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Abstract

In the present work, a thermo-hydro-mechanical (THM) model was utilized to examine the
behaviour of fractured geothermal reservoir with supercritical-CO2 (SCCO2) as geofluid. The
impact of natural fractures, orientation, and their interaction with hydraulic fractures on the
extraction of heat and extension of injection fluid is examined. The development of thermal
strain occupied regions were recognized significantly in the vicinity of fracture and injection
well. The comparison between water-enhanced geothermal system (EGS) and SCCO2-EGS
on the production temperature, thermal strain, and mechanical strain are performed. In-
jection temperature, injection/production (inj/prod) velocity, aperture of hydraulic fracture
(HF), and HF length in a fractured geothermal reservoir are considered as primary control
parameters and used as the inputs for the hybrid neural networks and time series models to
predict the temperature at the production well. The fully connected neural network (FCN)
model shows better predictions based on the loss functions. A mathematical equation is
developed using the FCN model to predict the production temperature. Thus, the proposed
system of numerical investigations with integrated FCN model could be a benefit in studying
the temporal behavior of production temperature.

Keywords: Geothermal, SCCO2-EGS, Production temperature, Fully connected neural
networks (FCN), Fractures

1. Introduction

Geothermal energy is renewable in nature and abundant in the earth’s crust. Typi-
cally geothermal reservoirs can be categorized into hydro-thermal and hot dry rock (HDR)
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geothermal reservoirs. HDR geothermal reservoirs have low porosity and permeability, usu-
ally available at a depth of 3km to 10 km from the surface. As the heat stored in the hot dry
rock can not be extracted via conventional engineering techniques, it requires proper selec-
tion of injection and production wells connected by hydraulic fractures in high-temperature
regions, namely Engineered/Enhanced Geothermal Systems (EGS) [1, 2].

Cold fluid or heat transfer medium (geo-fluid), e.g., water or other working fluid, is
injected into EGS to extract the heat energy from the earth’s crust to the surface. Re-
cently, SCCO2 has gained much attention as an alternative geo-fluid for heat extraction from
geothermal reservoirs. As firstly mentioned by Brown [3], SCCO2 as geo-fluid is superior to
water due to its high compressibility, high expansivity, and low viscosity from SCCO2. As a
result, there is less resistance for the transport of SCCO2 in the permeable rocks and frac-
tures, which helps reduce the pumping power of injection and so engineering cost. Previous
numerical studies in geothermal reservoirs [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] also
demonstrated that SCCO2 brings better performance as geo-fluid than water. Besides, the
evolution of CO2 plume in reservoirs during geothermal recovery leads to excellent capability
of geological CO2 sequestration as well [4, 5, 6, 7, 8, 9].

In EGS, hydraulic and natural fractures influence the heat production and fluid flow.
When cold fluid is injected at injection wells, it becomes hotter during the transport process
and is ultimately produced as hot fluid at production wells [15, 18, 19, 20, 21, 22, 23].
Natural and hydraulic fractures have better transmissibility than rock matrix and thus act
as preferential fluid flow paths [2, 15, 17, 19, 20, 21, 22, 23, 24, 25]. Therefore, the heat
recovery from hot dry rocks primarily relies on the distribution of natural and hydraulic
fractures [26, 27, 28]. The development of flow field and mechanical forces distribution in
the geothermal reservoir mainly depends on the external loads applied and thermal drag
[26, 27, 28, 29]. It can generate the stress and strains due to thermal and mechanical
variations in the reservoir. Therefore, the geo-fluid type and lateral forces are critical during
the heat extraction.

The application of deep learning (DL) models in the energy area rapidly increases with
its predictive capability, since DL models can tackle nonlinear high-dimensional problems
easily, which is much more efficient than traditional physics-based numerical simulations
[30, 31, 32, 33, 34]. DL has been used in the prediction of rock properties, production per-
formance, reservoir fluid properties, well testing applications, geological CO2 sequestration,
and production temperature from geothermal reservoirs, to name a few [31, 32, 33, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. Recently DNN has also been applied to the
prediction of the production temperature at different time nodes in geothermal reservoir
modeling [1, 44, 49, 50, 51, 52].

Motivated by these previous works, in this research we focus on the SCCO2 as geo-fluid
and also consider the impact of natural fractures in EGS. Firstly, a fully coupled THM simu-
lation model was established to investigate the fractured geothermal reservoir. The dynamic
properties of rock, fracture and geo-fluid were considered as the functions of both temper-
ature and pressure. The impact of natural fractures’ orientation and their interaction with
hydraulic fractures were also evaluated. Further, we develop a hybrid predictive approach,
deep neural networks (DNN) and time series models trained from data from the physics
simulations were established to predict the production temperature of several proposed sce-
narios within the maximum and minimum limits of primary control parameters, including
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injection temperature, inj/prod velocity, HF aperture, and HF length. The FCN model is
developed and utilized to develop a mathematical relation between influencing parameters
and production temperature. Response surface methodology (RSM) was utilized to quantify
the number of qualitative numerical experiments for the establishment of FCN models.

