should produce ciphertexts that are indistinguishable
from TrEncryptLBE algorithm to the index (1, 1) for the same message.

The encryption algorithm first chooses random t ∈ Zn, w1, . . . , wm, s1, . . . , sm

∈ Zn, For each row x the algorithm creates the four ciphertext components
(Rx, R̃x, Ax, Bx) as follows:

Rx = Esx
x R̃x = F sx

x Ax = Esxt Bx = MGsxt
x

For each column j the algorithm creates Cy, C̃y as:

Cy = Ht
yhwy C̃y = gwy

DecryptLBE((x, y), Kx,y, C) User (x, y) uses key Kx,y to decrypt by computing:

Bx ·
(
e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy)

)−1
.

We observe that if the ciphertext was created from the tracing algorithm
TrEncryptLBEwith parameters (i, j) then the result is M if x > i or x = i and
y ≥ j. Additionally, it is easy to observe that if the ciphertext was created as
EncryptLBE(PK, M) then all parties can decrypt and receive M .

4.2 Discussion

Roughly, the size of the ciphertext is 5
√

N elements in G and
√

N elements of
GT . In practice, a message will be encrypted with a symmetric key cipher under
a key K and our system will be used to transmit the key K to each user. We
note that we can actually save in ciphertext size by converting our encryption
system into a Key Encapsulation Mechanism (KEM). To do this we do not
include the Bx values in the ciphertext, but instead user (x, y) can extract a key
Kx = e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy). The extraction mechanism will actually
derive

√
N different keys K1, . . . Km, so key Kx is used to encrypt K to for all

users in row x. In practice this would be more space efficient than including
√

N
group elements of GT .

The EncryptLBE algorithm requires 6
√

N exponentiations. The decryption al-
gorithm is surprisingly efficient and simple, requiring only three pairing com-
putations. Thus, decryption time is independent of the number of users in the
system.
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We constructed a (limited)1 broadcast encryption system in which decryptors
are oblivious as to which set of users the broadcast is targeted for. A set of
colluding users will of course be able to learn some information about the target
just by testing which one of them was able to decrypt. However, they should not
learn anything more than what can naturally be inferred. The key to keeping the
broadcast set private is that the decryption algorithm performs the same steps
to attempt decryption no matter what the broadcast set is. In the next section
we prove this intuition to be correct by showing that our scheme is secure in the
Index Hiding game.

5 Security Proof

In this section we prove our Private Linear Broadcast Encryption system secure.
We begin with the Index Hiding game, since the proof is the most interesting.

5.1 Proof of Security for Game 3 (Index Hiding)

For the Index Hiding game we must consider two cases. The first is when an
adversary tries to distinguish between an encryption to (i, j) and an encryption
to (i, j + 1) for j < m and second for when an adversary tries to distinguish
between an encryption (i, m) and one to (i + 1, 1).

In the first case we show that the difficulty of this game can be reduced to the
3-party Diffie-Hellman assumption, while the second case is more complicated
since the structure of the row ciphertexts are changed. We handle the second case
by constructing a sequence of hybrid experiments. Due to space requirements
we give the proof of the lemma for the first case in the appendix and refer the
reader to our full version of this paper [7] for the proofs of the other claims and
lemmas.

Theorem 1. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, (t,
εBSD )-Bilinear Subgroup Decision, and (t, εSD)-Subgroup Decision assumptions
hold. Then no t̃-time adversary A can succeed in the Index-Hiding game with
advantage greater than (2 + m)εD3DH + εBSD + εSD, where t̃ � t.

We first consider the case where an adversary A attempts to distinguish between
an encryption to (i + j) and (i, j + 1) where j < m. This is the case when
the distinguishing game does not cross rows. We prove the following lemma in
Appendix B.

Lemma 1. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, assump-
tion holds. Then no t-time adversary can distinguish between an encryption to (i, j)
and (i, j + 1) in the Index Hiding game for j < m with advantage > εD3DH .

1 A Private Linear Broadcast Encryption system is restricted in the sets of users it
can encrypt to — it can only encrypt to sets {i, . . . , N} for any i.
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We now turn to the more difficult case of when the adversary A chooses to
distinguish between an encryption to (i, m) and one to (i + 1, 1) for some 1 ≤
i < m. This case becomes more complicated because the form of ciphertext rows
will change. In our proofs we will refer to the rows with ciphertexts in the Gq

subgroup as “greater than” rows and the the row with well formed ciphertexts
in G as a “target” row. Additionally, when we say we “encrypt to column j” this
means that we create ciphertexts for which Cy is well formed in the Gp subgroup
for all y ≥ j. We state our lemma and then prove it.

