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Abstract. In several emerging applications, data is collected in massive streams at several dis-
tributed points of observation. A basic and challenging task is to allow every node to monitor a
neighbourhood of interest by issuing continuous aggregate queries on the streams observed in its
vicinity. This class of algorithms is fully decentralized and diffusive in nature: collecting all data at
few central nodes of the network is unfeasible in networks of low capability devices or in the presence
of massive data sets. The main difficulty in designing diffusive algorithms is to cope with duplicate
detections. These arise both from the observation of the same event at several nodes of the network
and/or receipt of the same aggregated information along multiple paths of diffusion.
In this paper, we consider fully decentralized algorithms that answer locally continuous aggregate
queries on the number of distinct events, total number of events and the second frequency moment in
the scenario outlined above. The proposed algorithms use in the worst case or on realistic distributions
sublinear space at every node. We also propose strategies that minimize the communication needed
to update the aggregates when new events are observed. We finally present experimental analysis
providing evidence for the efficiency and accuracy of the proposed strategies on realistic simulated
scenarios.
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1 Introduction

A variety of emerging network applications are based on spreading a large number of network devices, over
a broad area. Examples are the continuous and distributed monitoring of IP traffic flows, in which data is
collected at multiple points of observation and real-time analysis is performed on aggregated streams, or
the use of sensing devices, connected in a wireless sensor network, for environmental monitoring. Sensing
devices observe large amounts of events in their surroundings. These events are recorded and processed by
nodes in the form of streams of data. In sensor databases we are required to answer aggregate queries over
the streams of data, while in distributed monitoring applications we are interested in monitoring the events
observed by the sensing devices, for instance the movement of objects or measurements of environment
parameters. A number of constraints is imposed in these applications by the limited resources available at
the sensing devices:
1. Communication is the most power consuming operation. Transmission of data to neighbor nodes must
carefully be optimized in order to ensure a longer life to battery operated devices. A direct consequence is
that large streams of raw data cannot be transmitted between nodes.
2. Sensing devices are limited in computational power. The data received from the nodes can often only
be processed on the fly in a streaming fashion.
3. Sensing devices have limited storage capacity. Data can be stored, even locally, only in aggregate form.

It is a basic and challenging task to provision the network with primitives that allow every node to
monitor its surrounding by issuing continuous aggregate queries on the streams of events observed by all
nodes reachable within a few hops. A number of specific issues need to be addressed when querying and
monitoring distributed streams of data:
Continuous queries. Differently from traditional databases, these applications are expected to answer long
running queries, notifying the application whenever a new answer is found. This occurs for instance in



applications that raise an alert whenever a specific event happens, or some measurement of interest exceeds
a given threshold.
Distributed streams. One first difficulty to handle when processing aggregate queries on distributed streams
is to discriminate events that have been observed at multiple nodes of the network. For instance, this
problem arises naturally for terrain monitoring applications, where sensing devices need to monitor objects
that move across an area, or in point-to-point communication when packets are observed along all the nodes
of a path. One second difficulty to handle is that nodes are inherently unreliable: they switch on and off
in order to optimize power consumption, they are prone to communication faults and to power outage. In
several important cases it is therefore impossible to aggregate information using hierarchical structures,
e.g. trees, where faults at single nodes of the network may disrupt the whole structure. It is also impossible
to rely on very few nodes for collecting the aggregates on raw data produced in the network.
Local queries. In sensor databases applications, aggregate queries may be issued by any node of the network
and the answer restricted to the observations made in a neighborhood of interest. Power consumption is
optimized if the nodes can decide to operate only when their observations differ substantially from other
nodes in their vicinity.

Decentralized algorithms addressing the issues above are inherently diffusive in nature. The problem
of detecting duplicates in aggregate information is now magnified, since a node will receive the same data
as part of aggregates received through multiple paths of propagation. In this paper we’ll make substantial
progresses by showing how a set of continuous aggregate queries can be processed from fully decentralized
algorithms on distributed streams of data.

1.1 Our Contribution

The design of algorithms for the computation of aggregates within suitable neighbourhoods of all nodes of
a network entails two fundamental aspects:
1. The algorithm used to summarize the scenario of interest. For any node u it requires a compact summary,
or sketch in the sequel, of the stream of events observed from u that is composable and duplicate insensitive
[7, 9]: it is possible to merge the sketches of a set of nodes U to form a sketch of the union of the streams
of events observed by all nodes of U . In the sequel, we consider the natural case in which U is the set of
neighbors within l hops from a node u, for some l ≥ 0.
2. How and when information is propagated. This in turn requires i) addressing communication costs and
ii) estimating the (further) error introduced by delay in communication.