The manuscript is organized as below. In section 2, we introduce the governing equations
of heat transfer, fluid flow, geomechanical for both porous media and fracture. In section
3, we provide the computational model geometry (i.e., section 3.1) and creation of fractures
(i.e., section 3.2) in the porous media along with the initial and boundary condition(i.e.,
section 3.3). The implementation of governing equations and coupled equations is presented
section 3.4. In section 4, we provide the results and discussion of temperature variations
(i.e., section 4.2) and strain variations (i.e., section 4.3) along with the selection of neural
networks for the prediction of the temporal evolution of the production temperature (i.e.,
section 4.4). Finally, we conclude this work with a few remarks in section 5.

2. Mathematical Modeling

2.1. Mathematical Equations

The mathematical formulations relating the transportation of heat and fluid in a rock
matrix with geomechanical variations used in the present numerically investigations given in
Eq. (1) to Eq. (19). The transfer of heat in the rock matrix is presented in Eq.(1).

(ρCp)eff
∂T

∂t
+ ρflCp,fludlm · ∇T −∇ · (λeff∇T ) = QmatT +QfracT (1)

(ρCp)eff = ϕmatρmatCp,mat+(1− ϕmat)ρflCp,fl (2)

λeff = ϕmatλmat + (1− ϕmat)λfl (3)

udlm =
κmat

µfl

∇p (4)

The transfer of heat in the natural/hydraulic fractures is represented in Eq. (5).(
dafrc(ρCp)eff

∂T

∂t
+ dafrc(ρflCp,fl)frcufrc · ∇T −∇ · (dafrc(λeff )frc∇T )

)
= dafrc(QmatT +QfracT )

(5)

The equation for the flow of geofluid in the natural/hydraulic fractures is given in Eq.
(6).

dafrc
∂ϕfrcρfl

∂t
+∇Tn · (ρflqfrc) = dafrcqm (6)

The flow rate (qfrc) per unit length in the natural/hydraulic fractures is given in Eq. (7).

qfrc =
−κfrc

µfl

dafrc∇Tnpfrc =
−d3afrc
12µfl

∇Tnpfrc (7)

Cubic law is employed for the flow of fluid in natural/hydraulic fractures is presented in
Eq. (8).
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ufrc =
−d2afrc
12µfl

∇Tnpfrc (8)

The collective mass conservation and momentum equation [53] has been presented in Eq.
(9).

(∂ϕmatρfl)

∂t
+∇ · (ρfludlm)− qm = 0 (9)

The mathematical equation which can represents the poroelastic storage is given in Eq. (10)

(∂ϕmatρfl)

∂t
=

ρfl
M

∂pm
∂t

(10)

The Biot’s modulus (M) and Biot-Willis coefficient (αb ) are given in Eq. (11) and Eq. (12),
respectively [54, 55].

1

M
=

ϕmat

Kfl

+ (αb − ϕmat)
1− ϕmat

Kd

(11)

αb = 1− Kd

Kfl

(12)

A simplified form of combined hydro and mechanical equation is given in Eq. (13).

ρfl

[
ϕmat

Kfl

+

(
1− Kd

Kfl

− ϕmat

)
1− ϕmat

Kd

]
∂pm
∂t

−∇ · (ρfludlm) =

(
1− Kd

Kfl

)
∂εvol
∂t

(13)

The volumetric strain (εvol) is described in Eq. (14).

εvol = ε11 + ε22 (14)

In Eq. (14), ε11 and ε22 are the displacement vectors ( εab = 0.5(∂uda

∂xb
+ ∂udb

∂xa
); uda and udb

are the displacement vectors in ‘a’ and ‘b’ directions, respectively). The governing equation
for the equilibrium of forces acting on the computational domain is presented in Eq. (15)
[56, 57, 58, 59, 60].

∇ ·
[
σs − αbpm − ε

T

(
E

1− 2η

)]
+ (ρflϕmat + ρmat) = 0 (15)

The natural and hydraulic fractures in the computational domain are considered as thin
elastic layer in the present work. Force per unit area acting on the fracture is represented
mathematically as a function of spring constant (kA), damping constant per unit area ( dA)
and fracture thickness (or fracture aperture) (dafrc ) is given in the following Eq. (16).

FA = −KA(uu − ud − u0)− dA
∂(uu − ud − u0)

∂t
− 0.5ρmatdafrc

∂2(uu + ud)

∂t2
(16)

Spring constant for unit area is given in Eq. (17).
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kA = knn⊗ n+ ks(I − n⊗ n) (17)

The stiffness in the normal direction, and shear stiffness are defined as a function of
both elastic modulus and Poisson’s ratios of fractures are given in Eq. (18) and Eq. (19),
respectively.

kn =
Efrc(1− νfrc)

dafrc(1 + νfrc)(1− 2νfrc)
(18)

ks =
Efrc

2dafrc(1 + νfrc)
(19)

2.2. Rock, Fracture and Fluid properties

The porosity of rock matrix used in the present work depends on the variation of strains
generated due mechanical and thermal loads and is given in Eq. (20) [57, 61].

ϕmat =
ϕini +∆εvol −∆εT

1 + ∆εvol
=

ϕini +∆εvol − [αT (1− ϕini)∆T ]

1 + ∆εvol
(20)

The elastic modulus of the rock and fractures is a function of porosity variation (i.e., Eq.
(20)) and is represented in Eq. (21) [62].

ln

(
E

Ei

)
= −d(ϕmat − ϕini) (21)

The permeability variation of rock matrix and fractures are represented in Eq. (22) and
Eq. (23), respectively [63, 64, 65].

ln

(
κ

κ0

)
= [

(1− ϕini)a1 + b1ϕini

ϕini

]εvol = Cnεvol (22)

κfrcN = κfrc0 exp

(
−σn

σ∗

)
(23)

The rock/fracture heat capacity, thermal conductivity are given in Eq. (24), and Eq.
(25) respectively [44, 57].

