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Abstract 

 

The use of the Gibbs sampler with fully conditionally specified models, where the 

distribution of each variable given the other variables is the starting point, has become a popular 

method to create imputations in incomplete multivariate data. The theoretical weakness of this 

approach is that the specified conditional densities can be incompatible, and therefore the 

stationary distribution to which the Gibbs sampler attempts to converge may not exist. This study 

investigates practical consequences of this problem by means of simulation. Missing data are 

created under four different missing data mechanisms. Attention is given to the statistical 

behavior under compatible and incompatible models. The results indicate that multiple 

imputation produces essentially unbiased estimates with appropriate coverage in the simple cases 

investigated, even for the incompatible models. Of particular interest is that these results were 

produced using only five Gibbs iterations starting from a simple draw from observed marginal 

distributions. It thus appears that, despite the theoretical weaknesses, the actual performance of 

conditional model specification for multivariate imputation can be quite good, and therefore 

deserves further study.  

 

Key words: multivariate missing data, multiple imputation, distributional compatibility, Gibbs 

sampling, simulation, proper imputation



 

3 

1 Introduction 

 

Missing data often plague the statistical analysis of multivariate data. When confronted 

with incomplete data, the analyst can choose a variety of strategies: ad-hoc methods (e.g., 

analysis of the complete cases only, available case methods, use of some indicator variables with 

means filled in), likelihood-based approaches that allow for missing data (e.g., EM algorithm, 

structural equations or mixed models), weighting, or imputation-based methods. The relative 

merits of these approaches have been discussed elsewhere (Little & Rubin, 2002; Schafer, 1997). 

Multiple imputation (Rubin 1987, 2004; 1996) is a general and statistically valid method for 

dealing with missing data. This paper studies a particular method for creating imputations (single 

or multiple) in multivariate data.  

Let y denote an n × k matrix with data from n individuals on k variables. Let Yj be the jth 

variable, and yj the jth column of y (j=1,…,k). We define y j
obs  as the observed part of yj , and y j

mis  

as the missing part of in yj. Let  ( )yyy k
obsobs

1
obs ,...,=  and ( )yyy k

mismis
1

mis ,...,=  stand for the collection 

of all observed and missing data, respectively. Imputation of y j
mis  will typically be based on the 

relation between the incomplete variable Yj and the k–1 predictors Y-j = (Y1,…, Yj-1, Yj+1,…, Yk), 

where the nature of the relation is primarily estimated from the units contributing to y j
obs . For 

notational convenience, we suppress notation for all variables that are fully observed, and so all 

distributions are implicitly conditional on the fully observed variables. Thus, each of the k 

columns in y has some missing values.  

A number of practical problems can occur in general when k > 1: 

• The predictors Y-j themselves contain missing values; 
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• "Circular" dependence occurs, where y j
mis depends on yh

mis , and yh
mis  depends on y j

mis  (h≠j), 

because in general Yj and Yh are correlated, even given other variables; 

• Especially with large k and small n, collinearity or empty cells occur; 

• Rows or columns can be ordered, e.g., as with longitudinal data; 

• Variables are of different types (e.g., binary, unordered, ordered, continuous), thereby making 

the application of theoretically convenient models, such as the multivariate normal, 

theoretically inappropriate; 

• The relation between Yj and predictors Y-j is complex, e.g., nonlinear, or subject to censoring 

processes; 

• Imputation can create impossible combinations such as pregnant fathers. 

This list is by no means exhaustive, and other complexities may appear for particular data. Two 

general strategies for imputing multivariate data have surfaced during the last decade: joint 

modeling and fully conditional specification (FCS). 

The first common strategy, joint modeling, begins by specifying a parametric multivariate 

density P(Y|θ) for the data Y given the model parameters θ . Given this specification and 

appropriate prior distributions for θ, one can use the Bayesian framework to generate imputations 

as draws from the posterior predictive distribution ( )obsmis | yyP , usually under the assumption of 

an ignorable missing data mechanism. Using this approach, Schafer (1997) described 

sophisticated methods for creating multivariate imputations under the multivariate normal, the 

log-linear, and the general location model. These methods are available as tools in S-Plus 6.2 and 

SAS V8.2.  

The other common approach, FCS does not start from an explicit multivariate density, but 

instead implicitly defines P(Y|θ) by specifying a separate conditional density P(Yj|Y-j,θj) for each 
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Yj. This density is used to impute y j
mis  given y-j, for example by linear or logistic regression 

applied to the cases in y j
obs , where y-j refers to the columns of y excluding yj.  Imputation under 

FCS is done by iterating over all conditionally specified imputation models, each iteration 

consisting of one cycle through all Yj.  

FCS has several important practical advantages over joint modeling. First, FCS allows for 

the creation of flexible multivariate models because it splits a k-dimensional problem into k one-

dimensional problems. One can easily specify models that are outside any standard multivariate 

density P(Y|θ). Second, FCS may help to preserve investments in specialized imputation methods 

that are difficult to formulate as a part of a multivariate density P(Y|θ).  For example, it is easy to 

incorporate imputation methods that preserve unique features in the data, e.g., bounds, skip 

patterns, interactions, bracketed responses, and so on. Also, it is relatively straightforward to 

maintain constraints between different variables. Such constraints might be needed to avoid 

logical inconsistencies in the imputed data. Gelman and Raghunathan (2001) observed that in 

such situations "separate regressions often make more sense than joint models". Third, 

generalization to models under nonignorable missing data mechanisms might be easier. Finally, 

the idea of specifying a separate imputation model for each variable is easy to communicate to 

users.  

On the other hand, FCS is not without drawbacks. First, each conditional density has to be 

specified separately, so substantial modeling effort can be needed for data sets with many 

variables. Second, FCS is often computationally more intensive than joint modeling. Typical 

computational shortcuts (e.g. using the sweep operator, Little & Rubin, 2002) may not apply. 

Last, and very importantly, relatively little is known about the quality of the resulting imputations 
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because the implied joint distributions may not exist theoretically, and that convergence criteria 

are ambiguous.  