Given the massive data sets we are interested in, we impose constraints on the memory requirements
for the computation and the overall amount of data exchanged to perform the task. Namely, i) the amount
of memory used at every node of the network should be polylogarithmic in the number of nodes of the
network and in the size of the streams. ii) The communication complexity measured in terms of the overall
number of messages exchanged among nodes to perform the task. Below is a list of the main contributions
of our work:
1. We define a very general distributed streaming scenario and we describe compact distributed data
structures and a communication scheme to keep track of statistic aggregates over distributed data streams.
We are able to answer at any node of the network continuous queries on the number of distinct events, total
number of events and the second frequency moment (size of Self-join) over the streams observed within a
suitably defined neighborhood of each node.
2. These algorithms require only polylogarithmic storage space at each node of the network for number of
distinct events, and the total number of events. For the second frequency moment we show a polylogarithmic
bound on the storage size at each node when the distribution of events follows a Zipf’s law. Observe that
in [10] no polylogarithmic upper bound is given on the amount of space needed to estimate the second
frequency moment on data streams with duplicates, whereas a Ω(

√
n) lower bound is provided in the worst

case for algorithms based on uniform sampling.
3. We show optimized implementations and tests on large scale real and synthetic datasets and realistic
network topologies. Experimental results show that the fully decentralized strategies we consider achieve
in practice very good bounds on storage, computation and communication costs while providing a good
approximation of the statistics of interest.



4. We characterize the trade-off between the worst case communication cost and accuracy for the sketch
schemes we consider. Moreover, we experimentally evaluate the performance of a conservative strategy to
trade off communication costs and accuracy, proposed in [11] for a special case of the scenario considered
in this paper.

Organization of the paper. In Section 2 we introduce the model and notation we use in the rest of
the paper. In Section 3 we outline our overall approach and discuss sketch schemes for fully decentralized
estimation of F0, F1 and F2 in the presence of duplicates. For F2, we also present the analysis for the
important case of skewed data. In Section 5 we address the fully decentralized implementation of the
sketches we consider and show how to optimize the amount of communication exchanged among nodes of
the network. In Section 6 we show the experimental evaluation of the algorithms.

1.2 Related work

An excellent survey of distributed streaming techniques has recently been provided in [8]. They distinguish
between one-shot queries and continuous queries. Tree-based aggregation for approximately answering of
one shot holistic queries use composable data synopses, as for instance CM sketches [9] for point query,
range queries, quantiles, AMS sketches [2, 3] for frequency moments, FM [14] sketches for counting distinct
items. Greenwald and Khanna [16] also propose decomposable synopses for computing quantiles that can
be adapted to tree-based aggregation.

Alternative to tree-based aggregation is broadcasting to all neighbor vertices till the summaries reach
the aggregation node of the network. These proposals need to exploit synopses that are order and du-
plicate insensitive as those proposed from Considine et al. [7], FM sketches [14], CM sketches [9], and
duplicate-insensitive aggregation schemes [10] that propose duplicate insensitive estimation of the second
frequency moment for a single aggregating point. However, even in the restricted case addressed in [10],
no polylogarithmic upper bound on the needed space is given.

Decentralized computation with every node in the graph taking part in the computation and receiving
the computed value has been proposed in [19, 20] for computing max, sum, avg and distinct items. This
model is similar in spirit to our proposal with two main differences: a. in our setting we cannot assume
direct communication between any pair of nodes in the network; b. we are interested in holistic aggregates
at the local neighbor of any node of the network.

Main issue addressed so far in processing continuous queries on distributed data streams is to reduce
the communication overhead between remote nodes and the aggregating point by allowing some slack in
the estimation. In [5] the problem of distributing the slack between the participating sites is addressed
for Top-k computation on distributed streams. In [11] several strategies of communication between the
coordinating site and the distributed participants are studied for duplicate-insensitive aggregates as FM
sketches and distinct sampling [15].

