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Abstract

Convolutional networks are powerful visual models that

yield hierarchies of features. We show that convolu-

tional networks by themselves, trained end-to-end, pixels-

to-pixels, exceed the state-of-the-art in semantic segmen-

tation. Our key insight is to build “fully convolutional”

networks that take input of arbitrary size and produce

correspondingly-sized output with efficient inference and

learning. We define and detail the space of fully convolu-

tional networks, explain their application to spatially dense

prediction tasks, and draw connections to prior models. We

adapt contemporary classification networks (AlexNet [20],

the VGG net [31], and GoogLeNet [32]) into fully convolu-

tional networks and transfer their learned representations

by fine-tuning [3] to the segmentation task. We then define a

skip architecture that combines semantic information from

a deep, coarse layer with appearance information from a

shallow, fine layer to produce accurate and detailed seg-

mentations. Our fully convolutional network achieves state-

of-the-art segmentation of PASCAL VOC (20% relative im-

provement to 62.2% mean IU on 2012), NYUDv2, and SIFT

Flow, while inference takes less than one fifth of a second

for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-

nition. Convnets are not only improving for whole-image

classification [20, 31, 32], but also making progress on lo-

cal tasks with structured output. These include advances in

bounding box object detection [29, 10, 17], part and key-

point prediction [39, 24], and local correspondence [24, 8].

The natural next step in the progression from coarse to

fine inference is to make a prediction at every pixel. Prior

approaches have used convnets for semantic segmentation

[27, 2, 7, 28, 15, 13, 9], in which each pixel is labeled with

the class of its enclosing object or region, but with short-

comings that this work addresses.
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Figure 1. Fully convolutional networks can efficiently learn to

make dense predictions for per-pixel tasks like semantic segmen-

tation.

We show that a fully convolutional network (FCN)

trained end-to-end, pixels-to-pixels on semantic segmen-

tation exceeds the state-of-the-art without further machin-

ery. To our knowledge, this is the first work to train FCNs

end-to-end (1) for pixelwise prediction and (2) from super-

vised pre-training. Fully convolutional versions of existing

networks predict dense outputs from arbitrary-sized inputs.

Both learning and inference are performed whole-image-at-

a-time by dense feedforward computation and backpropa-

gation. In-network upsampling layers enable pixelwise pre-

diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-

lutely, and precludes the need for the complications in other

works. Patchwise training is common [27, 2, 7, 28, 9], but

lacks the efficiency of fully convolutional training. Our ap-

proach does not make use of pre- and post-processing com-

plications, including superpixels [7, 15], proposals [15, 13],

or post-hoc refinement by random fields or local classifiers

[7, 15]. Our model transfers recent success in classifica-

tion [20, 31, 32] to dense prediction by reinterpreting clas-

sification nets as fully convolutional and fine-tuning from

their learned representations. In contrast, previous works

have applied small convnets without supervised pre-training

[7, 28, 27].

Semantic segmentation faces an inherent tension be-

tween semantics and location: global information resolves

what while local information resolves where. Deep feature

hierarchies encode location and semantics in a nonlinear
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local-to-global pyramid. We define a skip architecture to

take advantage of this feature spectrum that combines deep,

coarse, semantic information and shallow, fine, appearance

information in Section 4.2 (see Figure 3).

In the next section, we review related work on deep clas-

sification nets, FCNs, and recent approaches to semantic

segmentation using convnets. The following sections ex-

plain FCN design and dense prediction tradeoffs, introduce

our architecture with in-network upsampling and multi-

layer combinations, and describe our experimental frame-

work. Finally, we demonstrate state-of-the-art results on

PASCAL VOC 2011-2, NYUDv2, and SIFT Flow.

2. Related work

Our approach draws on recent successes of deep nets

for image classification [20, 31, 32] and transfer learning

[3, 38]. Transfer was first demonstrated on various visual

recognition tasks [3, 38], then on detection, and on both

instance and semantic segmentation in hybrid proposal-

classifier models [10, 15, 13]. We now re-architect and fine-

tune classification nets to direct, dense prediction of seman-

tic segmentation. We chart the space of FCNs and situate

prior models, both historical and recent, in this framework.