Variations of the FCS idea have appeared before. Buck (1960) computed estimates for all 

missing entries by multiple regression, where the regression coefficients are computed using the 

complete cases, i.e. all individuals with fully complete data. The observed data for the individual 

constitute the independent variables in the equation predicting the missing variables for that 

individual. Gleason and Staelin (1975) extended Buck's method to include multivariate 

regression, and noted that their ad-hoc method could also be derived more formally from the 

multivariate normal distribution. These authors also brought up the possibility of an iterated 

version of Buck's method, suggesting that missing entries from one iteration could be used to 

form an improved estimate of the correlation matrix for use in a subsequent iteration. Variations 

of iterated regression imputation have been studied later by Finkbeiner (1979), Raymond and 

Roberts (1987), Jinn and Sedransk (1989), and Gold and Bentler (2000). Systems for creating 

multiple imputations by iterated regressions have been developed include FRITZ (Kennickell, 

1991), IVEWARE (Raghunathan, Solenberger, van Hoewyk, 2000), HERMES missing data 

engine (Brand, 1999) and MICE (Van Buuren, Van Rijckevorsel & Rubin, 1993; Van Buuren & 

Oudshoorn, 2000). Royston (2004) created a version of MICE in Stata. Rubin (2003) pioneers a 

technique that attempts to take the best of both worlds by combining a FCS model for some 

missing values with joint modeling on other missing data. Other applications of FCS can be 

found in Kennickell (1999), Van Buuren, Boshuizen and Knook (1999), Raghunathan and 

Siscovick (1996), Oudshoorn, van Buuren and Van Rijckevorsel (1999), Heeringa, Little and 

Raghunathan (2002), Gelman and Raghunathan (2001) and Faris et al. (2002).  

There appears to be yet no really satisfactory theory, but in many examples FCS seems to 

work well, is of great importance in practice, and is easily applied. Some simulation work is 
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available (Horton & Lipsitz, 2001; Raghunathan et al., 2001; Brand et al., 2003), but this is 

relatively limited in scope and complexity. This paper presents a more extensive simulation-

based evaluation of FCS. 

 

 

2 Imputation by Fully Conditional Specification 

 

2.1  Definitions and Introduction 

 

Suppose Y=(Y1,Y2,…,Yk) is a vector of k random variables with k-variate distribution 

P(Y|θ). We assume that the joint multivariate distribution of Y is completely specified by θ,  a 

vector of unknown parameters. For example, if Y is multivariate normally distributed, θ = (µ,Σ), 

with µ  a k-dimensional mean vector and Σ a k × k covariance matrix. Let the matrix y=( y1,…, yn) 

with yi =(yi1 , yi2,…,yik), i=1,…,n be an i.i.d. sample of the vector Y. The matrix y is partially 

observed, in the sense that each column in y has missing data.  

The standard procedure (cf. Rubin 1987) for creating multiple imputations y* of ymis is as 

follows: 

1. Calculate the posterior distribution p(θ |yobs) of θ  based on the observed data yobs; 

2. Draw a value θ* from p(θ |yobs); 

3. Draw a value y* from p(ymis | yobs, θ=θ*), the conditional posterior distribution of ymis given 

θ=θ*.  

Repeat steps 2 and 3 for more imputations, e.g. 5-10. Appendix A gives algorithms for the cases 

where Y is univariate normally distributed, dichotomous, or polytomous.  
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For multivariate Y, the central problem is how to get the multivariate distribution of θ, 

either explicitly or implicitly. FCS proposes to obtain a posterior distribution of θ by sampling 

iteratively from conditional distributions of the form  

 

P(Y1| Y-1, θ1),  

…          (1) 

P(Yk| Y-k, θk).  

 

The parameters θ1 ,…, θk are treated as specific to the respective conditional densities and are not 

necessarily the product of some factorization of the "true" joint distribution P(Y|θ). More 

precisely, the tth iteration of the method consists of the following successive draws of the Gibbs 

sampler: 

 

θ1
*(t)  ~ P(θ1 | yobs

1 , y2
(t-1), …, yk

(t-1))   

y1
*(t)  ~ P( ymis

1 | yobs
1 , y2

(t-1),…,yk
(t-1),θ1

*(t))      

…          (2) 

θk
*(t)  ~ P(θk | yk

obs , y1
(t), y2

(t),  …, yk-1
(t)) 

yk
(t)  ~ P( yk

mis | yk
obs , y1

(t), …, yk-1
(t), θk

*(t)) 

 

Observe that no information about y j
mis  is used to draw θj

*(t), which differs from Markov Chain 

Monte Carlo approaches to joint modeling. Our method is just a concatenation of univariate 

procedures applied to the cases with complete yj, and deviates from MCMC theory at this point. 
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The iterations of (2) are executed m times in parallel to generate m multiple imputations. The 

number of iterations is fixed to a small number, say 5 or 10. This procedure implicitly assumes 

that the joint distribution is specified by (1), and that the Gibbs sampler in Equation (2) provides 

draws from it. With k incomplete variables, the vector parameters θ1,…,θk will generally depend 

on each other, and so the sampler can be overparametrized. For example, the space spanned by 

θ1,…,θk generally has more dimensions than appropriate. If this occurs, the implicit joint 

distribution does not exist. This issue is known as the problem of compatibility of conditionals 

(Arnold & Press, 1989). 

 

2.2 Compatibility 

 

Bhattacharryya (1943) observed that the combination of two conditional normal densities 

with linear regressions and constant variance defines a joint bivariate normal density. Two 

conditional densities are compatible if a joint distribution exists that has the given densities as its 

conditional density. In general, two conditional densities f(x|y) and g(y|x) are compatible if and 

only if (apart from a technical condition on the support of the densities) their density ratio 

f(x|y)/g(y|x) factorizes into u(x)v(y) for some integrable functions u and v (Besag, 1974). So, 

either the joint distribution exists and is unique, or does not exist. If f(x|y) and g(y|x) are known 

functions, we can calculate f(x|y)/g(y|x) on a grid of x and y values, and infer compatibility if the 

matrix of f(x|y)/g(y|x) values is of rank 1.  

In actual data analysis, compatibility is not an all-or-nothing phenomenon. For example, 

even simple rounding errors can destroy exact compatibility. Measures have been proposed to 

measure the amount of compatibility (Arnold et al, 1999). The effects of near compatibility and 
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clear incompatibility on the quality of statistical inference are yet unknown, except in special 

cases. Section 6 therefore addresses the robustness of FCS under clearly incompatible models.  

 

3 Evaluation of Univariate Imputation 

 

The section provides simulation results for both compatible (univariate and multivariate) 

and incompatible FCS imputation methods. Gibbs sampling is not actually needed in univariate 

models, but forms an important ingredient for the multivariate case because of the use of 

univariate distributions in (1).  

 

3.1 Setup: Data and simulations 

 

We study the quality of univariate linear and logistic imputation methods using a data set 

of Irish wind speeds (Haslett & Raftery, 1989), which contains the average daily wind speed 

measured at 12 meteorological stations in Ireland during the years 1961-1978 (6574 time points). 