2 Model and Preliminaries

Model. We assume an undirected graph G = (V,A), representing entities connected over a communication
network. Without loss of generality we assume all communication edges bidirectional. Every node in the
network observes a stream of data over time. We denote by S(u) the stream at node u. Each element of
S(u) is an (item, attribute) pair (i, a), where i is a value that we assume to be in [n] = {0, 1, . . . , n−1}, and
a is an attribute from a discrete domain A. Since all statistics we consider are order insensitive, S(u) may
be regarded as a multiset of pairs, each pair with a multiplicity equal to the number of times it appears
in the stream. Considered any stream S, we also define the base set B(S), i.e., the set of distinct pairs
appearing in S. In the sequel, loosely speaking, we often use the expression event to mean the observation
of an (item, attribute) pair at some node of the network. Given a subset U ⊂ V , we define S(U) in the
natural way as ∪u∈US(u), where the multiplicity of a pair (i, a) in S(U) is the sum of its multiplicities in
S(u),∀u ∈ U . For l ≥ 0, Nl(u) denotes the subset of G’s vertices within distance l from u. In the sequel,
we write B(U) instead of B(S(U)) for the sake of coinciseness.
Statistics. The general problem we are interested in is the following: Given l ≥ 0, for every u ∈ V ,
compute some statistics over B(Nl(u)). Depending on the choice of the attribute, we’ll be able to estimate
different aggregates of interest. Considered a stream S, we denote by mi(S) (or simply mi when no



confusion arises) the number of distinct pairs (i, a) in S: mi = |B(S)|, for every i ∈ [n]. The p-th frequency
moment of S is Fp =

∑
i∈S mp

i . When considering S(u) for some vertex u or S(U) for some subset U of
vertices, abusing notation we write mi(u), Fp(u), mi(U) and Fp(U) for mi(S(u)), Fp(S(u)), mi(S(U)) and
Fp(S(U)) respectively. In the sequel, we consider F0, the number of distinct items, F1, the total number
of distinct pairs in the stream, and F2, the second frequency moment over the set of distinct pairs.
Communication. We make the minimal assumption that in a round of communication a node can only
broadcast a message to the set of its immediate neighbours. We make no assumptions as to the topological
structure of the neighbourhood of a node or the way in which communication is performed. Our model has
an immediate practical counterpart in wireless networks in which communication occurs over a broadcast
channel, while in other cases a round of communication may actually involve multiple transmissions along
point-to-point connections.

3 Overview of the approach

Each node in the network observes a local stream over time and keeps a compact summary or sketch
thereof, which depends on the application of interest. Consider a streaming algorithm A. We denote by
SkA the function used by A to compute sketches and by SkA(S) the sketch computed by A at the end
of the observation of a stream S3. In the setting we consider, every node u locally maintains two sketches
Sk(S(u)) and Sk(S(Nl(u))) and performs the following actions:

i. when a pair (i, a) is observed at u, the node updates Sk(S(u)) and Sk(S(Nl(u))) in a way that depends
on the statistics of interest and the sketching algorithm used;

ii. if u receives a sketch Sk(S(v)) originating from a node v (i.e., an update of Sk(S(v))), u updates
Sk(S(Nl(u))) to reflect the new observations done at v and forwards the update to its neighbours, as
long as its distance from v is less than l;

iii. u continuously monitors the current estimate of the statistics of interest over S(u). If this value differs
from the most recently propagated value significantly, the current value of Sk(S(u)) is propagated to
u’s immediate neighbours.

Step ii. is achieved using messages that contain a TTL (Time To Live) field, which is decremented at
each node reached by the message, as is customary in gossip-based network protocols.

Clearly, not all sketches are suitable for our setting. Following previous work, we consider sketches that
are composable and duplicate insensitive [21, 7, 17]. Considered an order insensitive statistics of interest, a
sketching algorithm A for its estimation is composable if, given two streams S1 and S2, SkA(S1 ∪ S2) =
merge(Sk(S1), Sk(S2)), where merge(·) is a suitable sketch aggregation function that depends on A and
the statistics of interest [7]. A sketching algorithm is duplicate insensitive if, considered any stream S,
Sk(S) = Sk(B(S)) (where B(S) is regarded as a multiset). In next Section, we address the problem of
designing accurate, composable and duplicate insensitive sketches for the primitives of interest in this
paper.