Lemma 2. Suppose the (t, εD3DH)-decision 3-party Diffie-Hellman, the (t, εBSD)
-Bilinear Subgroup Decision, and the (t, εSD)-Subgroup Decision assumptions
hold. Then no t̃-time adversary A can succeed in the Index-Hiding game with
advantage greater than (2 + m)εD3DH + εBSD + εSD, where t̃ � t.

We first define a sequence of hybrid experiments as follows:

– H1: Encrypt to column m, row i is target row, i+1 is a “greater than” row.
– H2: Encrypt to column m + 1, row i is target row, i+1 is a “greater than”

row.
– H3: Encrypt to column m+1, row i is less than row, i+1 is a “greater than”

row (no target row exists).
– H4: Encrypt to column 1, row i is less than row, i+1 is “greater than” row

(no target row exists).
– H5: Encrypt to column 1, row i is less than row, i+1 is target row.

We prove our lemma by giving reductions for each consecutive pair of hybrid
experiments. The proofs are given in [7].

Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption
holds. Then no t-time adversary can distinguish between experiments H1 and
H2 with advantage greater than εD3DH .

In both experiments we encrypt with row i as the target row and all Cy for
y < m random in the Gp subgroup. The experiment is whether an adversary
can tell if the Gp component of Cm is well-formed without key Ki,m. This game
is exactly the same as the one we proved above and thus we apply the result of
Lemma 1. �


Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman and the (t,
εBSD )-Bilinear Subgroup Decision assumptions hold. Then no t-time adversary
can distinguish between experiments H2 and H3 with advantage greater than
2εD3DH + εBSD .

Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption
holds. Then no t-time adversary can distinguish between experiments H3 and
H4 with advantage greater than m · εD3DH .

Claim. Suppose that the (t, εSD)-Subgroup Decision assumption holds. Then no
t-time adversary can distinguish between experiments H4 and H5 with advantage
greater than εSD .
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Lemma 2 follows by summing the maximum adversarial advantages across
the hybrid experiments and Theorem 1 follows by observing that the bound of
Lemma 1 is included in Lemma 2. �


5.2 Proof of Security for Game 1

Theorem 2. Suppose the (t, εSD) Subgroup Decision assumption holds. Then
for all messages M no t-time adversary can distinguish between a ciphertext
created as EncryptLBE(PK, M) and one created as TrEncryptLBE(K, M, (1, 1))
with advantage greater than εSD.

This theorem follows by simply applying the same techniques as in our proof
of Claim 5.1, so we omit the details. �


5.3 Proof of Security for Game 2 (Message Hiding)

Theorem 3. All adversaries have advantage 0 in playing the Message Hiding
game.

The message hiding theorem is concerned with the adversaries advantage in
winning the game when we encrypt to (m + 1, 1). However, this means that
all rows will be completely random and independent of the messge, thus an
adversary has 0 advantage. Essentially, the inability of the adversary to learn
the message when he does not have any of the right keys is actually captured
in our Index Hiding experiments. This final theorem shows that at the end the
adversary learns now information about the ciphertext. �


6 Discussion

Our traitor tracing system has a number of possible interesting extensions for
future work. In this section we discuss a few of these.

Public Traceability. In our current system the tracing key, TK, is kept secret and
only the authority is able to trace pirate boxes. In practice, it might be useful to
have a system where the tracing key is public. For example, in a large content
distribution system the capturing and tracing of pirate boxes or software will
likely be done by different several agents each of which will need the tracing key.
We would like our system to remain secure even if one of these agents and his
tracing key is compromised.

In our
√

N PLBE system the tracing algorithm would be public if a user was
able to encrypt a message to an arbitrary set of indices (i, j). Then the user
could simply run the tracing algorithm in the same way as the authority. In
order to this we would need to give the user the capability to form Cy column
ciphertext components that were well formed in its Gq subgroup, but not in
the Gp subgroup. If we simply include an element of Gp in the public key our
scheme will become insecure as an attacker could use this to determine which
row index i a broadcast was intended for. Achieving public traceability would
seem to require a more complex technique and possibly the use of a stronger
assumption.
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Stateful Receivers. Like most other tracing traitor solutions our solution solves
the tracing traitors problem in the stateless model, where the tracer is al-
lowed to reset the pirate algorithm after each tracing query. However, there
are some applications where we would like to consider a stronger model where
a pirate box can retain state between each broadcast. In practice, a hard-
ware pirate box might keep state and shut down if it detects that it is being
traced.