The correlations among these stations are high, ranging from 0.59 to 0.84, thus enabling the use 

of MAR (Rubin, 1976) missing data mechanisms that generate large differences between the 

complete and incomplete records. A random sample of n=400 was taken. No attempts were made 

here to model the temporal variation between the measures. To investigate the linear imputation 

method, the following five locations from the Irish wind speed data were selected: y1 = Rosslare, 

x1 = Roche's Pt, x2 = Shannon, x3 = Dublin, and x4 = Clones. The original data of y1 were replaced 

by new data that were generated according to the conditional probability of y1 given x1,…,x4 

under a linear model, which was done to avoid any issues of inaccuracy of model fit. Missing 
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data in y1 were subsequently created, where the response probability possibly depended on 

x1,…,x4 using methods that are described below.  

For the logistic method, we selected y1 = Valentia, x1 = Roche's Pt, x2 = Rosslare, x3 = 

Shannon, and x4 = Dublin, dichotomized y1 in equally sized groups, replaced the original data in 

y1 by data generated according to a logistic regression model with linear predictors x1,…,x4. 

Missing entries were then created in these substitutes.  

We used data from Hosmer and Lemeshow (2000, p. 265) to study the polytomous model. 

This data set contains six responses from a survey of 412 women on knowledge, attitude and 

behavior towards mammography. The target variable y1 was Mammographic Experience (ME) 

with three response categories (0=never, 1=during past year, 2=over year ago). As before, 

original values of y1 were first replaced by data conforming to the polytomous logistic model 

conditional on the other data, and subsequently made missing. 

Simulations were done using 1000 replications. In every replication, approximately 50% 

missingness in y1 was generated under four different MAR missing data mechanisms: MCAR, 

MARRIGHT, MARTAIL and MARMID. Mechanism MCAR (missing completely at random) 

deletes observations in a completely random fashion, MARRIGHT creates more missingness for 

larger values, MARTAIL deletes more cases from both tails, whereas MARMID introduces more 

non-response in the center of the distribution. The latter three mechanisms introduce biases in the 

statistical analysis based on complete cases. Appendix B describes the methodology for 

generating the missing entries in detail. Figure 1 graphs the resulting distributions of the complete 

and incomplete target variable for one replication. 

 

---  INSERT FIGURE 1 ABOUT HERE --- 
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3.2 Results 

 

Let Q be the quantity of interest, and let Q̂  be the associated complete-data estimate with 

variance U. For each replication i=1,…,1000, multiple imputation with m=5 is applied to the 

incomplete data. This results in the pooled estimates 
)(i

mQ of Q̂ , 
)(i

mU of U, and )(i
mB as the variance 

between the m-complete data estimates (Rubin, 1987, p. 76). Validity conditions for proper 

imputation similar to those presented by Rubin (1996) are: QQm
ˆ][Ê ≈ , UU m ≈][Ê , and 

][Ê)1()var( 1
mm BmQ −+≈ , where []Ê  is the mean and var[] the variance over the replications. 

Computations were done in SAS-IML.  

 

---  INSERT TABLE 1 ABOUT HERE --- 

 

Table 1 reports the following statistics based on the simulation: 

• Q̂, the complete data statistic based on the underlying values of all cases,  

• ?̂ , the fraction of information about Q missing due to nonresponse,  

• ]ˆ[Ê acQ , the average Q̂ computed from the available cases   

• the coverage of the 95% c.i. of Q̂  for Q for the available cases, 

• ][Ê mQ , the average Q̂  after multiple imputation, 

• the coverage of the 95% c.i. under multiple imputation.  
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Choices for Q̂  reflect aspects of the distribution of the incomplete variable (e.g., mean, 

probability of a category, quantiles) or quantify the relation with the predictors (e.g., correlations, 

conditional means).  

The results for ]ˆ[Ê acQ  indicate that available case analysis is often severely biased under 

MARRIGHT, MARTAIL and MARMID. Note that, unlike MARRIGHT and MARTAIL, 

mechanism MARMID generally increases the correlations with the predictors. Almost 

everywhere, the difference ][Ê mQ - Q̂  is much smaller than ]ˆ[Ê acQ - Q̂ , so multiple imputation 

corrects for the biases introduced by MARRIGHT, MARTAIL and MARMID. For example, the 

bias of the median (P50) estimated by available case analysis under MARRIGHT is quite large 

(11.88-9.93=1.95), although it is negligible (11.88-11.84=0.04) after imputation. Note that under 

MARMID, the median bias of available cases (11.88-11.52=0.36) is larger than that of P25 (8.28-

8.09=0.19) or P75 (15.32-15.29=0.03). This may seem surprising because estimates of the 

median are generally more stable estimates of the quartiles. Observe, however, that MARMID 

deletes more data from the center of the distribution, thus affecting the stability of the median.  

The coverages under available case analysis are low. The worst case occurs when the 

mean of Y1 is estimated from the available cases under the MARRIGHT mechanism. Here, the 

95% confidence interval covered the true value only once (!) in 1000 simulations. In general, the 

confidence intervals of the available cases have acceptable coverage only under MCAR. In all 

other cases, confidence intervals are much too short and lead to incorrect statistical inferences. 

In contrast, the actual coverage of the 95% confidence interval for multiple imputation is 

generally close to the nominal levels, and is nowhere below 93%. Coverage under MARMID is 

usually even larger than the nominal level. All in all, the results show that the linear, logistic and 

polytomous multiple imputation methods for univariate data are on target, well calibrated and 
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adhere to the validity conditions for proper imputation under a variety of missing data 

mechanisms.  

 

 

4 Evaluation of FCS for Multivariate Imputation of Continuous Data 

 

This section studies the performance of FCS for multivariate missing values with 

continuous data.  

 

4.1 Setup: Data and simulations 

 

Six locations from the Irish wind speed data are selected: y1 = Roche's Pt, y2 = Rosslare, y3 

= Shannon, y4 = Dublin, x1 = Clones, and x2 = Malin Head. Two complete data sets, one 

simulated and one real, are created. The simulated data consist of approximately 400 cases drawn 

from the multivariate normal distribution with mean vector and covariance matrix equal to that 

estimated from the raw wind speed data. This simulated data set presents an idealized case where 

there are no issues of inaccuracy of model fit. The real data set is a random sample of about 400 

observations from the raw wind speed data. Imputing this data yields insight into the robustness 

of the imputation model in more practical situations. Conditional on the observed data, non-

monotone multivariate missing data were created in Y1,…, Y4 using the method described in 

appendix B. The percentage of cases that were made incomplete was 62.5%. 