4 Composable and duplicate insensitive sketches

4.1 Maintaining F0 and F1

The basic tool we consider is a counting sketch, i.e., a composable and duplicate insensitive counter of the
number of distinct (i, a) pairs appearing in a stream S. In the sequel, we consider two approaches: the
first is the original approach of Flajolet and Martin, considered in [11] and modified in [?]. The second
is a slightly different technique proposed in [6]. Since these are well established techniques, we only give
an overview to make the paper self-contained, referring the reader to [14,?,11, 6] for details. The use of
composable and duplicate insensitive sketches has been considered previously for restricted distributed
settings, especially for data aggregation at the sink of a sensor network [21, 7, 17].

3 Note that we are in a dynamic context. Here and in the sequel, S(u) represents the stream observed at u until
present.



FM sketches. In the sequel, we use the phrase “FM sketch” to refer to any implementation of the original
counting sketch of [14]. FM sketches [14] use a simple approach in which each sketch is a vector of m entries,
each entry being a bitmap of length k = O(log M), with M an upper bound on the size of the universe.
In our setting, the universe is the set of possible (i, a) pairs, so that M ≤ n|A| (in practice, M = 2k, e.g.,
k = 64). Considered the s-th bitmap of the sketch. Every pair (item, attribute) (i, a) is hashed onto
the bitmap bits using a (independently chosen) hash function Hs(·) : [n]×A→ {0, . . . , log2 M − 1}, such
that the probability of hashing onto the h-th bit is 2−h. The bit under consideration is set to 1 if it was
0. After processing the stream, let rs denote the position of the least significant bit that is still 0 in the
s-th bitmap: rs is a good estimator for log2 F0, the logarithm of the number of distinct pairs observed. To
improve accuracy, we consider 1

m

∑m
s=1 rs as an estimator of log2 F0, where m = O

(
1
ε2 log 1

δ

)
.

Bar-Yossef et al. [6]. In this approach, the sketching algorithm maps every pair (i, a) to an integer using
a pairwise independent hash function h(·) and at any point in time it maintains the list of the L smallest
distinct values observed so far, where L = +96/ε2,, ε being the required precision. If v is the L-th smallest
distinct value maintained by the algorithm, LM/v is an estimator of F0, where M = n3 (see [6] for details).
Precision can be increased by the standard trick of considering m independent and parallel copies of the
algorithm and taking the median of the corresponding estimations, where again m = O

(
1
ε2 log 1

δ

)
.

Composability. Clearly, both sketches are composable and duplicate insensitive: Considered two streams
S1 and S2 over the same universe and their FM sketches SkFM (S1) and SkFM (S2), Sk(S1)ORSk(S2) is
the sketch corresponding to S1∪S2. As for the sketches of [6], every such sketch is an array of m lists, each
maintained according to the algorithm described above. Merging of two such sketches is simply achieved
as follows: for every s = 1, . . . ,m, merge the s-th lists of the two sketches and keep the L smallest values
of the merged list. Both approaches achieve similar bounds in terms of efficiency and precision, as stated
by the following

Theorem 1 ([11, 14, 6]). Considered a stream S of (item, attribute) pairs, it is possible to maintain an
estimate Ĉ of the number C of distinct pairs in S using O

(
1
ε2 log 1

δ

)
memory words, such that:

P
[
|Ĉ − C| > εC

]
≤ δ.

Any of the schemes outlined above can be used to maintain, for a stream S, an accurate and duplicate
insensitive sketch for F0(S) or F1(S). This is achieved by suitably defining attributes. For F0, we want to
count the number of distinct items observed in S. This is possible by setting a = null. As to F1, this is
the basic problem of counting the number of distinct pairs, therefore it can be maintained with the same
guarantees mentioned above.

4.2 Decentralized maintenance of F2 with duplicates

We adapt the method proposed by Achlioptas [1] to maintaining F2 with duplicates in a fully decentralized
setting. We show that the method achieves polylogarithmic space on skewed data.