Fully convolutional networks To our knowledge, the

idea of extending a convnet to arbitrary-sized inputs first

appeared in Matan et al. [26], which extended the classic

LeNet [21] to recognize strings of digits. Because their net

was limited to one-dimensional input strings, Matan et al.

used Viterbi decoding to obtain their outputs. Wolf and Platt

[37] expand convnet outputs to 2-dimensional maps of de-

tection scores for the four corners of postal address blocks.

Both of these historical works do inference and learning

fully convolutionally for detection. Ning et al. [27] define

a convnet for coarse multiclass segmentation of C. elegans

tissues with fully convolutional inference.

Fully convolutional computation has also been exploited

in the present era of many-layered nets. Sliding window

detection by Sermanet et al. [29], semantic segmentation

by Pinheiro and Collobert [28], and image restoration by

Eigen et al. [4] do fully convolutional inference. Fully con-

volutional training is rare, but used effectively by Tompson

et al. [35] to learn an end-to-end part detector and spatial

model for pose estimation, although they do not exposit on

or analyze this method.

Alternatively, He et al. [17] discard the non-

convolutional portion of classification nets to make a

feature extractor. They combine proposals and spatial

pyramid pooling to yield a localized, fixed-length feature

for classification. While fast and effective, this hybrid

model cannot be learned end-to-end.

Dense prediction with convnets Several recent works

have applied convnets to dense prediction problems, includ-

ing semantic segmentation by Ning et al. [27], Farabet et al.

[7], and Pinheiro and Collobert [28]; boundary prediction

for electron microscopy by Ciresan et al. [2] and for natu-

ral images by a hybrid convnet/nearest neighbor model by

Ganin and Lempitsky [9]; and image restoration and depth

estimation by Eigen et al. [4, 5]. Common elements of these

approaches include

• small models restricting capacity and receptive fields;

• patchwise training [27, 2, 7, 28, 9];

• post-processing by superpixel projection, random field

regularization, filtering, or local classification [7, 2, 9];

• input shifting and output interlacing for dense output [29,

28, 9];

• multi-scale pyramid processing [7, 28, 9];

• saturating tanh nonlinearities [7, 4, 28]; and

• ensembles [2, 9],

whereas our method does without this machinery. However,

we do study patchwise training 3.4 and “shift-and-stitch”

dense output 3.2 from the perspective of FCNs. We also

discuss in-network upsampling 3.3, of which the fully con-

nected prediction by Eigen et al. [5] is a special case.

Unlike these existing methods, we adapt and extend deep

classification architectures, using image classification as su-

pervised pre-training, and fine-tune fully convolutionally to

learn simply and efficiently from whole image inputs and

whole image ground thruths.

Hariharan et al. [15] and Gupta et al. [13] likewise adapt

deep classification nets to semantic segmentation, but do

so in hybrid proposal-classifier models. These approaches

fine-tune an R-CNN system [10] by sampling bounding

boxes and/or region proposals for detection, semantic seg-

mentation, and instance segmentation. Neither method is

learned end-to-end. They achieve state-of-the-art segmen-

tation results on PASCAL VOC and NYUDv2 respectively,

so we directly compare our standalone, end-to-end FCN to

their semantic segmentation results in Section 5.

We fuse features across layers to define a nonlinear local-

to-global representation that we tune end-to-end. In con-

temporary work Hariharan et al. [16] also use multiple lay-

ers in their hybrid model for semantic segmentation.

3. Fully convolutional networks

Each layer of data in a convnet is a three-dimensional

array of size h × w × d, where h and w are spatial dimen-

sions, and d is the feature or channel dimension. The first

layer is the image, with pixel size h× w, and d color chan-

nels. Locations in higher layers correspond to the locations

in the image they are path-connected to, which are called

their receptive fields.

Convnets are built on translation invariance. Their ba-

sic components (convolution, pooling, and activation func-

tions) operate on local input regions, and depend only on

relative spatial coordinates. Writing xij for the data vector

at location (i, j) in a particular layer, and yij for the follow-



ing layer, these functions compute outputs yij by

yij = fks ({xsi+δi,sj+δj}0≤δi,δj≤k)

where k is called the kernel size, s is the stride or subsam-

pling factor, and fks determines the layer type: a matrix

multiplication for convolution or average pooling, a spatial

max for max pooling, or an elementwise nonlinearity for an

activation function, and so on for other types of layers.