The incomplete data were multiply imputed using m=10, a relatively high value chosen to 

account for larger fractions of missing information. The fully conditional specification consists of 

the set of linear regressions of each Yj on all other variables, Y-j. The number of Gibbs sampling 
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iterations is set to 5. This is a low value in a Gibbs sampling context, but we found it to work well 

in this type of application using starting values of ymis drawn from each variable’s observed 

marginal distribution. The execution time for generating, imputing and analyzing the 

1000*10=10000 incomplete data sets was approximately 30 minutes on a Intel 1.7Ghz processor 

running SAS 6.2. 

 

4.2  Results 

  

---  INSERT TABLE 2 ABOUT HERE --- 

 

Table 2 provides estimates of the bias and coverage of multiple imputation for many 

descriptive statistics estimating various quantities of the 6-variate distribution (Y1, Y2, Y3, Y4, X1 , 

X2). Under MAR, the available case analysis is often biased, but multiple imputation consistently 

moves in the right direction, and nearly always repairs the damage done by the missing data 

mechanism. For example, the correlation between Y2 (Rosslare) and Y3 (Shannon) drops from 

0.59 to 0.22 for the available cases, but is 0.61 after imputation.  

 

--- INSERT FIGURE 2 ABOUT HERE --- 

 

Figure 2 illustrates some properties of the imputation process for Rosslare and Shannon in 

more detail. The figure on the left is a scatter plot of a sample of about 400 cases from the 

original Irish Wind Speed data. The middle figure portrays a subset of this data set. The slope of 

the regression line is biased downwards, and both variable ranges are limited to about half of the 

scale. The panel on the right is the first imputed data set after imputation. Note that imputation 



 

16 

‘restores’ the slope of the regression, the ranges of the variables, and the correlation between 

them.  

Coverages are often close to the nominal value. The average coverage percentage over all 

statistics is 94.1 for the simulated data, and 93.5 for the real data, and thus both are remarkably 

close to the nominal value of 95. Coverage is occasionally lower than 90, especially for statistics 

with large fractions of missing information. We observed this also at other runs of the 

simulations, but at different places. The results provide firm evidence that for both simulated and 

real data, the Gibbs sampling imputation algorithm is on target and well calibrated under the 

studied conditions. 

 

6 Evaluation of FCS for Multiple Imputation of Mixed Data 

 

5.1 Setup: Data and simulations 

 

Multivariate missing data were created in the Mammography Experience data set (Hosmer 

& Lemeshow, 2000, p. 265). As before, imputation of real and simulated data is studied. Non-

monotone missing data under a MAR mechanism were created in four missing data patterns. 

Each of these patterns was characterized by missing data on one of the following pair of 

variables: (SYMPT,BSE), (ME,SYMPT), (BSE,DETC) and (SYMPT,DETC). Each pattern 

occurs in approximately 15.6% of all cases, so the total percentage of incomplete cases is 4 * 

15.6 = 62.5%. Incomplete data in SYMPT and BSE are imputed by logistic regression, whereas 

ME and DETC are imputed by polytomous logistic regression. Imputation was always done 

conditional on the five other variables, with m = 10 and using 5 Gibbs sampling iterations from 

the marginal starting values. 
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5.2 Results 

 

---  INSERT TABLE 3 ABOUT HERE --- 

 

The results in Table 3 indicate that the performance of multiple imputation for 

multivariate data is quite satisfactory for both data sets. The point estimates are nearly always 

closer to the true values than under available case analysis, and the empirical coverage of the 

95% intervals is close to the nominal value. The line labeled 'E[PB|SYMPT=1]' illustrates that 

multiple imputation is clearly superior to available case even if the amount of missing 

information is small.  

 

 

6 Evaluation of FCS for Imputation based on Incompatible Models 

 

This section addresses potential consequences of incompatibility by means of simulation. 

 

6.1 Setup: Data and Simulations 

 

For each replication, 1000 draws were made from the bivariate normal distribution P(Y1, 

Y2) with µ1 = µ2 =5, 2
1σ  = 2

2σ  =1, and ρ12 = 0.6. All values generated were positive. Missing data 

in Y1 and Y2 were in three ways:  

MARRIGHT: logit(Pr(Y1=missing)) = -1 + Y2/5 and logit(Pr(Y2=missing)) = -1 + Y1/5; 
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MARTAIL: logit(Pr(Y1=missing)) = -1 + 0.4|Y2| and logit(Pr(Y2=missing)) = -1 + 0.4|Y1|; 

MARMID: 1-Pr(MARTAIL). 

 

 --- INSERT FIGURE 3 ABOUT HERE --- 

 

Figure 3 plots the probability to be missing under each mechanism as a function of the data. 

When taken together, these specifications led to zero, one or two missing observations in the pair 

(Y1, Y2). Under MARRIGHT, there were approximately 50% missing entries, 75% incomplete 

cases, and about 25% of the cases for which both Y1 and Y2 were missing. There were 

proportionally more missing data for the higher values Y1 and Y2, like in the univariate 

MARRIGHT mechanism in Table 1. The multivariate missing data were not entirely MAR 

because the cases where Y1 or Y2 (or both) is (are) missing were more frequent for the higher 

values. The regression lines are however not affected because the nonresponse is generated 

symmetrically around the regression lines.  

Multiple imputations Y1
* and Y2

* using m=5 were created using five iterations of the Gibbs 

sampler. One iteration of the compatible Gibbs sampler consisted of a chain of two univariate 

imputation models Y2
*| Y1 ~ N(µ1

 *+β1
 *Y1, 2

1σ *) and Y1
*| Y2 ~ N(µ2

 *+β2
 *Y2, 2

2σ *), where µ1
 *, β1

 *, 

2
1σ *, µ2*, β2

*, and 2
2σ * were draws from the appropriate posterior distributions. The first 

incompatible conditionally specified model was formulated by replacing the imputation step for 

Y2 by Y2
*| Y1 ~ N(µ1

 *+β1
 *Y1

2, 2
1σ *), so imputation was conditional on Y1

2 instead of Y1. A second 

incompatible model used log(Y1) instead of Y1. The linear model Y1 = α +β Y2 + ε was taken as 

the complete-data model, where scientific interest focused on β. The number of replications was 



 

19 

set to 500. The average fraction of missing information about β was approximately 0.63, so the 

imputation problem was quite difficult. 