Kiayias and Yung [18] showed a method which can handle stateful receivers
if it were possible to embed watermarks in the distributed content and for a
tracer to be able to observe these watermarks when interacting with a pirate
algorithm. During non-tracing operation the broadcaster encrypts two copies
of digital content, each of which has a different watermark embedded in, to
a random (and hidden) index u. The encryption is such that all users with
index less than u can decrypt the first ciphertext and all users with index
greater than u can decrypt the second ciphertext. The decryption algorithm
simply tries to decrypt both ciphertexts and uses whichever one results in a
well-formed plaintext. The tracing algorithm will create ciphertexts in an iden-
tical manner to the regular encryption algorithm. The tracer will simply ob-
serve which watermarks are embedded in every probing ciphertext and use this
information to identify the traitor. Since, the regular broadcast and tracing al-
gorithms are identical a pirate box is unable to leverage its ability to maintain
state.

In our current construction, our PLBE scheme is only secure if the pirate
constructing the pirate decoder has not seen encryptions to arbitrary indices.
However, if we were able to find a new PBLE algorithm that was secure un-
der chosen-plaintext queries to arbitrary indicies then we could implement the
techniques of Kiayias and Yung. We would simply set up two PLBE systems in
which the users were given the opposite indices in each system. The user with
index u in the first system has index N + 1 − u in the second system.

7 Conclusions and Open Problems

We constructed the first fully collusion resistant traitor tracing system with sub-
linear size ciphertexts and constant size private keys. In particular, our system
has ciphertexts of size O(

√
N) where N is the number of users in the system

and the time for decryption is independent of N . We achieve our traitor tracing
system by first introducing a simpler primitive we call private linear broadcast
encryption (PLBE) that we show can give a traitor tracing system. Then, we
built an efficient PLBE system by making novel use of bilinear groups of com-
posite order.

One interesting open problem is to create a version of our traitor system
that allows for public traceability. This would allow both for the tracer to be
untrusted and could be used to give a solution that is secure against stateful
receivers. Additionally, it is an open problem to see if one can get smaller than√

N size ciphertexts with small private keys.
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A Definition of Tracing Traitors

Initially, we view a pirate decoder D as a probabilistic circuit that takes as input
a ciphertext C and outputs some message M or ⊥. A Traitor-Tracing system,
then, consists of the following four algorithms:

Setup(N, λ). The setup algorithm takes as input N , the number of users in the
system, and the security parameter λ. The algorithm runs in polynomial
time in λ and outputs a public key BK, a secret tracing key TK, and private
keys K1, . . . , KN , where Ku is given to user u.

Encrypt(BK, M). Encrypts M using the public broadcasting key BK and out-
puts ciphertext C.

Decrypt(j, Kj , C, BK). Decrypt C using the private key Kj of user j. The al-
gorithm outputs a message M or ⊥.

TraceD(TK, ε). The tracing algorithm is an oracle algorithm that is given as
input the tracing key TK and a parameter ε, and runs in time polynomial
in the security parameter λ and 1/ε. Only values of ε that are polynomially
related to λ are considered valid inputs to Trace. The tracing algorithm
queries the pirate decoder D as a black-box oracle, as defined above. It
outputs a set S which is a subset of {1, 2, . . . , N}.

The system must satisfy the following correctness property:
for all j ∈ {1, . . . , N} and all messages M :

Let
(
BK, TK, (K1, . . . , KN )

) R← Setup(N, λ) and C
R← Encrypt(BK, M).

Then Decrypt(j, Kj , C, BK) = M .

Security. We define security of the traitor tracing scheme in terms of the follow-
ing two natural game.

Game 1. The first game is the standard Semantic Security Game. It says
that the system is semantically secure to an outsider who does not possess any
of the private keys. Since this is a standard notion we do not give the game
details here. We define the advantage of adversary A in winning this game as
AdvSS = | Pr[β′ = β] − 1/2|.

Game 2. The second game captures the notion of Traceability against arbi-
trary collusion. For a given N, λ and ε (where ε = 1/f(λ) for some polyno-
mial f), the game proceeds as follows (both challenger and adversary are given
N, λ, and ε as input):

1. The adversary A outputs a set T = {u1, u2, . . . , ut} ⊆ {1, . . . , N} of colluding
users.

2. The challenger runs Setup(N, λ) and provides BK and Ku1 , . . . , Kut to A. It
keeps TK to itself.

3. The adversary A outputs a pirate decoder D.
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4. The challenger now runs TraceD(TK, ε) to obtain a set S ⊆ {1, . . . , N}. Note
that Trace is only given black-box oracle access to D.