Maintaining F2 using random projections The most effective approaches to efficiently maintain F2

in a centralized setting are based on random projections of the frequency vectors over a space of smaller
dimension. A similar approach, explicitely designed to maintain F2 over a data stream, was proposed in [?]
and extended in [13, 18]. Independently, a number of techniques have been proposed to achieve the more
general goal of maintaining pairwise euclidean distances of a set of vectors in lower dimensional space,
mostly extending or modifying a key result by Johnson and Lindenstrauss (see [12] for a relatively simple
proof). A substantial simplification of the original scheme that we adopt in this work was proposed by
Achlioptas [1].
Maintaining F2(S) in the absence of duplicates. In this case, (i, a), (i, b) ∈ S implies a -= b. Then, the
approach described in the above paragraphs immediately applies to m(S) as done in [?]: assume m is the
state of the frequency vector after the first t elements in S have been observed. At any time t, we maintain
m̂ = mR as follows: If the value of the t + 1-th item observed is i, m̂j = m̂j + ei · R for j = 1, . . . , d,
where ei is the n-dimensional row vector whose i-th component is 1, all other components being 0. So,
observation of i determines the addition or subtraction of 1 in every component of m̂.



Maintaining F2(S) in the presence of duplicates. When duplicates are present in S, we use the
“tug-of-war” sketch considered in [2, 10]. In particular, we notice that m̂j(S) = Ij(S)−Dj(S), where Ij(S)
(respectively, Dj(S)) counts the number of distinct (i, a) pairs observed in S that determine the addition
of +1 (addition of −1) to m̂j(S). Hence, for every j = 1, . . . , d, we can estimate Ij(S) and Dj(S) using the
techniques described in Section 3. More in detail, for every j, we maintain a counting sketch to estimate
Ij(S) (respectively Dj(S)). The overall tug-of-war sketch obtained this way consists of 2d counting sketches
and it is clearly duplicate insensitive and composable. In particular, to compose two tug-of-war sketches,
the component counting sketches are pairwise composed in the obvious way. Following the above paragraph
on maintaining the 2-norm, if Ĩj(S) (respectively, D̃j(S)) denotes the estimation of Ij(S) (respectively,
Dj(S)), our estimator of F2(S) is 1

d

∑d
j=1(Ij(S)−Dj(S))2.

Maintaining R. Maintaining R explicitely requires O(nd) space at every node, which is unfeasible.
Furthermore, if we want to compute F2 over the union stream of a subset of the vertices, it is necessary
that all nodes use the same random projection. In practice, all nodes generate the entries of R whenever
needed using the same pseudorandom generator (and thus polylogarithmic space). To generate Rij , u
computes the j-th value of the random generator with initial seed i. This way, all vertices generate the
same value for Rij . 4

Analysis for skewed data The best algorithm to maintain F2 with duplicates under general distributions
requires space O

(
1
ε4
√

n log n
)

[10]. In the same paper, the authors prove an Ω(
√

n) lower bound for
algorithms based on uniform sampling and it is an open question whether this bound indeed holds in
general.

In the present paper, we show that the algorithm described above provides an accurate estimation of F2

using polylogarithmic space for skewed data, which is the case in most applications of interest. We assume
that m(S) is distributed according to a Zipf law with parameter α > 1, i.e.: mi = M/iα. The analysis for
α ≤ 1 (showing decreasing accuracy as α decreases) proceeds along similar lines and will be given in the
full version of the paper5. Under these assumptions we are able to state the following theorem:

Theorem 2. If m(S) is distributed according to Zipf law with parameter α > 1, it is possible to compute
an estimation F̃2(S) such that:

P
[
|F̃2(S)− F2(S)| > 2εF2(S)

]
≤ δ,

by using an amount of O(( 1
ε4(α−1)4 log 1

δ )(log 1
ε + log 1

δ )) memory words per node.

Proof (Sketch of the proof). We consider F2(S) under the assumption that m(S) is distributed according
to a Zipf law with parameter α. We consider the case α > 1 in the sequel. We drop S in the rest of this
subsection, and we assume without loss of generality that m1 ≥ · · · ≥ mn:

mi =
M
iα

,

where M is a positive, integer constant. It is clear that by this definition the components of m will
be fractional. Assuming integer components does not affect the result, but it makes proofs much more
involved, so we do not consider this issue here. The proof of the following simple lemma is deferred to the
full paper.

Lemma 1. If m follows a Zipf law with parameter α > 1, for every n ≥ 2:

F2 ≥
M2

4α− 2
.

4 It is clear that the matrix generated this way no longer satisfies the independence assumptions of [1], but
choosing the pseudorandom generators independently for every column is in practice enough and is close to the
requirements of [?].

5 It is clear that by this definition the components of m will be fractional. Assuming integer components does not
affect the result, but it makes proofs much more involved.