Cp,mat(κ) =

[
(2.6log(κ) + 4.2)× 103

2.7log(κ) + 0.3
; if − 20 ≤ log(κ) ≤ −11

]
Cp,mat(κ) = [−13log(κ) + 699; if − 11 ≤ log(κ) ≤ −2]

(24)

λr(T ) = 2.6− 0.0025(T − 293.15) (25)

The effect of temperature variation on water viscosity, water density, water specific heat
and water thermal conductivity are expressed in the mathematical equations and presented
in Eq. (26), (27), (28) and (29), respectively [63, 66].
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µw(T ) = (1.38− 0.028T + 1.36× 10−4T 2 − 4.61× 10−7T 3 + 8.9× 10−10T 4

−9.08× 10−13T 5 + 3.84× 10−16T 6); if273.15 ≤ T ≤ 413.15

µw(T ) = (0.004− 2.11× 10−5T + 3.86× 10−8T 2 + 2.4× 10−11T 3); if413.15 ≤ T ≤ 553.15

(26)

ρw(T ) = 838.47 + 1.4T − 0.003T 2 + 3.72× 10−7T 3 (27)

Cpw(T ) = 12010.15− 80.41T + 0.31T 2 − 5.38× 10−4T 3 + 3.62× 10−7T 4 (28)

λw(T ) = −0.869 + 0.009T − 1.58× 10−5T 2 + 7.98× 10−9T 3 (29)

The variation of thermodynamics properties of SCCO2 such as viscosity, density, heat
capacity and thermal conductivity are given in Eq. (30) to Eq. (33). These properties depend
on the temperature and pressure. These equations will be applicable for a temperature range
between 273 K to 553 K and pressure range between 15 MPa to 40 MPa [15].

µSCCO2(T, p) = 7.14× 10−9T 2 + 5.642× 10−6T − 5.71× 10−9p2

+2.186× 10−6p+ 0.0011
(30)

ρSCCO2(T, p) = 0.00036T 3 − 0.3693T 2 + 122T − 0.333p2 + 32.54p− 12720 (31)

Cp,SCCO2(T, p) = −4.9× 10−5T 3 + 0.084T 2 − 49.11T

−0.47p3 − 42.1p2 + 1200p+ 276.3
(32)

λSCCO2(T, p) = −1.75× 10−8T 3 + 2.29× 10−5T 2 − 0.01T

−1.89× 10−5p3 + 0.0007p2 − 0.006p+ 1.46
(33)

3. Geological model for the Heat Extraction from Geothermal reservoir

3.1. Computational Model

In this work, we used a two-dimensional synthetic porous media geometry of 500 m by
500 m size (and thickness of 30 m) with a hydraulic fracture of length 200 m as depicted in
Figure 1. Cold fluid Injection and heat production wells were placed at the extremes of the
hydraulic fracture. Hydraulic fracture is the main flow path for the geofluid to gain heat from
the surrounding rock. The computational porous domain is having an initial rock porosity of
0.04 and initial rock permeability of 3.2×10−16 m2 . The natural fractures of length ranging
from 5 m to 40 m are considered in the present work with an orientation ranging from 0◦ to
165◦ and depicted in Figure 1. Figure 2b depicts the complex reservoir geometry different
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arrangements of the natural fractures. The generation of natural fractures were presented
in the section 3.2 in detail.

a) Fracture angle =0o
b) Fracture angle =15o c) Fracture angle =30o d) Fracture angle =45o

h) Fracture angle =105og) Fracture angle =90o
f) Fracture angle =75oe) Fracture angle =60o

l) Fracture angle =165o
k) Fracture angle =150oj) Fracture angle =135o

i) Fracture angle =120o

Figure 1: Arrangement of natural fracture in the porous media (Fracture aperture varied from 0.1 mm to
5 mm, and fracture length varied from 1 m to 40 m).

3.2. Natural Fracture Geometry

Development of appropriate fracture network in the porous media is essential to char-
acterize the fluid flow. Espeically in the development of EGS, it will dominate the heat
extraction from the rock while geo-fluid moves from injection well to the production well
[2, 24, 67]. In the present work power law distribution function was employed to generate
the natural fractures in the computational domain. The mathematical representation of the
power law distribution is represented in Eq. (34).

f(a) =
b− 1

amin

(
a

amin

)−b

(34)

In Eq. (34), a is the population value, amin is the minimum population value, b is the
power law exponent. The Fisher distribution is employed to define the orientation of the
fracture. The mathematical form of the Fisher distribution is described in the Eq. (35).

f(θ) = KF
sin θeKF cos θ

eKF − e−KF
(35)
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In Eq. (35), KF is the Fisher constant, θ is the angular deviation of the fracture. Fisher
constant (KF ) indicates the tightness of the of an orientation cluster. The flow characteris-
tics of natural fractures are highly determined by the fracture aperture, orientation and its
distribution. In general, the walls of the natural fracture are rough, in the present work we
considered that the walls are smooth [68]. The aperture was distributed uniformly between
0.1 mm to 5 mm. The relation between the fracture length and fracture aperture is given in
Eq. (36).

dafrc = cpf lfrc (36)

In Eq. (36), cpf is a proportionality factor, lfrc is the length of fracture, dafrc is the
fracture aperture.