 

6.2 Results 

 

---  INSERT TABLE 4 ABOUT HERE --- 

 

Table 4 contains the results. The equality E(β1
*/ 2

1σ *) = E(β2
*/ 2

2σ *) must hold for the 

compatible normal model. Note that this equality is empirically obtained for the conditionally 

specified linear model. For both incompatible models, we find E(β1
*/ 2

1σ *) ≠ E(β2
*/ 2

2σ *), thus 

indicating serious incompatibility. Column 5 lists the marginal mean of Y1. Under MARRIGHT, 

CCA is biased since there are proportionally more missing data for higher Y1, whereas the 

imputation methods are closer to the theoretical value, though not completely unbiased. Note that 

the imputation methods assume MAR, and therefore cannot completely account for all selectivity 

induced by the missing data mechanism. Column 6 is the mean of the regression weight β over 

all replications. All methods produce essentially the same regression weight, except for CCA 

under MARMID and MARTAIL. The standard errors indicate that all multiple imputation 

models, even the incompatible ones, are more efficient than CCA, which is due to the fact that 

they use the incomplete data in a more efficient way. The last column is the coverage coefficient, 

which is equal to the percentage of cases in which the 95% confidence interval includes the true 

value. Coverage is excellent in all cases, again except for CCA under MARMID and MARTAIL.  

It appears that the forms of incompatibility as used here do not influence the statistical 

properties of multiple imputation in any major way. Somewhat surprisingly, we found that, in the 
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cases studied, applying a deliberately specified incompatible method gives less bias and more 

efficiency than CCA. Thus, imputation using the Gibbs sampler seems to be robust against 

incompatible specified conditionals in terms of bias and precision, thus suggesting that 

incompatibility may be a relatively minor problem in multivariate imputation.  

 

  

7 Discussion 

 

Fully conditional specification (FCS) is a convenient and powerful approach for creating 

imputations in multivariate missing data. Its theoretical weakness is that convergence can only be 

guaranteed under compatibility of conditionals, a condition that is often difficult to verify in 

practice. Our simulations show that this weakness does not seem to affect the quality of 

imputation in the cases considered. In fact, even for clearly incompatible models, the method 

produces reasonable multiple imputations with appropriate coverage. Thus, FCS appears to be 

robust against incompatibility. We suspect this result will hold more generally, but more work is 

needed to explore the boundaries of this conclusion. 

The amount of work per iteration can be substantial, but only relatively few iterations 

appear to be needed when using well-chosen starting values. All simulations were done with just 

five iterations. Increasing the number of iterations did not result into a lower bias and a better 

coverage. This is unlike many Markov Chain Monte Carlo methods that often require thousands 

of iterations. Of course, we only studied simple models with no more than four incomplete 

variables, and therefore do not suggest that a small number of iterations would also be sufficient 

for larger or more complex models. We have also seen applications with large fractions of 

missing data and high correlations that required several hundreds of iterations before reaching 
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some stability. In our limited experience, using 20 iterations for modest missing data problems 

(<10-15% missing data) is ample. In more demanding problems, convergence of critical 

parameters should be carefully monitored, for example by the method of multiple sequences 

(Gelman and Rubin, 1992). A particular difficulty here is how to specify overdispersed starting 

values in the context of multivariate missing data, which is an area for further research. The costs 

of drawing a longer chain are only computational, so if the implementation is efficient, the 

benefits of faster convergence will be small.  

The major advantage of FCS is increased flexibility in model building. It is easy to 

incorporate constraints on the imputed values, work with different transformations of the same 

variable, account for skip patterns, rounding, and so on. We concentrated on models containing 

main effects only. It is however straightforward to build imputation models that preserve higher 

order interactions between variables. Following imputation of the main effect, all interaction 

terms containing this effect can be immediately updated, thus preserving consistency across the 

data. It would be worthwhile to study how robust multiple imputation along these lines would be 

in preserving higher order interactions. 

Throughout the paper, the imputation models assumed that MAR holds. It is relatively 

easy to adapt the method for models that are not MAR, but assumptions outside the data will be 

needed. Another extension is to impute vectors instead of scalars. This may be helpful if the 

relationships between the variables are difficult to model, or to speed up the method. Of course, 

we do not know whether our results will hold in such more complex cases, but the evidence 

obtained thus far suggests that FCS might also work well in such situations. Using FCS in 

concert with monotone missing data methods, as in Rubin (2003), appears to be particularly 

attractive because the potential for incompatibility is reduced relative to FCS. Of course, there is 
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always some point at which the technique breaks down, but conditional specification in 

multivariate imputation seems to be remarkably robust, and well worth investigating further.  
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Appendix A: Algorithms for univariate imputation 

 

Depending on the distribution of y given x, concrete algorithms are as follows: 

For normally distributed y with mean βx and variance σ2, x=(xobs,xmis) is the n × p matrix of 

covariates and n = nobs+nmis (Rubin, 1987, p.  167): 

1. Estimate β by b = (xobs'xobs)-1(xobs)' yobs. 

2. A. Draw a random variable g ~χ2 (nobs - p). 

B. Calculate σ∗ 2 = (yobs - xobs b)'(yobs -xobsb)/g. 

3. A. Draw w1~N(0,Ip), i.e. p independent N(0,1) variates where Ip is the identity matrix of 

order p. 

B. Calculate b* = b + σ* w1V1/2, where V1/2 is the triangular square root of V = (xobs' xobs)-1 

obtained by Cholesky factorization. 

4. A. Draw w2~N(0,In
mis). 

B. Calculate y* = xmis b* + w2σ*. 

Closely related algorithms that account for deviations from the normal distribution are:  

Predictive mean matching: Replace step 4 by: 4. Calculate ymis = xmis b*. For each missing value i 

= 1, …, nmis find the respondent whose yobs = xobs b* is closest to yi
mis and take yobs of this case as 

the imputed value of i. 

Hot-deck version: Replace in step 4 the draws of the nmis normal deviates with draws of nmis 

values with replacement from the set of nobs observed standardized residuals {( yi
obs - bxi

obs)(1-

p/nobs)-1/2/ s} where s = Σobs (yi - xib)2/(nobs-p). 
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For dichotomous y we assume P(yi|xi,β) = (exp(xiβ)/(1+exp(xiβ)))yi (1-exp(xiβ)/(1+exp(xiβ))1-yi. 

Imputations of ymis are obtained as follows: 

1. Calculate by an iterative algorithm b, the MLE estimate of β and an estimate of the 

posterior variance of β (e.g. the Hessian matrix in β=b). 

2. A. Draw b* ~N(b,V(b)). 

B. Calculate for i=1,…,nmis, wi=exp(xib*)/(1+exp(xib*). 

3. Draw ui ~unif(0,1), i=1,…, nmis. If ui > wi, impute yi=0 otherwise impute yi=1. For small 

samples, this procedure can be improve by SIR, as in Clogg et al. (1991). 

A predictive mean matching version of this algorithm replaces step 3 by: Calculate ymis = xmis b*. 