We next characterize the error achieved by the overall algorithm. Note that this error has two sources:
i) the random projection; ii) the propagation algorithm.

In particular, recall that m̂ = mR and m̂j = Ij − Dj . In fact, Ij and Dj are estimated at u from
the corresponding FM sketches, so that u actually only computes two estimates Ĩj and D̃j of Ij and
Dj . In particular, consider realizations of Ij , Dj , Ĩj and D̃j and assume that Ĩj = (1 + ε1(j))Ij and
D̃j = (1 + ε2(j))Dj . The estimation of F2 using the projected vector would be 1

d

∑d
j=1 m̂2

j . In practice, u

computes a vector m̃ that is itself an estimation of m̂. In particular, m̃j = Ĩj − D̃j . This implies that our
actual estimation of F2 is F̃2 = 1

d

∑d
j=1 m̃2

j . The simple proof of the following lemma is given in the full
paper for the sake of space.

Lemma 2.

F̃2 =
1
d

d∑

j=1

(Ij −Dj)
2 + E,

where |E| ≤ 3
d

∑d
j=1 max{|ε1(j)|, |ε2(j)|}(Ij + Dj)2.

In the sequel, we show that i) 1
d

∑d
j=1(Ij −Dj)2 (i.e., the squared 2-norm of the projected vector) is

a close approximation of F2 with high probability; ii) |E| can be compensated by forcing the ε1(j)’s and
ε2(j)’s to be small enough. The first claim is just a restatement of Lemma 5.1 in [1].

Lemma 3 ([1]). Let S = 1
||m||22

∑d
j=1(Ij −Dj)2. With probability at least 1− δ

2 the following holds:

|S − d| ≤ εd,

whenever d ≥ 24
3ε2−2ε3 ln 4

δ .

Lemma 4. If d dimensions are used for the random projection, using memory O( d
ε2(α−1)4 log d

δ ) it is
possible to ensure that with probability at least 1− δ

2 the following holds:

|E| ≤ εF2.

Proof. First note that, for every j = 1, . . . , d:

Ij + Dj =

n∑

i=1

M
iα

< M + M

∫ n−1

2

1
iα

di <
α + 1
α− 1

M,

which implies (Ij + Dj)2 <
(

α+1
α−1

)2
M2 for every j.

Now, we represent every counter (2d counters) using counting sketch (see Theorem 1) consisting of

O

((
1
ε

)2
(

1
α−1

)4
ln d

δ

)
bitmaps. Choosing constants suitably, Theorem 1 allows to prove that:

P

[
|Ĩj − Ij | >

ε
12α− 6

(
α− 1
α + 1

)2

Ij

]
<

δ
4d

.

The same holds for D̃j and Dj . This implies:

P

[
∃j : max{|ε1(j)|, |ε2(j)|} >

ε
12α− 6

(
α− 1
α + 1

)2
]

<
δ
2
.

As a result, with probability at least 1− δ
2 :

|E| ≤ 3
d

d∑

j=1

max{|ε1(j)|, |ε2(j)|}(Ij + Dj)
2

<
3
d

d∑

j=1

ε
12α− 6

(
α− 1
α + 1

)2

(Ij + Dj)
2 < εF2,

where the third inequality follows from (Ij + Dj)2 <
(

α+1
α−1

)2
M2 and from Lemma 1.



PROCESSITEM(LS, GS, i, a, l)

Require: LS, GS: SKETCH, i: item, a:
attribute, l: distance

1: LS = UPDATESKETCH(LS, i, a)
2: GS = UPDATESKETCH(GS, i, a)
3: Stat = GENSTAT(LS)
4: if DIFF(Stat, Stat0) > threshold then
5: MS = BUILDMESSAGE(LS, l)
6: Send MS to u’s neighbours
7: Stat0 = Stat
8: end if

PROCESSMESSAGE(GS, MS)

Require: GS, SKETCH, MS: message
1: S = SKETCH(MS)
2: GS = MERGESKETCH(GS, S)
3: h = TTL(MS)
4: if h > 0 then
5: h = h - 1
6: MS = BUILDMESSAGE(S, h)
7: Send MS to u’s neighbours
8: else
9: Drop MS
10: end if

Fig. 1. Generic algorithm for continuous monitoring of statistics within distance l.