3.3. Initial and boundary conditions

The Initial temperature of the geothermal reservoir is considered as 425 K (151.85 ◦C)
with and average reservoir pressure is 15 MPa. The porous domain is appropriate to confine
the effects of boundaries throughout the extraction of heat from the rock matrix when
operating. So, at the boundaries, the temperatures are constant which is equals to the initial
reservoir temperature. At the boundaries of the reservoir no-flow condition was employed for
both heat flux and fluid flow. In the geomechanical section two boundaries are considered
as rolling and lateral stresses (i.e., σx, and σy) were applied on the other two boundaries
(Figure 2c). In the Table 1, rock, fracture and injected fluid properties are mentioned. The
initial conditions of fluid flow, temperature and displacements field are given in Eq. (37),
Eq. (38), Eq. (39), Eq. (40), respectively.

p(x, y, t)t=0 = pini (37)

T (x, y, t)t=0 = Tini (38)

[ux, uy]
T
t=0 = [0, 0]T (39)[

∂ux

∂t
,
∂uy

∂t

]T
t=0

= [0, 0]T (40)

The boundary conditions are applied at the production well, injection well and the bound-
aries of the rock matrix are mainly influencing the changes occur in the reservoir. The fluid
flow boundary conditions at the injection well and production well are represented in Eq.
(41) and (42), respectively.

At injection well : m(t)inj = uinjρw/SCCO2 (41)

At production well : m(t)prod = uinjρw/SCCO2 (42)

Heat flux boundary condition was employed at the injection well and is given in Eq. (43).

At injection well : q(t)inj = Cp,w/SCCO2(Tinj − T0)uinjρw/SCCO2 (43)
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a) Reservoir geometry
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Figure 2: Reservoir geometry and boundary conditions.

3.4. Implementation in COMSOL Multi-Physics

COMSOL Multiphysics was utilized in the establishment of fully coupled and dynamic
THM model for the geothermal reservoir with natural and hydraulic fractures (Figure 3).
Engineers are using COMSOL for employing the fully coupled numerical investigations for
geothermal reservoirs [60, 69, 70, 71, 72, 73, 74, 75, 76, 77]. COMSOLMultiphysics integrated
with heat transfer, poroelastic, Darcy flow, solid mechanics, thermal expansion modules.
These modules will be utilized in the present work and coupled interaction (i.e., Eq. (20)
to Eq. (33)) were embedded as local variable in the component section. In the solid-
mechanics module, natural and hydraulic fractures are designated as a thin elastic layer,
and mathematical formulation is presented from Eq. 16 to Eq. 19. The fluid and heat
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Table 1: Rock, fracture and fluid properties

Property Rock Properties Fluid Properties

Density, kg/m3 2600 Eq. (22)

Dynamic viscosity, Pa.s - Eq. (21)

Thermal conductivity, W/m·K Eq. (20) Eq. (24)

Heat capacity at constant pressure, J/kg·K Eq. (19) Eq. (23)

Coefficient of Thermal expansion, K−1 3× 10−5 -

Initial Youngs Modulus, GPa 24 -

Poisson’s ratio 0.26 -

Initial Porosity 0.03 -

Initial Permeability, m2 3.2× 10−16 -

Ratio of Specific heats - 1.0

Biot-willis coefficient 0.25 - 0.75 -

Fluid-injection rate, m/s - 0.1

Fluid-production rate, m/s - 0.1

Initial reservoir Temperature, ◦C 180 -

Fluid injection Temperature, ◦C - 20

Initial Youngs Modulus-Fracture, GPa 2.4 -

Poisson’s ratio-Fracture 0.104 -

Fracture aperture, mm 0.2 -

Fracture porosity 1 -

Boundary load: x-direction, MPa 48 -

Boundary load: y-direction, MPa 44 -

flow in the fractures is employed using the fracture flow physics conditions in both the
Darcy’s Law and heat transfer modules. Stationary and transient solvers were sequentially
employed in the present work. Backward difference formula (BDF) with Euler backward
initializing technique was employed. The multifrontal massively parallel sparse (MUMPS)
direct linear solver was used for solving pressure and displacement. A parallel direct sparse
solver (PARDISO) being used for solving temperature.

4. Results and Discussions

4.1. Validation

The fully coupled thermo-hydro-mechanical and its accuracy are validated with single
fracture scenario and rock matrix without fracture. The analytical solution (44) given by
the Lauwerie’s [78] was used to validate the developed model . Fig 4a and Fig 4c presents
the geometry details of validation-1 and validation-2 respectively. The rock and fluid details
are taken from the work of Ghassemi and Zhang[79], and Han et al. [80].
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Figure 3: Schematic of the solution process employed for fully coupled Thermo-hydro-mechanical model in
present work.