For each missing value i = 1,…,nmis find the respondent whose yobs = xobs b* is closest to yi
mis and 

take yobs of this case as the imputed value of i.  

 

For  categorical y with unordered categories denoted by 0,…,s-1 suppose the distribution of y can 

be characterized as ln(P(y=j|x)/P(y=0|x)) = βjx, for j=1,…,s-1, so the model for y is a series of 

separate logistic regression models of categories 1,…,s-1 against baseline category 0. An 

appropriate algorithm is for this model is: 

1. Draw b* from N(b,V(b)) where b is the MLE estimator of β=(β1,…,βs-1) and V(b) its 

estimated covariance matrix. 

2. Calculate πij
mis = exp(-bj*xi

mis)/(1+∑v=1
s-1 exp(-(bv*xi

mis)) for i=1,…,nmis, j=0,…,s-1 and 

b0=(0,….,0). 

3. Draw yi* from {0,…,s-1} with probabilities πij
mis, i=1,…,nmis, j=0,…,s-1. 
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Appendix B: Generation of the missing data 

 

This appendix describes the method developed by Brand (1999, pp. 110-113) for 

generating non-monotone multivariate missing entries in J variables Y1,…,YJ under MAR. We 

assume that Y1,…,YJ are initially completely known. Additional complete covariates X1,…,XL can 

be present for which no missing entries are sought. The method requires specification of the 

proportion of incomplete cases, the patterns of missing data that are allowed, the relative 

frequency of each pattern, and a specification of the way in which the observed information 

influence the response probability of each pattern.  

More in particular, for a sample size n, let α (0 < α < 1) denote the desired proportion of 

incomplete cases. Let there be P missing data patterns R1,…,RP, chosen by the user, where Rp = 

{rp1 ,…,rpJ} is a 0-1 response indicator vector of length J, with rpj = 0 if variable Yj is missing and 

rpj = 1 otherwise. All response patterns except (0,0,…,0) or (1,1,…,1) may occur. Furthermore, 

let the vector f = (f1,…,fP) specify the relative frequencies of patterns R1,…,RP, with Σp fp = 1, 

also specified by the user.  

Each case is randomly allocated to one of P candidate blocks with probability fp. Within 

each candidate block, a subgroup of αnfp cases is made incomplete according to pattern Rp using 

a probability model as follows. First calculate a linear score si = ∑∑ +
L

l ilpl
J

j ijpjpj XbYra for each 

case in the block, where apj and bpl are user weights specific to pattern p. A convenient choice for 

apj and bpl is the set of regression weights from the linear regression of Yj on {Y-j, X1,…,XL} as 

computed from the initially complete data. Subsequently, divide the nfp cases within the 

candidate block p into kp subgroups using on their value si. The user can control the composition 

of each candidate subgroup by specifying kp - 1 break points qpk for k=1,…, kp - 1 (in the form of 
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quantiles). In addition, specify for each subgroup hk (2 < k = kp) the odds wpk of having response 

pattern Rp relative to the reference subgroup h1. Together with α, these odds determine the 

probability on response pattern Rp for each case in the candidate block. For each case, a random 

draw from the uniform distribution is made. If this random draw does not exceed the probability 

on response pattern Rp, the data for that case are set to missing according to response pattern Rp. 

The procedure is repeated for every candidate block.  

Choices for the subgroup size and the odds govern the properties of the incomplete data. 

For example, MARMID-like mechanisms have high missingness odds for cases with average si 

scores, while MARTAIL-like mechanisms are obtained by specifying higher missingness odds 

for extreme si scores. All of these are MAR, since the linear score si depends on the observed data 

only.  

As an example, the simulations for Table 2 generated missing data in the multivariate data 

{Y1,…,Y4,X1,X2} using the following settings: P=4, R = {010111,001111,110011,101011}, f1 = f2 

= f3 = f4 = 0.25, α = 0.625, k1 = k2 = k3 = k4 = 2, qp1 = 0.5 and wpk = 4 with p = 1,…,P and k=1,…, 

kp-1. 
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MCAR MARRIGHT MARTAIL MARMID   
Statistic 

 
Pop 

 
Fmi  AC 

(coverage) 
MI 

(coverage) 

 
Fmi AC 

(coverage) 
MI 

(coverage) 

 
Fmi AC 

(coverage) 
MI 

(coverage) 

 
Fmi AC 

(coverage) 
MI 

(coverage) 
E(y1) 11.66  0.32 11.65 (95) 11.66 (95)  0.44 9.82 (00) 11.65 (95)  0.32 11.53 (91) 11.66 (95)  0.32 11.85 (96) 11.65 (96) 
P25(y1) 8.16  0.35 8.16 (94) 8.15 (97)  0.23 6.77 (08) 8.13 (97)  0.36 8.50 (86) 8.15 (97)  0.36 7.60 (84) 8.13 (98) 
P50(y1) 11.42  0.32 11.39 (95) 11.42 (97)  0.36 9.53 (01) 11.39 (97)  0.27 11.35 (92) 11.42 (97)  0.38 11.55 (98) 11.41 (98) 
P75(y1) 14.90  0.30 14.89 (96) 14.92 (98)  0.48 12.53 (00) 14.92 (98)  0.31 14.35 (77) 14.91 (97)  0.31 15.89 (65) 14.92 (98) 
r( y1.x1) 0.72  0.43 0.72 (95) 0.72 (95)  0.54 0.65 (47) 0.72 (95)  0.51 0.65 (51) 0.72 (95)  0.35 0.79 (37) 0.72 (95) 
r( y1.x2) 0.59  0.39 0.59 (96) 0.59 (96)  0.48 0.50 (55) 0.58 (95)  0.42 0.50 (56) 0.59 (95)  0.36 0.67 (46) 0.59 (95) 
r( y1.x3) 0.66  0.41 0.66 (94) 0.66 (95)  0.52 0.59 (59) 0.66 (94)  0.47 0.58 (52) 0.66 (95)  0.36 0.74 (41) 0.66 (96) 

L
IN

E
A

R
 

r( y1.x4) 0.61  0.40 0.61 (94) 0.60 (95)  0.48 0.52 (53) 0.60 (94)  0.43 0.51 (53) 0.60 (95)  0.37 0.70 (40) 0.61 (96) 
                   