We can now prove the theorem.
Again, we drop S since clear from context. We apply Lemmas 3 and 4 with d = 24

3ε2−2ε3 ln 4
δ . Setting

Ŝ =
1
d

d∑

j=1

(Ij −Dj)
2,

Lemmas 3 and 4 imply that (|Ŝ − F2| ≤ εF2) ∧ (|E| < εF2) with probability at least 1 − δ, so that we
have:

P
[
|F̃2 − F2| > 2εF2

]
= P

[
|Ŝ + E − F2| > 2εF2

]

≤ P
[
|Ŝ − F2| + |E| > 2εF2

]
≤ P

[
|Ŝ − F2| > εF2

]

+P[|E| > εF2] ≤ δ.

The bound of Theorem 2 depends on the value of α and it becomes unbounded as α → 1. In fact, for
α = 1 we obtain a polylogarithmic bound independent of α and which is stronger than the one of Theorem
2 for values of α close to 1.

5 Distributed implementation and communication tradeoffs

In this section, we describe a distributed implementation of the primitives described in Section 4. Given
the composability and duplicate insensitivity of the sketches we consider, the results on the accuracy
immediately carry over, so we do not discuss this issue again.

5.1 Distributed implementation

Generic node behaviour (Figure 1). Upon observing a pair (i, a), node u invokes PROCESSITEM(S, i,
a, l) to update its local and global sketches LS and GS (lines 1 and 2) and the estimate of the statistics
of interest over S(u) (line 3). If this exceeds the last value sent6 by more than a given threshold (line 4), a
message MS containing LS’s update is built and sent, with initial TTL = l. Whenever u receives a message
from some neighbour v, containing v’s update of Sk(S(v)), PROCESSMESSAGE(S, MS) extracts the sketch
and updates u’s global sketch (lines 1 and 2). The TTL is decremented and, if larger than 0, the message
is forwarded to u’s neighbours. Note that this generalizes the “no sharing” update scheme of [11], where
they consider a star network topology with a single, central coordinator maintaining a global sketch (See
Subsection 5.2). It remains to show i) how sketches are updated and merged and ii) how the threshold is
defined. The former issue is briefly discussed in the next paragraphs for F0 (and F1) and for F2, while the
latter is addressed in Subsection 5.2.
Fully decentralized distinct counting. In this case, LS and GS in Figure 1 are counting sketches for the
estimation of F0(u) and F0(Nl(u)) respectively. Counting sketch update and merge operations and count
6 More precisely, whose corresponding sketch was sent.



estimation have been succintly described in Subsection 4.1. The pseudo-code of the main routines will be
described in the full paper for the sake of space.
Fully decentralized estimation of F2. In this case, LS and GS in Figure 1 are composite sketches for
the estimation of F2(u) and F2(Nl(u)) respectively. Following Subsection 4.2, LS and GS each consist of
2d counting sketches, where d is chosen according to Lemma 3. Considering LS (GS has exactly the same
structure), for every j = 1, . . . , d, the j-th sketch LS[j] consists of two counting sketches ILS[j] and
DLS[j], to keep track of counters Ij(S(u)) and Dj(S(u)), as described in Subsection 4.2. Update, merge
and F2 estimation routines occur as described in Subsection 4.2. The pseudo-code will be given in the full
paper for the sake of space.

5.2 Communication and Tradeoffs

In this section, we describe in more detail how continuous monitoring of statistics is performed; in particu-
lar, when and how information is propagated within the network. The general approach has been described
in Section 3. In the experiments we considered the Threshold triggered updates approach investigated of
[11] (“No sharing” policy). Carrying this policy over to our scenario, node u sends an update, i.e., its local
sketch LS, whenever the estimate C of the statistics of interest over the local stream changes, with respect
to the last propagated value C0, i.e., whenever C > (1 + θ/|Nl(u)|)C0, for some θ > 0.

We also considered an orthogonal approach in which, when a new observation occurs, only the portion of
the sketch that eventually changes is propagated. This approach allows a slight improvement in the overall
(worst case) number of bits transmitted and brings to messages of smaller size, which can be important in
some applications, e.g., sensor networks. For the sake of space and since we used the approach of [11] in
the experiments, this part will be presented in the full paper.

6 Experimental analysis

6.1 Datasets

The graph used in the experiments is a real topology of (part of) the Internet at the level of the Autonomous
Systems collected by DIMES [22] in December 2008. The symmetrized version of this graph consists of
65 512 nodes and 148 364 edges, and its diameter is equal to 8.