This functional form is maintained under composition,

with kernel size and stride obeying the transformation rule

fks ◦ gk′s′ = (f ◦ g)k′+(k−1)s′,ss′ .

While a general deep net computes a general nonlinear

function, a net with only layers of this form computes a

nonlinear filter, which we call a deep filter or fully convolu-

tional network. An FCN naturally operates on an input of

any size, and produces an output of corresponding (possibly

resampled) spatial dimensions.

A real-valued loss function composed with an FCN de-

fines a task. If the loss function is a sum over the spatial

dimensions of the final layer, ℓ(x; θ) =
∑

ij ℓ
′(xij ; θ), its

gradient will be a sum over the gradients of each of its spa-

tial components. Thus stochastic gradient descent on ℓ com-

puted on whole images will be the same as stochastic gradi-

ent descent on ℓ′, taking all of the final layer receptive fields

as a minibatch.

When these receptive fields overlap significantly, both

feedforward computation and backpropagation are much

more efficient when computed layer-by-layer over an entire

image instead of independently patch-by-patch.

We next explain how to convert classification nets into

fully convolutional nets that produce coarse output maps.

For pixelwise prediction, we need to connect these coarse

outputs back to the pixels. Section 3.2 describes a trick, fast

scanning [11], introduced for this purpose. We gain insight

into this trick by reinterpreting it as an equivalent network

modification. As an efficient, effective alternative, we in-

troduce deconvolution layers for upsampling in Section 3.3.

In Section 3.4 we consider training by patchwise sampling,

and give evidence in Section 4.3 that our whole image train-

ing is faster and equally effective.

3.1. Adapting classifiers for dense prediction

Typical recognition nets, including LeNet [21], AlexNet

[20], and its deeper successors [31, 32], ostensibly take

fixed-sized inputs and produce non-spatial outputs. The

fully connected layers of these nets have fixed dimensions

and throw away spatial coordinates. However, these fully

connected layers can also be viewed as convolutions with

kernels that cover their entire input regions. Doing so casts

them into fully convolutional networks that take input of

any size and output classification maps. This transforma-

tion is illustrated in Figure 2.
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Figure 2. Transforming fully connected layers into convolution

layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-

chine for end-to-end dense learning.

Furthermore, while the resulting maps are equivalent to

the evaluation of the original net on particular input patches,

the computation is highly amortized over the overlapping

regions of those patches. For example, while AlexNet takes

1.2 ms (on a typical GPU) to infer the classification scores

of a 227×227 image, the fully convolutional net takes 22 ms

to produce a 10×10 grid of outputs from a 500×500 image,

which is more than 5 times faster than the naı̈ve approach1.

The spatial output maps of these convolutionalized mod-

els make them a natural choice for dense problems like se-

mantic segmentation. With ground truth available at ev-

ery output cell, both the forward and backward passes are

straightforward, and both take advantage of the inherent

computational efficiency (and aggressive optimization) of

convolution. The corresponding backward times for the

AlexNet example are 2.4 ms for a single image and 37 ms

for a fully convolutional 10× 10 output map, resulting in a

speedup similar to that of the forward pass.

While our reinterpretation of classification nets as fully

convolutional yields output maps for inputs of any size, the

output dimensions are typically reduced by subsampling.

The classification nets subsample to keep filters small and

computational requirements reasonable. This coarsens the

output of a fully convolutional version of these nets, reduc-

ing it from the size of the input by a factor equal to the pixel

stride of the receptive fields of the output units.

3.2. Shiftandstitch is filter rarefaction

Dense predictions can be obtained from coarse outputs

by stitching together output from shifted versions of the in-

put. If the output is downsampled by a factor of f , shift the

input x pixels to the right and y pixels down, once for every

(x, y) s.t. 0 ≤ x, y < f . Process each of these f2 inputs,

and interlace the outputs so that the predictions correspond

to the pixels at the centers of their receptive fields.

1Assuming efficient batching of single image inputs. The classification

scores for a single image by itself take 5.4 ms to produce, which is nearly

25 times slower than the fully convolutional version.