P(y1=0) 0.50  0.32 0.50 (95) 0.50 (94)  0.43 0.71 (00) 0.51 (95)  0.21 0.51 (91) 0.50 (95)  0.54 0.50 (99) 0.50 (95) 
P(y1=1) 0.50  0.32 0.50 (95) 0.50 (94)  0.43 0.29 (00) 0.49 (95)  0.21 0.49 (91) 0.50 (95)  0.54 0.50 (99) 0.50 (95) 
E(x1|y1=0) 8.66  0.29 8.67 (96) 8.68 (96)  0.51 8.02 (27) 8.72 (97)  0.26 9.59 (19) 8.70 (96)  0.42 7.30 (02) 8.69 (94) 
E(x1|y1=1) 16.10  0.23 16.13 (95) 16.09 (95)  0.14 14.16 (20) 16.11 (95)  0.19 14.81 (21) 16.07 (96)  0.37 17.91 (04) 16.09 (95) 
E(x2|y1=0) 9.29  0.24 9.30 (95) 9.31 (96)  0.33 8.91 (75) 9.35 (97)  0.17 9.89 (73) 9.32 (95)  0.42 8.43 (38) 9.32 (95) 
E(x2|y1=1) 14.05  0.21 14.07 (96) 14.04 (94)  0.19 12.85 (53) 14.04 (95)  0.14 13.26 (60) 14.04 (95)  0.41 15.19 (28) 14.04 (95) 
E(x3|y1=0) 7.17  0.29 7.18 (96) 7.19 (95)  0.51 6.60 (25) 7.21 (97)  0.26 8.00 (16) 7.20 (96)  0.43 5.94 (02) 7.19 (95) 
E(x3|y1=1) 13.78  0.23 13.80 (96) 13.77 (96)  0.14 12.09 (20) 13.78 (95)  0.19 12.67 (21) 13.75 (96)  0.36 15.35 (04) 13.76 (95) 
E(x4|y1=0) 7.18  0.26 7.19 (95) 7.20 (97)  0.41 6.71 (60) 7.21 (96)  0.21 7.80 (58) 7.19 (96)  0.43 6.25 (23) 7.19 (95) 

L
O

G
IS

T
IC

 

E(x4|y1=1) 12.45  0.20 12.47 (93) 12.44 (94)  0.18 10.99 (39) 12.43 (96)  0.15 11.56 (51) 12.44 (96)  0.36 13.74 (23) 12.43 (95) 
                   

P(y1=0) 0.57  0.52 0.57 (96) 0.55 (96)  0.61 0.68 (08) 0.56 (95)  0.54 0.56 (95) 0.55 (95)  0.64 0.58 (96) 0.56 (95) 
P(y1=1) 0.25  0.54 0.25 (96) 0.26 (97)  0.70 0.17 (13) 0.26 (96)  0.58 0.25 (95) 0.26 (97)  0.65 0.25 (95) 0.26 (95) 
P(y1=2) 0.18  0.55 0.18 (95) 0.19 (97)  0.69 0.15 (75) 0.18 (96)  0.58 0.19 (95) 0.19 (96)  0.64 0.17 (93) 0.18 (96) 
E(x1|y1=0) 8.06  0.29 8.05 (98) 8.03 (99)  0.38 8.56 (09) 8.05 (99)  0.36 8.12 (97) 8.02 (100)  0.29 7.96 (98) 8.05 (100) 
E(x1|y1=1) 6.71  0.52 6.70 (95) 6.79 (97)  0.48 7.53 (30) 6.78 (98)  0.54 7.16 (56) 6.82 (98)  0.68 6.02 (11) 6.72 (95) PO

L
Y

T
O

M
E

 

E(x1|y1=2) 7.19  0.49 7.19 (96) 7.22 (97)  0.50 8.00 (41) 7.23 (96)  0.54 7.53 (82) 7.25 (96)  0.56 6.63 (58) 7.17 (96) 
 

Table 1: Properties of multiple imputation in a univariate y1. Given are the population value (Pop), the fraction of missing information (Fmi), the mean estimate under 

available case analysis and its 95% c.i. coverage (AC), the mean estimate for MI and its 95% c.i. coverage (MI) under four MAR missing data mechanisms: MCAR, 

MARRIGHT, MARTAIL and MARMID. Based on m=5 imputations. P25(y), P50(y) and P75(y) represent the first, second and third quartile of y respectively. Notation P(.) is 

the marginal probability of observing the argument, E(.|.) stands for the conditional expectation. Notation r?(y,x)? is used for the Pearson correlation between y and x.
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Pop 
  

Simulated data 
   

Raw data 
 

 
 

 Fmi 
AC 

(coverage) 
MI 

(coverage)  Fmi 
AC 

(coverage) 
MI 

(coverage) 
E(y1) 12.36  0.15 11.35 (13) 12.36 (96)  0.15 11.36 (14) 12.37 (95) 
P25(y1) 8.15  0.11 7.37 (42) 8.18 (98)  0.11 7.39 (46) 8.19 (97) 
P50(y1) 11.72  0.17 10.53 (16) 11.78 (97)  0.17 10.54 (17) 11.79 (96) 
P75(y1) 15.88  0.22 14.47 (29) 15.91 (99)  0.22 14.45 (27) 15.93 (98) 

          
E(y2) 11.65  0.22 10.93 (31) 11.66 (97)  0.22 10.94 (31) 11.67 (95) 
P25(y2) 7.97  0.15 7.36 (45) 7.93 (97)  0.16 7.36 (43) 7.93 (97) 
P50(y2) 10.91  0.21 10.07 (38) 11.03 (98)  0.21 10.09 (40) 11.04 (97) 
P75(y2) 14.64  0.26 13.70 (54) 14.81 (98)  0.26 13.70 (54) 14.83 (97) 

          
E(y3) 10.45  0.12 9.53 (11) 10.44 (95)  0.13 9.54 (11) 10.45 (95) 
P25(y3) 6.76  0.11 6.07 (41) 6.79 (96)  0.10 6.09 (43) 6.81 (96) 
P50(y3) 9.94  0.14 8.88 (16) 9.96 (98)  0.14 8.89 (16) 9.98 (97) 
P75(y3) 13.52  0.21 12.21 (24) 13.54 (98)  0.21 12.21 (24) 13.54 (98) 