T (x, t) = T0 + (Tinj − T0)erfc

 λmx

ρwCpwdf
√

λm

ρmCpr
(uwt− x)

U

(
t− x

uw

)
(44)

The results from the developed THM model and its comparison with the analytical
solution is presented in Figure 4b and Figure 4d for validation-1 and validation-2, respectively.
The comparison of developed THM model results with the analytical solutions provides the
greater accuracy. It confirms that the developed THM model is suitable to predict the
thermo, hydro, and mechanical variations in the rock matrix and fractures. Thus, the
developed model applied to investigate the variations occurs in the fractured geothermal
reservoir.
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Figure 4: Validation of the developed THM model with single fracture case and only rock matrix case.

4.2. Temperature Evolution

Figure 5 illustrates the spatial and temporal distribution of temperature in the porous
media at different arrangement of natural fractures when SCCO2 is used as geofluid. In the
early stages, heat transfer transpires among the matrix and the geo-fluid in the hydraulic
fracture. Due to the heat conduction between the geo-fluid and rock matrix, the rise in
geo-fluid temperature will occur (Figure 5). Concurrently the rock matrix temperature in
the neighbourhood of hydraulic fracture decreases, which creates a low temperature region
advancing into rock matrix with time. It will reduce the production temperature due to the
less extraction of heat compared to the initial stage. It was identified efficiently after five
years of the production (Figure 5). The geo-fluid mass and heat exchange are maximum
in the locality of the injection well. The influence of natural fractures in the temperature
distribution is investigated and presented in Figure 5 and Figure 6. It has been clearly found
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that, the injected fluid is moving from the hydraulic fracture to the natural fracture before
reaching to the production well (Figure 5b1 − 5b4 and Figure 5c1 − 5c4). It can be seen from
the numerical results that the zone adjacent the hydraulic fracture is highly influenced in
starting of the heat production (Figure 5a1 − 5a4) and expands via the connected natural
fracture in the reservoir (Figure 5b1− 5b4 and Figure 5c1− 5c4). Figure 6 depicts the spatial
distribution of temperature in the reservoir after 10 years of production. The distribution of
low temperature zone is dependent on the orientation of natural fracture and the connectivity
of hydraulic fracture with it. Thus, influence of natural fractures in the expansion of low
temperature zone is clearly identified from the numerical investigations.

4
5

o
1

3
5

o
N

o
-f

ra
ct

u
re

a1) 1 year a2) 3 year a3) 5 year a4) 7 year

b1) 1 year b2) 3 year b3) 5 year b4) 7 year

c1) 1 year c2) 3 year c3) 5 year c4) 7 year

Figure 5: Spatiotemporal variation of temperature in the reservoir at different arrangement of natural
fractures while using SCCO2 as geofluid.
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a) Fracture angle =0o
b) Fracture angle =15o c) Fracture angle =30o d) Fracture angle =45o

h) Fracture angle =105og) Fracture angle =90o
f) Fracture angle =75oe) Fracture angle =60o

l) Fracture angle =165o
k) Fracture angle =150oj) Fracture angle =135o

i) Fracture angle =120o

Figure 6: Spatial variation of temperature in the reservoir at different arrangement of natural fractures after
10 years of production.

Figure 7 represents the impact of hydraulic fracture aperture and inj/prod velocity on the
temperature at production well. It was also found that the temperature at production well is
reduced with an increase in aperture of hydraulic fracture. It will decrease the transfer of heat
from matrix to geofluid due to the low residence time before reaching to the production well
for small aperture scenario (Figure 7a). The temperature at the production well declines with
an upsurge in the inj/prod velocity and is illustrated in Figure 7b. At higher inj/prod velocity
(0.04 m/s) fluid will move faster in the hydraulic fracture and it will reflect in the residence
time to be low. Thus, the fluid has a lesser time to transfer heat from the surrounding
rock matrix before reaching to the production well. Due to this production temperature will
be less compared to the low inj/prod velocity (0.01 m/s to 0.03 m/s). Figure 8 depicts the
influence of fracture orientation on the production temperature at same operating conditions.
It has been found that the significant impact of production temperature was observed with
orientation of natural fracture but not like hydraulic fracture aperture and inj/prod velocity.
Thus, the aperture of hydraulic fracture and inj/prod velocity, and orientation of natural
fractures influencing the temperature at production well.

Figure 9 depicts the comparison of SCCO2 and water as geofluids on the production
temperature at same operating conditions. Sharp decline of production temperature was
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Figure 7: Impact of fracture aperture and injection/production velocity on production temperature.

found when using the water compared to SCCO2 with increase (Figure 9). Aperture of
hydraulic fracture is showing negligible influence when water is used as geofluid but SCCO2

is showing significant influence (Figure 9a). Injection/production velocity was showing the
significant impact on production temperature when using water and SCCO2 as geofluids, but
high production temperatures were observed when using SCCO2(Figure 9b). Thus, SCCO2

is providing the better production temperature compared to water from the reservoir at same
operating conditions.

Figure 9: Comparison of SCCO2 and water as geofluids on production temperature.
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Figure 8: Impact of fracture angle on production temperature.