Although performing this transformation naı̈vely in-

creases the cost by a factor of f2, there is a well-known trick

for efficiently producing identical results [11, 29] known

to the wavelet community as the à trous algorithm [25].

Consider a layer (convolution or pooling) with input stride

s, and a subsequent convolution layer with filter weights

fij (eliding the irrelevant feature dimensions). Setting the

lower layer’s input stride to 1 upsamples its output by a

factor of s. However, convolving the original filter with

the upsampled output does not produce the same result as

shift-and-stitch, because the original filter only sees a re-

duced portion of its (now upsampled) input. To reproduce

the trick, rarefy the filter by enlarging it as

f ′
ij =

{

fi/s,j/s if s divides both i and j;

0 otherwise,

(with i and j zero-based). Reproducing the full net output

of the trick involves repeating this filter enlargement layer-

by-layer until all subsampling is removed. (In practice, this

can be done efficiently by processing subsampled versions

of the upsampled input.)

Decreasing subsampling within a net is a tradeoff: the fil-

ters see finer information, but have smaller receptive fields

and take longer to compute. The shift-and-stitch trick is

another kind of tradeoff: the output is denser without de-

creasing the receptive field sizes of the filters, but the filters

are prohibited from accessing information at a finer scale

than their original design.

Although we have done preliminary experiments with

this trick, we do not use it in our model. We find learn-

ing through upsampling, as described in the next section, to

be more effective and efficient, especially when combined

with the skip layer fusion described later on.

3.3. Upsampling is backwards strided convolution

Another way to connect coarse outputs to dense pixels

is interpolation. For instance, simple bilinear interpolation

computes each output yij from the nearest four inputs by a

linear map that depends only on the relative positions of the

input and output cells.

In a sense, upsampling with factor f is convolution with

a fractional input stride of 1/f . So long as f is integral, a

natural way to upsample is therefore backwards convolution

(sometimes called deconvolution) with an output stride of

f . Such an operation is trivial to implement, since it simply

reverses the forward and backward passes of convolution.

Thus upsampling is performed in-network for end-to-end

learning by backpropagation from the pixelwise loss.

Note that the deconvolution filter in such a layer need not

be fixed (e.g., to bilinear upsampling), but can be learned.

A stack of deconvolution layers and activation functions can

even learn a nonlinear upsampling.

In our experiments, we find that in-network upsampling

is fast and effective for learning dense prediction. Our best

segmentation architecture uses these layers to learn to up-

sample for refined prediction in Section 4.2.

3.4. Patchwise training is loss sampling

In stochastic optimization, gradient computation is

driven by the training distribution. Both patchwise train-

ing and fully convolutional training can be made to pro-

duce any distribution, although their relative computational

efficiency depends on overlap and minibatch size. Whole

image fully convolutional training is identical to patchwise

training where each batch consists of all the receptive fields

of the units below the loss for an image (or collection of

images). While this is more efficient than uniform sampling

of patches, it reduces the number of possible batches. How-

ever, random selection of patches within an image may be

recovered simply. Restricting the loss to a randomly sam-

pled subset of its spatial terms (or, equivalently applying a

DropConnect mask [36] between the output and the loss)

excludes patches from the gradient computation.

If the kept patches still have significant overlap, fully

convolutional computation will still speed up training. If

gradients are accumulated over multiple backward passes,

batches can include patches from several images.2

Sampling in patchwise training can correct class imbal-

ance [27, 7, 2] and mitigate the spatial correlation of dense

patches [28, 15]. In fully convolutional training, class bal-

ance can also be achieved by weighting the loss, and loss

sampling can be used to address spatial correlation.

We explore training with sampling in Section 4.3, and do

not find that it yields faster or better convergence for dense

prediction. Whole image training is effective and efficient.

4. Segmentation Architecture

We cast ILSVRC classifiers into FCNs and augment

them for dense prediction with in-network upsampling and

a pixelwise loss. We train for segmentation by fine-tuning.

Next, we add skips between layers to fuse coarse, semantic

and local, appearance information. This skip architecture is

learned end-to-end to refine the semantics and spatial preci-

sion of the output.