          
E(y4) 9.78  0.12 8.86 (10) 9.79 (95)  0.12 8.88 (12) 9.80 (95) 
P25(y4) 6.01  0.09 5.35 (43) 6.06 (97)  0.09 5.35 (45) 6.06 (98) 
P50(y4) 9.16  0.14 8.12 (15) 9.24 (98)  0.14 8.13 (15) 9.24 (96) 
P75(y4) 12.88  0.20 11.52 (25) 12.92 (97)  0.21 11.53 (24) 12.94 (98) 

          
r(y1,y2) 0.73  0.44 0.69 (73) 0.73 (89)  0.43 0.69 (74) 0.74 (86) 
r(y1,y3) 0.83  0.40 0.81 (79) 0.85 (88)  0.40 0.81 (79) 0.85 (86) 
r(y1,y4) 0.74  0.53 0.38 (00) 0.77 (77)  0.53 0.38 (00) 0.77 (79) 
r(y1,x1) 0.75  0.24 0.74 (90) 0.75 (92)  0.24 0.74 (91) 0.75 (93) 
r(y1,x2) 0.62  0.20 0.61 (93) 0.63 (93)  0.20 0.61 (92) 0.63 (92) 

          
r(y2,y3) 0.59  0.50 0.22 (00) 0.61 (91)  0.50 0.22 (00) 0.61 (90) 
r(y2,y4) 0.66  0.39 0.62 (79) 0.68 (93)  0.39 0.61 (79) 0.68 (92) 
r(y2,x1) 0.61  0.28 0.59 (88) 0.60 (94)  0.29 0.58 (87) 0.60 (93) 
r(y2,x2) 0.48  0.26 0.46 (89) 0.47 (94)  0.25 0.46 (89) 0.47 (91) 

          
r(y3,y4) 0.79  0.39 0.74 (61) 0.78 (92)  0.40 0.74 (60) 0.78 (93) 
r(y3,x1) 0.82  0.25 0.82 (92) 0.83 (91)  0.25 0.81 (93) 0.82 (94) 
r(y3,x2) 0.67  0.19 0.66 (93) 0.67 (94)  0.19 0.66 (90) 0.67 (93) 

          
r(y4,x1) 0.84  0.24 0.84 (94) 0.85 (90)  0.24 0.84 (94) 0.85 (91) 
r(y4,x2) 0.77  0.21 0.76 (92) 0.77 (91)  0.21 0.76 (90) 0.77 (90) 

 

Table 2: Results for multiple imputation of multivariate missing data in y1,…,y4 by means of iterated linear 

regressions (Gibbs sampling) for two data sets (simulated and raw) constructed from the Irish windspeed data. Given 

are the population value (Pop), the mean estimate under available case analysis and the coverage of its 95% c.i. 

(AC), the mean estimate under multiple imputation MI and its 95% c.i. (MI). Based on m=10 imputations. P25(y), 

P50(y) and P75(y) represent the first, second and third quartile of y respectively. Notation r(y,x)? stands for the 

Pearson correlation between y and x. Variables x1 and x2 are complete. 
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Statistic Pop  Simulated data (n =412)  Raw data (n=412) 
  

 Fmi 
AC 

(coverage) 
MI 

(coverage)   Fmi 
AC 

(coverage) 
MI 

(coverage) 
P(ME=0) 0.57  0.51 0.59 (87) 0.58 (95)  0.43 0.61 (65) 0.57 (95) 
P(ME=1) 0.25  0.63 0.23 (83) 0.23 (95)  0.55 0.22 (75) 0.25 (98) 
P(ME=2) 0.19  0.44 0.19 (96) 0.19 (96)  0.48 0.17 (88) 0.18 (95) 
          
E[PB|SYMPT=0] 8.24  0.22 8.68 (61) 8.29 (95)  0.26 8.51 (76) 8.19 (96) 
E[PB|SYMPT=1] 7.29  0.09 7.66 (22) 7.28 (96)  0.09 7.71 (20) 7.32 (95) 

          
OR(SYMPT,HIST) 0.37  0.33 0.23 (93) 0.23 (93)  0.29 0.25 (94) 0.27 (95) 
OR(SYMPT,BSE) 0.51  0.41 0.28 (93) 0.59 (96)  0.42 0.33 (78) 0.72 (96) 
OR(HIST,BSE) 0.50  0.36 0.57 (96) 0.51 (96)  0.38 0.68 (97) 0.60 (98) 

 

Table 3: Bias and coverage of multiple imputation (m=10) after Gibbs sampling applied to multivariate categorical 

data, compared with available case analysis. Mammography Experience Study (n=412), where SYMPT was recoded 

into two categories. Notation P(.) is the marginal probability of observing the argument, E(.|.) stands for the 

conditional expectation. OR(x,y) is the odds ratio of x and y.  
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Mechanism Method Compatibility statistics Estimates Fmi Cov 
  E(β1/

2
1σ ) E(β2/

2
2σ ) E(Y1) E(β) E(se(β))   

 Theoretical values   5.00 0.600   95 

         

MARRIGHT Complete case analysis   4.84 0.597 0.051  93 

 MI compatible linear 0.94 0.94 4.91 0.595 0.046 0.63 95 

 MI incompatible quadratic 0.09 0.92 4.91 0.589 0.046 0.63 95 

 MI incompatible log 4.12 0.90 4.91 0.582 0.047 0.64 95 

         

MARMID Complete case analysis   5.00 0.678 0.060  79 

 MI compatible linear 0.94 0.96 5.00 0.613 0.057 0.75 94 

 MI incompatible quadratic 0.09 0.92 5.00 0.601 0.058 0.75 94 

 MI incompatible log 4.13 0.90 5.00 0.579 0.058 0.75 94 

         

MARTAIL Complete case analysis   5.00 0.556 0.040  78 

 MI compatible linear 0.95 0.95 5.00 0.596 0.038 0.50 94 

 MI incompatible quadratic 0.09 0.93 5.00 0.590 0.038 0.50 94 

 MI incompatible log 4.35 0.93 5.00 0.590 0.037 0.50 95 

 
Table 4: Regression slopes, standard errors and coverages (95% c.i.) under one compatible and two incompatible 

multiple imputation models (bivariate normal data, ρ=0.6, n=1000, m=5, three symmetric missing data mechanisms, 

500 replications) compared with complete case analysis. Fmi = fraction of missing information, Cov = 95% c.i. 

coverage. 
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Figure captions 

 

Figure 1: Distribution of the target variable before (light) and after (dark) missing data under four 

missing data mechanisms. MARRIGHT deletes more from the right tail, MARTAIL from both 

tails, and MARMID from the middle values. Data are the Irish Wind Speed sample (n=400, 

Haslett & Raftery, 1989) and Mammographic Experience data (Hosmer and Lemeshow, 2000, 

n=412).   

 

Figure 2: Scatter plots of the locations Rosslare and Shannon from the Irish Wind Speed data 

(Haslett & Raftery, 1989). The incomplete data (middle panel) contains a subset of the complete 

data (left hand panel). Data are missing at random (MAR). The right hand panel illustrates the 

scatter of cases of the first multiply imputed data set. 

 

Figure 3: Probability to be missing in the bivariate simulation as a function of the data value (i.e. 

Y1 or Y2) under three missing missing data mechanisms. 
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