4.3. Evolution of strain

The importance of stains generated due to thermal and mechanical variations in the
reservoir extensively studied. Figure 10 represents the spatial and temporal disparity of
both thermal and mechanical strains. The volume of rock matrix variation due to the
temperature difference is called thermal strain. It was found that the strain generated due
to temperature variation is highly active near the hydraulic fracture and injection well.
Maximum thermal strain was identified neighbouring the injection well and lowest observed
at the production well (Figure 10a and 10b). It was found that the, minimum strain generated
due to mechanical variation was found in the low temperature zone (Figure 10c and 10d).
Thus, strains generated due to thermal variation is more active in the low-temperature zone,
and geomechanical stresses were influential in the rest of the area (i.e., away from the low
temperature zone). The thermal and mechanical strain dominated region in the reservoir is
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Figure 10: Comparison of SCCO2 and water as geofluids on thermal and mechanical strains (×10−3) at
natural fracture orientation of 75o.

highly reliant on the on the type of geofluid (Figure 10). Low temperature region is more
prominent in when water is used as geofluid compared to the SCCO2. Due to this the when
using water, thermal strains are more significant in in the low temperature region compared
to SCCO2. Thus, thermal, and mechanical are highly influenced by the type of fluid.

4.4. Neural Networks Model for Geothermal reservoirs

4.4.1. Neural Networks

Neural networks have been employed successfully in the medical, engineering, economics,
mathematics and other fields for the identification of patterns, sound, speech, forecasting
of stock market, rain, weather and etc. From the last few years, application of neural
network in the geoscience and hydrocarbon sectors gained more attraction. Which includes,
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prediction of crude oil production, rock properties, and recognition of seismic pattern, etc.
[1, 40, 41, 42, 43, 44, 49, 50]. Neural networks are the non-traditional tactics in which
they are accomplished to study system of solutions relatively than being programmed to
model a specific problem in the normal way. Neural networks are extensively recognized
as a technology provides a substitute way to address the complex problems and also an
alternative to the complex rules. Neural networks are able to learn the key information from
the multi-layered information provided in the form data. Neural networks (NNs) contains
an input layer (IL), output layer (OL) and these are connected with the series of hidden
layer(HL)s. Each HL is having number of neurons which receives the information from the
previous neuron for processing.

4.4.2. Mathematical Model Based on FCN to predict production temperature

In this work, time series model was developing using the FCN model. The FCN model is
utilized to develop a mathematical model to predict the production temperature using the
influencing parameters. The structure and algorithm of FCN are provided as follows:

Computational geometry: A new computation geometry was designed for the hybrid
DNN and time series model and is presented in Figure 2b. complex natural fracture network
was created using power law and Fisher distributions presented in section 3.2. The natural
fracture aperture ranging from 0.1 mm to 5 mm, length of natural fractures varied from 1
m to 50 m, and orientations varied from 0◦ to 165◦. Same initial and boundary conditions
were imposed expect the injection temperature, fracture aperture, fracture length, inj/prod
velocity and these are considered as influencing parameters in the present work.

Sampling: Training data generated by utilizing the design of experimentation technique.
Response surface methodology (RSM) was applied for the qualitative numerical experimen-
tation. Total four influencing parameters were identified and Response surface methodol-
ogy was designed thirty numerical experimentation’s. Table 2 provides the minimum and
maximum ranges of influencing parameters and Table 3 illustrates the designed qualitative
experimentation to conduct the numerical simulations. These numerical experimentation’s
will provide adequate training and validated data set FCN model to evaluate the influence
of input parameter on the temperature at the production well.

Input Layer: The input layer includes five nodes which includes the injection temper-
ature, fracture aperture, fracture length, inj/prod velocity, and time.

Output layer: Output layer consists of one output node and it is production tempera-
ture, it is obtained from the numerical simulations.

Hidden layer (HL): The number of input nodes in the input layers varies and it is
depending upon the problem statement. It is not possible to use the same architecture for
all the problem statements. For the optimum architecture of the FCN, for better accuracy
we utilized 30 neurons and on bias in the present work.
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Figure 11: Schematic of the FCN model to predict the production temperature.

Table 2: Influencing parameter and its ranges with units

Name of Factor Unit Lower limit Higher limit

Injection Temperature ◦C 35 45

Fluid injection/production velocity m/s 0.025 0.05

Fracture aperture mm 2 6

Fracture length m 200 300

Objective/Loss functions: DNN models were employed to estimate the temporal
changes occur in temperature at the production well. There is a diversity of error calculation
tools available in the design of DNN models. In the present work we applied Average
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Figure 12: Histogram of training (a to f), testing (g to l)

absolute percentage of error (AAPE), root mean square error (RMSE), and coefficient of
determination (R2) as error estimation (loss) functions. The equations from Eq. (45) to Eq.
(47) represents the loss functions used in the design of DNN models.

AAPE =
100

nTRTp−data

ΣnTR
i=1 (Tp−DNN − Tp−data) (45)

RMSE =

√
ΣnTR

i=1

(Tp−DNN − Tp−data)2

nTR

(46)

R2 = 1− ΣnTR
i=1 (Tp−data − Tp−DNN)

2

ΣnTR
i=1 (Tp−DNN − Tavg,p−data)2

(47)

20

Electronic copy available at: https://ssrn.com/abstract=4288283



R
2           

= 0.999

AAPE     = 0.211

RMSE     = 0.016

R
2

           = 1.000

AAPE     = 0.254

RMSE     = 0.025

Figure 13: Production temperature of numerical simulations verses DNN model predicted with residual
error histograms
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a) Impact of injection temperature b) Impact of fracture length

c) Impact of fracture aperture b) Impact of inj/prod velocity

Figure 14: Impact of influencing parameters on the production temperature (i.e., results from the Eq (51)).
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Figure 15: Comparison of simulated results with the equation (i.e., Eq. (51)) developed from the FCN .
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Table 3: Qualitative numerical experimentation’s for deep neural networks