For this investigation, we train and validate on the PAS-

CAL VOC 2011 segmentation challenge [6]. We train with

a per-pixel multinomial logistic loss and validate with the

standard metric of mean pixel intersection over union, with

the mean taken over all classes, including background. The

training ignores pixels that are masked out (as ambiguous

or difficult) in the ground truth.

2Note that not every possible patch is included this way, since the re-

ceptive fields of the final layer units lie on a fixed, strided grid. However,

by shifting the image right and down by a random value up to the stride,

random selection from all possible patches may be recovered.



image pool4 pool5pool1 pool2 pool3conv1 conv2 conv3 conv4 conv5 conv6-7
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Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are

shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-

stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining

predictions from both the final layer and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic

information. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further precision.

4.1. From classifier to dense FCN

We begin by convolutionalizing proven classification ar-

chitectures as in Section 3. We consider the AlexNet3 ar-

chitecture [20] that won ILSVRC12, as well as the VGG

nets [31] and the GoogLeNet4 [32] which did exception-

ally well in ILSVRC14. We pick the VGG 16-layer net5,

which we found to be equivalent to the 19-layer net on this

task. For GoogLeNet, we use only the final loss layer, and

improve performance by discarding the final average pool-

ing layer. We decapitate each net by discarding the final

classifier layer, and convert all fully connected layers to

convolutions. We append a 1 × 1 convolution with chan-

nel dimension 21 to predict scores for each of the PAS-

CAL classes (including background) at each of the coarse

output locations, followed by a deconvolution layer to bi-

linearly upsample the coarse outputs to pixel-dense outputs

as described in Section 3.3. Table 1 compares the prelim-

inary validation results along with the basic characteristics

of each net. We report the best results achieved after con-

vergence at a fixed learning rate (at least 175 epochs).

Fine-tuning from classification to segmentation gave rea-

sonable predictions for each net. Even the worst model

achieved ∼ 75% of state-of-the-art performance. The

segmentation-equipped VGG net (FCN-VGG16) already

3Using the publicly available CaffeNet reference model.
4Since there is no publicly available version of GoogLeNet, we use

our own reimplementation. Our version is trained with less extensive data

augmentation, and gets 68.5% top-1 and 88.4% top-5 ILSVRC accuracy.
5Using the publicly available version from the Caffe model zoo.

Table 1. We adapt and extend three classification convnets. We

compare performance by mean intersection over union on the vali-

dation set of PASCAL VOC 2011 and by inference time (averaged

over 20 trials for a 500 × 500 input on an NVIDIA Tesla K40c).

We detail the architecture of the adapted nets with regard to dense

prediction: number of parameter layers, receptive field size of out-

put units, and the coarsest stride within the net. (These numbers

give the best performance obtained at a fixed learning rate, not best

performance possible.)

FCN-

AlexNet

FCN-

VGG16

FCN-

GoogLeNet4

mean IU 39.8 56.0 42.5

forward time 50 ms 210 ms 59 ms

conv. layers 8 16 22

parameters 57M 134M 6M

rf size 355 404 907

max stride 32 32 32

appears to be state-of-the-art at 56.0 mean IU on val, com-

pared to 52.6 on test [15]. Training on extra data raises

FCN-VGG16 to 59.4 mean IU and FCN-AlexNet to 48.0

mean IU on a subset of val7. Despite similar classification

accuracy, our implementation of GoogLeNet did not match

the VGG16 segmentation result.

4.2. Combining what and where

We define a new fully convolutional net (FCN) for seg-

mentation that combines layers of the feature hierarchy and

refines the spatial precision of the output. See Figure 3.

While fully convolutionalized classifiers can be fine-



tuned to segmentation as shown in 4.1, and even score

highly on the standard metric, their output is dissatisfyingly

coarse (see Figure 4). The 32 pixel stride at the final predic-

tion layer limits the scale of detail in the upsampled output.

We address this by adding skips [1] that combine the

final prediction layer with lower layers with finer strides.

This turns a line topology into a DAG, with edges that skip

ahead from lower layers to higher ones (Figure 3). As they

see fewer pixels, the finer scale predictions should need

fewer layers, so it makes sense to make them from shallower

net outputs. Combining fine layers and coarse layers lets the

model make local predictions that respect global structure.