We say that the adversary A wins the game if the following two conditions hold:
– The decoder D is useful. That is, for a randomly chosen M in the finite

message space, we have that

Pr[D(Encrypt(BK, M)) = M ] ≥ ε

– The set S is either empty, or is not a subset of T .
We denote by AdvT R the probability that adversary A wins this game.

Definition 2. We say that an N -user Traitor Tracing system is secure if for
all polynomial time adversaries A and any constant ε > 0 we have that AdvMH

and AdvT R are negligible functions of λ.

We emphasize that Game 2 places no limit on the size of the coalition under the
control of the adversary. Furthermore, the pirate decoder need not be perfect.
It only needs to play valid content with probability ε. Finally, note that we are
modeling a stateless (resettable) pirate decoder — the decoder is just an oracle
and maintains no state between activations. Non stateless decoders were studied
in [18].

In the full version of the paper we describe a more restrictive access model to
the pirate decoder D. PLBE enables tracing even in this more restrictive model.

B Proof of Lemma 1

For this distinguishing experiment we will show that distinguishing between
whether an encryption is to position (i, j) or (i, j + 1) is as hard as the 3-party
Diffie-Hellman assumption. Since, the assumption is in a prime order group the
simulator can know the factorization of n, the order of the group. For this game
simulator will run the core part of the simulation in the Gp subgroup and choose
all values in the Gq subgroup for itself. Our formal proof follows.

Suppose there exists a t-time adversary A that breaks the Index Hiding game
with advantage ε. Then we build a simulator as follows. The simulator receives
the 3-party Diffie-Hellman challenge from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, T.

The challenge will be given in the subgroup of prime order p of a composite
order group n = pq. The simulator is given the factors p, q.

Next, the simulator runs the Init phase and receives the index (i, j) from A.
Since the game will be played in the subgroup Gp, the simulator can choose
for itself everything in the Gq subgroup. It chooses random generators gq, hq ∈
Gq and random exponents β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it
chooses the exponents α1, . . . , αm ∈ Zn. It then sets hp = B and picks blinding
factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.
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The simulator is now able to create the public and secret keys as follows. It
first publishes g = gqgp and h = hqB. It creates the public keys:

E = gβ
q Ex = g

βrq,x
q Fx = h

βrq,x
q

Gx = e(gq, gq)βαx Hy =

{
g

cq,y
q g

c′
p,y

p : y �= j

g
cq,y
q Cc′

p,y : y = j

Next, it creates the private keys for all users except (i, j) as:

Kx,y =

⎧
⎪⎨

⎪⎩

gαxg
rq,xcq,y
q g

r′
p,xc′

p,y
p : x �= i, y �= j

gαxg
rq,xcq,y
q Br′

p,xc′
p,y : x = i, y �= j

gαxg
rq,xcq,y
q Cr′

p,xc′
p,y : x �= i, y = j

We note that all the simulator creates public and private with the same dis-
tribution as the real scheme.

In the challenge phase the adversary first gives the simulator a message M ∈
GT . The simulator then chooses exponents (v1,1, v1,2, v1,3), . . . , (vi−1,1, vi−1,2,

vi−1,3 ) ∈ Z
(3)
n , and exponents sq,i, . . . , sq,m ∈ Zq and tq ∈ Zq. Additionally,

it chooses random s′p ∈ Zp, zp,1, . . . , zp,j−1 ∈ Zp, w′
1, . . . , w

′
m ∈ Zn.

It then creates the ciphertext as:

if x > i : Rx = g
sq,xrq,x
q R̃x = h

sq,xrq,x
q

Ax = g
sq,xtq
q Bx = Me(gq, gq)αxsq,xtq

if x = i : Rx = g
sq,xrq,x
q g

s′
pr′

p,x
p R̃x = h

sq,xrq,x
q Bs′

pr′
p,x

Ax = gsq,xtq As′
p Bx = Me(gq, gq)αxsq,xtq,xe(gp, A)αxs′

p

if x < i : Rx = gvx,1 R̃x = hvx,1

Ax = gvx,2 Bx = e(g, g)vx,3

if y > j : Cy = g
cq,ytq
q hw′

y C̃y = A−c′
p,ygw′

y

if y = j : Cy = g
cq,ytq
q Thw′

y C̃y = gw′
y

if y < j : Cy = g
cq,ytq
q g

zp,y
p hw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then the ciphertext is a well-formed
encryption to the indices (i, j), otherwise if T is randomly chosen it is a en-
cryption to (i, j + 1). The simulator will receive a guess γ from A and it will
simply repeat this guess as its answer to the 3-party Diffie-Hellman game. The
simulator’s advantage in the Index Hiding game will be exactly equal to A’s
advantage. �
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