Sl.
No

Hydraulic
Fracture
length, m

Hydraulic
Fracture aper-
ture, mm

Injection
Temperature,◦C

Injection/
production
velocity , m/s

1 250 4 40 0.0375

2 200 2 45 0.025

3 300 6 45 0.025

4 200 6 45 0.05

5 300 2 35 0.05

6 200 4 40 0.0375

7 250 4 45 0.0375

8 200 6 45 0.025

9 300 4 40 0.0375

10 250 4 40 0.0375

11 300 6 35 0.025

12 200 2 35 0.025

13 250 4 40 0.025

14 250 4 40 0.0375

15 250 6 40 0.0375

16 300 6 35 0.05

17 200 6 35 0.05

18 250 4 40 0.05

19 250 4 40 0.0375

20 250 2 40 0.0375

21 300 2 45 0.05

22 250 4 40 0.0375

23 200 2 35 0.025

24 300 6 45 0.05

25 200 2 45 0.05

26 200 6 35 0.025

27 250 4 40 0.0375

28 250 4 35 0.0375

29 300 2 35 0.025

30 300 2 45 0.025

Mathematical Equation to Estimate Production Temperature:
The structure of the fully connected neural network is presented in Figure 11. The distri-

bution of the input and output parameters used in the training and testing were presented
in the Figure 12. Figure 13a depicts the cross plots of training and testing data, which shows
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the greater accuracy in the prediction of the production temperature. The residual errors
were accumulated with in the -2 to 2 for both training and testing data (Figure 13). A
mathematical equation was developed using the above FCN model with influencing param-
eters. The Hidden layer neuron utilizing its weight w1, and bias b1, and the mathematical
expression is presented in Eq (48).

σtf,L

(
Σ

Np

j=1w1,jxj + b1

)
(48)

The output of the whole network will be expressed in Eq (49)

µp(φ) = σtf,0

[
ΣNh

i=1w2,iσtf,L

(
Σ

Np

j=1w1,jxj + b1

)
+ b2

]
(49)

Here, σtf,L(x) =
(

2
1+e−2x − 1

)
, and σtf,0(x) = x. The proposed equation of FCN of the

production temperature can be written more specifically as in Eq (50)

Tprod = 103.75− 48.05Tprod,n (50)

The equation for the Tprod,n is given in Eq (51)

Tprod,n = σtf,0

[
ΣNh

i=1w2,iσtf,L(X1) + b2

]
(51)

X1 = w1,i,1Lf,n + w1,i,2dafrc,n + w1,i,3Tinj,n + w1,i,4vinj/prod,n + w1,i,5tn + b1,i (52)

The expressions for the normalized terms such as Lf,n, dafrc,n, Tinj,n, vinj/prod,n, and tn
were presented from Eq (53) to Eq (57) .

Lf,n = 5− 0.02Lf (53)

dafrc,n = 2− 0.5dafrc (54)

Tinj,n = 8− 0.2Tinj (55)

vinj/prod,n = 3− 80vinj/prod (56)

tn = 1− 0.066t (57)

Here, Lf in m, dafrc in mm, Tinj in
◦C, vinj/prod in m/s, and t is in years. The developed

mathematical model with FCN showing a greater accuracy with the simulated results. The
impact of influencing parameters on the production temperature was depicted in the Figure
14 and similar impact was observed from the simulation results (i.e., Figure 7). The accuracy
of the developed mathematical model was also checked with the ten random scenarios and
comped with the simulated results. From the Figure 15, it was found the the developed
mathematical model was showing the similar results with the simulated results. Thus, the
developed mathematical model can be utilized to predict the temporal evolution of the
production temperature of a fractured geothermal reservoir with in the desired limits.
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Table 4: Weights and Biases of the Optimized neural network model

Weights between Input
and Hidden Layer (w1)Neurons

Lf,n dafrc,n Tinj,n vinj/prod,n tn

Weights between Hidden
and Output Layer (w2)

Bias between Input
and Hidden Layer (b1)

Bias between Hidden
and Output Layer (b2)