By analogy to the jet of Koenderick and van Doorn [19], we

call our nonlinear feature hierarchy the deep jet.

We first divide the output stride in half by predicting

from a 16 pixel stride layer. We add a 1 × 1 convolution

layer on top of pool4 to produce additional class predic-

tions. We fuse this output with the predictions computed

on top of conv7 (convolutionalized fc7) at stride 32 by

adding a 2× upsampling layer and summing6 both predic-

tions (see Figure 3). We initialize the 2× upsampling to bi-

linear interpolation, but allow the parameters to be learned

as described in Section 3.3. Finally, the stride 16 predic-

tions are upsampled back to the image. We call this net

FCN-16s. FCN-16s is learned end-to-end, initialized with

the parameters of the last, coarser net, which we now call

FCN-32s. The new parameters acting on pool4 are zero-

initialized so that the net starts with unmodified predictions.

The learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the val-

idation set by 3.0 mean IU to 62.4. Figure 4 shows im-

provement in the fine structure of the output. We compared

this fusion with learning only from the pool4 layer, which

resulted in poor performance, and simply decreasing the

learning rate without adding the skip, which resulted in an

insignificant performance improvement without improving

the quality of the output.

We continue in this fashion by fusing predictions from

pool3 with a 2× upsampling of predictions fused from

pool4 and conv7, building the net FCN-8s. We obtain

a minor additional improvement to 62.7 mean IU, and find

a slight improvement in the smoothness and detail of our

output. At this point our fusion improvements have met di-

minishing returns, both with respect to the IU metric which

emphasizes large-scale correctness, and also in terms of the

improvement visible e.g. in Figure 4, so we do not continue

fusing even lower layers.

Refinement by other means Decreasing the stride of

pooling layers is the most straightforward way to obtain

finer predictions. However, doing so is problematic for our

VGG16-based net. Setting the pool5 stride to 1 requires

our convolutionalized fc6 to have kernel size 14 × 14 to

6Max fusion made learning difficult due to gradient switching.

FCN-32s FCN-16s FCN-8s Ground truth

Figure 4. Refining fully convolutional nets by fusing information

from layers with different strides improves segmentation detail.

The first three images show the output from our 32, 16, and 8

pixel stride nets (see Figure 3).

Table 2. Comparison of skip FCNs on a subset7 of PASCAL VOC

2011 segval. Learning is end-to-end, except for FCN-32s-fixed,

where only the last layer is fine-tuned. Note that FCN-32s is FCN-

VGG16, renamed to highlight stride.

pixel

acc.

mean

acc.

mean

IU

f.w.

IU

FCN-32s-fixed 83.0 59.7 45.4 72.0

FCN-32s 89.1 73.3 59.4 81.4

FCN-16s 90.0 75.7 62.4 83.0

FCN-8s 90.3 75.9 62.7 83.2

maintain its receptive field size. In addition to their com-

putational cost, we had difficulty learning such large filters.

We attempted to re-architect the layers above pool5 with

smaller filters, but did not achieve comparable performance;

one possible explanation is that the ILSVRC initialization

of the upper layers is important.

Another way to obtain finer predictions is to use the shift-

and-stitch trick described in Section 3.2. In limited exper-

iments, we found the cost to improvement ratio from this

method to be worse than layer fusion.

4.3. Experimental framework

Optimization We train by SGD with momentum. We

use a minibatch size of 20 images and fixed learning rates of

10−3, 10−4, and 5−5 for FCN-AlexNet, FCN-VGG16, and

FCN-GoogLeNet, respectively, chosen by line search. We

use momentum 0.9, weight decay of 5−4 or 2−4, and dou-

bled learning rate for biases, although we found training to

be sensitive to the learning rate alone. We zero-initialize the

class scoring layer, as random initialization yielded neither

better performance nor faster convergence. Dropout was in-

cluded where used in the original classifier nets.

Fine-tuning We fine-tune all layers by back-

propagation through the whole net. Fine-tuning the

output classifier alone yields only 70% of the full fine-

tuning performance as compared in Table 2. Training from

scratch is not feasible considering the time required to

learn the base classification nets. (Note that the VGG net is

trained in stages, while we initialize from the full 16-layer
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Figure 5. Training on whole images is just as effective as sampling

patches, but results in faster (wall time) convergence by making

more efficient use of data. Left shows the effect of sampling on

convergence rate for a fixed expected batch size, while right plots

the same by relative wall time.

version.) Fine-tuning takes three days on a single GPU for

the coarse FCN-32s version, and about one day each to

upgrade to the FCN-16s and FCN-8s versions.