1 0.530 −0.588 0.162 −2.465 −1.944 0.438 2.754
2 −0.846 −0.965 −0.278 1.005 −0.783 −0.319 3.745
3 1.316 1.576 1.926 −0.222 −2.134 0.052 0.785
4 −0.892 3.643 −1.015 −2.038 0.471 0.067 2.110
5 −0.003 1.164 −3.465 −2.910 −0.120 −0.075 2.948
6 −1.988 3.694 0.281 0.187 1.075 −0.039 1.139
7 −0.113 −1.434 −2.841 1.038 −0.003 −0.068 −1.059
8 1.363 −1.940 3.105 1.271 2.411 0.068 −1.272
9 −0.047 −0.007 0.042 0.933 2.952 −0.178 0.766
10 −1.546 −3.237 −0.747 −0.380 −0.062 −0.213 −0.978
11 −2.173 0.386 −1.199 1.140 −1.371 −0.069 1.791
12 1.325 1.914 −1.833 0.328 −0.210 −0.211 −1.293
13 1.191 1.767 2.874 −0.609 −1.482 −0.164 −0.574
14 0.802 −3.961 −0.387 0.801 2.324 0.141 −4.276
15 0.430 −0.183 0.043 −1.651 −2.571 0.311 0.895
16 −3.720 1.981 1.765 1.129 −1.357 0.111 −0.126
17 0.243 −1.162 −2.589 0.313 −2.034 0.042 −0.357
18 1.224 −0.374 −1.156 3.432 −1.421 0.151 0.131
19 2.476 1.300 −0.107 −3.223 1.036 0.130 0.168
20 −0.636 −2.689 −0.092 1.677 0.377 −0.241 0.169
21 −2.487 −3.579 1.644 −0.786 2.596 0.056 −0.291
22 2.821 2.612 −2.356 −2.287 2.642 0.056 0.357
23 −2.151 −1.937 −0.682 1.946 −0.090 0.345 −1.162
24 1.415 4.384 0.284 −1.062 −2.066 −0.047 1.068
25 −0.662 −0.183 2.816 −0.777 4.132 0.016 −1.602
26 3.671 −1.015 0.804 −3.300 −1.453 0.111 1.223
27 4.935 0.070 −1.298 −1.427 −2.790 0.105 3.398
28 1.906 1.307 2.208 −2.510 −0.495 0.008 3.373
29 0.163 2.684 −2.063 1.999 −0.598 −0.185 3.304
30 −1.780 1.102 3.987 −0.532 −0.456 −0.186 3.416

0.745

5. Conclusions

In the present research work, we used the fully coupled THM model to examine the
behaviour of geothermal reservoir. The dynamic behaviour of fluid, rock, and fracture prop-
erties were considered in the present work. The influence of natural fracture and its orienta-
tion is also examined effectively. COMSOL Multiphysics software was utilized in the present
work for the numerical experimentation’s using the THM model. The effect of SCCO2 as
geofluid for the heat extraction is also studied extensively and compared with the water as
geofluid.

Temperature at the production well, and low-temperature zone in rock matrix are delib-
erately impacted by inj/prod velocity, aperture of hydraulic fracture, and natural fracture
orientation. Production temperature is declines with advancement in time and inj/prod
velocity, and hydraulic fracture aperture. The comparison between water-EGS and SCCO2-
EGS system on the production temperature was determined and found SCCO2-EGS system
is providing promising results compared to water-EGS. Strain generated due to thermal
drawdown is active at the low-temperature zone, and strain generated due to mechanical
loads is substantial in the rest of the area. Natural fractures interaction with the hydraulic
fracture, and type of geofluid are influencing the production temperature, thermal strain,
mechanical strains in the geothermal reservoir.

An FCN model was employed to forecast the temporal temperature at the production
well as a function of injection temperature, inj/prod velocity, HF aperture, and HF length.
Response surface methodology was utilized to design the numerical experimentation’s with-
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out temporal constituent. A mathematical equation was developed to predict the temporal
variation of temperature at the production well to a desired level using FCN. Therefore, the
developed numerical simulations with FCN model can be a useful tool to investigative the
temporal evolution of production temperature with higher accuracy.
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Nomenclature

dafrc,n Normalized fracture aperture

Lf,n Normalized fracture length

Np Number of neurons

tn Normalized time

Tinj,n Normalized injection temperature

vinj/prod,n Normalized injection/production velocity
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w1,j Weights in hidden layer

xj Parameters

αb Biot-Wills coefficient

αT Coefficient of thermal expansion

∆εT Thermal strain

∆εvol Change in volumetric strain

∆T Change in temperature

∂εvol
∂t

Rate of change in volumetric strain of the porous matrix

κfrc0 Initial fracture permeability

κfrc Fracture permeability

κmat Rock permeability

λeff Effective thermal conductivity

λfl Thermal conductivity of fluid

λmat Thermal conductivity of matrix

µfl Viscosity of the fluid

∇Tn Gradient is measured on the tangential plane of fracture

νfrc Poisson’s ratio of fracture

ϕmat Porosity of matrix

ϕini Initial porosity of matrix

ρfl Density of fluid

ρmat rock density

σn Normal stress acting on fracture

σ∗ Normalizing constant (and it is considered as the initial reservoir pressure)

a1 Constant

b1 Constant

Cn Coefficient and it is a function of initial porosity of formation and is equal to 5/ϕi

Cp,fl Specific heat capacity of fluid
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Cp,mat Specific heat capacity of matrix

d Fitting parameter (constant and equal to 1)

dA Damping constant per unit area

dafrc Fracture aperture

Ei Initial elastic modulus

Efrc Elastic modulus of fracture

KA Spring constant

Kd Drained bulk modules

kn Stiffness in the normal direction

ks Shear Stiffness

Kfl Fluid bulk modules

M Biot’s modulus

p pressure

pfrc Pressure in fracture

qm Source/sink term which couple both matrix and fracture with mechanics

QfracT Source/sink terms fracture

qfrc Flow rate in fractures

QmatT Source term of matrix

sigmatf,L Activation function

T Temperature

t Time

Tavg,p−data Mean production temperature of the given data

Tp−data Production temperature of the from the training data

Tp−DNN Production temperature predicted from the DNN model

u0 Initial displacement of fracture

ud Displacement in downside of fracture

uu Displacement in upside of fracture

udlm Darcy’s Velocity

ufrc Darcy’s velocity in fracture
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