More Training Data The PASCAL VOC 2011 segmen-

tation training set labels 1112 images. Hariharan et al. [14]

collected labels for a larger set of 8498 PASCAL training

images, which was used to train the previous state-of-the-

art system, SDS [15]. This training data improves the FCN-

VGG16 validation score7 by 3.4 points to 59.4 mean IU.

Patch Sampling As explained in Section 3.4, our full

image training effectively batches each image into a regu-

lar grid of large, overlapping patches. By contrast, prior

work randomly samples patches over a full dataset [27, 2, 7,

28, 9], potentially resulting in higher variance batches that

may accelerate convergence [22]. We study this tradeoff by

spatially sampling the loss in the manner described earlier,

making an independent choice to ignore each final layer cell

with some probability 1 − p. To avoid changing the effec-

tive batch size, we simultaneously increase the number of

images per batch by a factor 1/p. Note that due to the ef-

ficiency of convolution, this form of rejection sampling is

still faster than patchwise training for large enough values

of p (e.g., at least for p > 0.2 according to the numbers

in Section 3.1). Figure 5 shows the effect of this form of

sampling on convergence. We find that sampling does not

have a significant effect on convergence rate compared to

whole image training, but takes significantly more time due

to the larger number of images that need to be considered

per batch. We therefore choose unsampled, whole image

training in our other experiments.

Class Balancing Fully convolutional training can bal-

ance classes by weighting or sampling the loss. Although

our labels are mildly unbalanced (about 3/4 are back-

ground), we find class balancing unnecessary.

Dense Prediction The scores are upsampled to the input

dimensions by deconvolution layers within the net. Final

7There are training images from [14] included in the PASCAL VOC

2011 val set, so we validate on the non-intersecting set of 736 images.

layer deconvolutional filters are fixed to bilinear interpola-

tion, while intermediate upsampling layers are initialized to

bilinear upsampling, and then learned.

Augmentation We tried augmenting the training data

by randomly mirroring and “jittering” the images by trans-

lating them up to 32 pixels (the coarsest scale of prediction)

in each direction. This yielded no noticeable improvement.

Implementation All models are trained and tested with

Caffe [18] on a single NVIDIA Tesla K40c. Our models

and code are publicly available at

http://fcn.berkeleyvision.org.

5. Results

We test our FCN on semantic segmentation and scene

parsing, exploring PASCAL VOC, NYUDv2, and SIFT

Flow. Although these tasks have historically distinguished

between objects and regions, we treat both uniformly as

pixel prediction. We evaluate our FCN skip architecture on

each of these datasets, and then extend it to multi-modal in-

put for NYUDv2 and multi-task prediction for the semantic

and geometric labels of SIFT Flow.

Metrics We report four metrics from common semantic

segmentation and scene parsing evaluations that are varia-

tions on pixel accuracy and region intersection over union

(IU). Let nij be the number of pixels of class i predicted to

belong to class j, where there are ncl different classes, and

let ti =
∑

j nij be the total number of pixels of class i. We

compute:

• pixel accuracy:
∑

i nii/
∑

i ti

• mean accuraccy: (1/ncl)
∑

i nii/ti

• mean IU: (1/ncl)
∑

i nii/
(

ti +
∑

j nji − nii

)

• frequency weighted IU:

(
∑

k tk)
−1 ∑

i tinii/
(

ti +
∑

j nji − nii

)

PASCAL VOC Table 3 gives the performance of our

FCN-8s on the test sets of PASCAL VOC 2011 and 2012,

and compares it to the previous state-of-the-art, SDS [15],

and the well-known R-CNN [10]. We achieve the best re-

sults on mean IU8 by a relative margin of 20%. Inference

time is reduced 114× (convnet only, ignoring proposals and

refinement) or 286× (overall).

Table 3. Our fully convolutional net gives a 20% relative improve-

ment over the state-of-the-art on the PASCAL VOC 2011 and 2012

test sets and reduces inference time.

mean IU mean IU inference

VOC2011 test VOC2012 test time

R-CNN [10] 47.9 - -

SDS [15] 52.6 51.6 ∼ 50 s

FCN-8s 62.7 62.2 ∼ 175 ms

NYUDv2 [30] is an RGB-D dataset collected using the

8This is the only metric provided by the test server.

http://fcn.berkeleyvision.org


Table 4. Results on NYUDv2. RGBD is early-fusion of the

RGB and depth channels at the input. HHA is the depth embed-

ding of [13] as horizontal disparity, height above ground, and

the angle of the local surface normal with the inferred gravity

direction. RGB-HHA is the jointly trained late fusion model

that sums RGB and HHA predictions.

pixel

acc.

mean

acc.

mean

IU

f.w.

IU

Gupta et al. [13] 60.3 - 28.6 47.0

FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5

FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0

FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

Microsoft Kinect. It has 1449 RGB-D images, with pixel-

wise labels that have been coalesced into a 40 class seman-

tic segmentation task by Gupta et al. [12]. We report results

on the standard split of 795 training images and 654 testing

images. (Note: all model selection is performed on PAS-

CAL 2011 val.) Table 4 gives the performance of our model

in several variations. First we train our unmodified coarse

model (FCN-32s) on RGB images. To add depth informa-

tion, we train on a model upgraded to take four-channel

RGB-D input (early fusion). This provides little benefit,

perhaps due to the difficultly of propagating meaningful

gradients all the way through the model. Following the suc-

cess of Gupta et al. [13], we try the three-dimensional HHA

encoding of depth, training nets on just this information, as

well as a “late fusion” of RGB and HHA where the predic-

tions from both nets are summed at the final layer, and the

resulting two-stream net is learned end-to-end. Finally we

upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels

for 33 semantic categories (“bridge”, “mountain”, “sun”),

as well as three geometric categories (“horizontal”, “verti-

cal”, and “sky”). An FCN can naturally learn a joint repre-

sentation that simultaneously predicts both types of labels.

We learn a two-headed version of FCN-16s with seman-

tic and geometric prediction layers and losses. The learned

model performs as well on both tasks as two independently

trained models, while learning and inference are essentially

as fast as each independent model by itself. The results in

Table 5, computed on the standard split into 2,488 training

and 200 test images,9 show state-of-the-art performance on

both tasks.

6. Conclusion

Fully convolutional networks are a rich class of mod-

els, of which modern classification convnets are a spe-

cial case. Recognizing this, extending these classification

9Three of the SIFT Flow categories are not present in the test set. We

made predictions across all 33 categories, but only included categories ac-

tually present in the test set in our evaluation.

Table 5. Results on SIFT Flow9 with class segmentation

(center) and geometric segmentation (right). Tighe [33] is

a non-parametric transfer method. Tighe 1 is an exemplar

SVM while 2 is SVM + MRF. Farabet is a multi-scale con-

vnet trained on class-balanced samples (1) or natural frequency

samples (2). Pinheiro is a multi-scale, recurrent convnet, de-

noted RCNN3 (◦
3). The metric for geometry is pixel accuracy.

pixel

acc.

mean

acc.

mean

IU

f.w.

IU

geom.

acc.

Liu et al. [23] 76.7 - - - -

Tighe et al. [33] - - - - 90.8

Tighe et al. [34] 1 75.6 41.1 - - -

Tighe et al. [34] 2 78.6 39.2 - - -

Farabet et al. [7] 1 72.3 50.8 - - -

Farabet et al. [7] 2 78.5 29.6 - - -

Pinheiro et al. [28] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [15] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-

of-the-art performance on PASCAL. The left column shows the

output of our highest performing net, FCN-8s. The second shows

the segmentations produced by the previous state-of-the-art system

by Hariharan et al. [15]. Notice the fine structures recovered (first

row), ability to separate closely interacting objects (second row),

and robustness to occluders (third row). The fourth row shows a

failure case: the net sees lifejackets in a boat as people.

nets to segmentation, and improving the architecture with

multi-resolution layer combinations dramatically improves

the state-of-the-art, while simultaneously simplifying and

speeding up learning and inference.
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