Nodes were assigned streams of tuples 〈i, a〉, obtained from either real or synthetically generated data.
Real data were extracted from a collection of HTTP requests made to the 1998 World Cup Web site, made
available7 by the Internet Traffic Archive [4] and spanning an observation period of three months (May-
July 1998). These data were also used in [11]. We considered a week of data, consisting of approximately 10
million tuples. Each HTTP request record contains a number of attributes, including clientID, objectID,
serverID and a timestamp. In our experiments, we did not consider serverID and we chose to focus on
the triples (clientID, objectID, timestamp). The data tuples were assigned to nodes of the graph using a
hash function to map clientIDs onto graph vertices. Stream tuples then consisted of (objectID, timestamp)
pairs.

We generated synthetic data considering a universe of items of size 1, 000, 000. We imposed mi (number
of distinct pairs with i the item) to follow a Zipf distribution with parameter α = 2.0. Every node in the
graph was assigned a stream of length uniformly distributed in [500, 1000], consisting of tuples < i, a >,
where i was chosen with probability proportional to mi and a ∈ [mi]. Globally, we obtained a data stream
of approximately 17 million tuples.

6.2 Accuracy of the estimation

A first set of experiments only concerned the accuracy of the estimation provided by the sketches. We
used counting sketches corresponding to a precision ε = 0.1 with probability at least 1− δ, where δ = 0.1.
For each node in the network, statistics were computed on the streams observed within neighborhoods
formed by i) all nodes at distance 1 and ii) all nodes within distance 2. For every statistics of interest we
considered the average of the estimates computed over i) the 100 nodes with highest degrees and ii) a set
7 URL: http://ita.ee.lbl.gov/html/contrib/WorldCup.html



of 100 nodes chosen uniformly at random. For every selected node and for each statistic, we computed the
average error with respect to the exact value.

In estimating F0 ( see Figure 3), we considered the two counting sketches described in Subsection 4.1,
i.e, the original proposal by Flajolet and Martin [14] and a modification proposed by Bar-Yossef et al [6],
denoted BJKST in the sequel.

We observed that, when FM sketches are used, the counting sketch provides approximations with error
lower than 5% in most cases of the number of distinct items observed by every node within its 1(2)-
neighborhood. BJKST sketches in turn perform extremely well: their accuracy is comparable or slightly
better than that of FM sketches. The only issue to consider is that the estimator adopted in [6] (see
Subsection 4.1) is L · M/v, with L = 96/ε2, that corresponds to a value of 9 600 in our case. This implies
that when using BJKST sketches, the algorithm always returns an estimate no lower than this value. Since
L = 96/ε2 is a constant for fixed ε, we simply keep the exact count as long as this remains below this
value. We present results that use FM sketches in the rest of this section, extended results will appear in
the full paper.

Accuracy for F1 is always below 4%. For the sake of space we do not discuss these results here.
In the estimation of F2 (see Figure 3), we used a value of d (number of dimensions of the projected

space) equal to 200, which is much lower than the one requested by theoretical analysis (2567) for the
values ε and δ we consider, which may suggest that the analysis can be improved. Complete results will
be reported in the full paper. In general, as predicted by our analysis, the quality of results is very good
for synthetic data, which were generated according to a very skewed distribution following a Zipf’s law
with parameter α = 2. On the converse, larger errors are observed on real data that exhibit a much lower
skewness than that requested by our theoretical analysis: we observed very small values (in the range
[0.6, 0.8]) of the Zipf’s parameter α for the streams at all the nodes involved in the measurements .

6.3 Communication and tradeoffs

The approach we adopt to optimize communication was described in the previous section. It basically
consist of the following: every node u sends a message update for a given counter to its immediate neighbors
whenever the local estimation computed for that counter exceeds the last update that was sent by more
than a factor 1 + θ/Nl(u).

In order to evaluate the communication costs of the developed methods, we simulated a scenario in
which the nodes in the network start to process their local stream simultaneously. We computed F0 and
F2 keeping track of the total number of message updates sent by the algorithm at ten equally spaced
checkpoints, which were fixed by identifying ten intervals of uniform length within the stream of events
observed at each node. We considered different values of θ (θ = 0.1, θ = 0.2 and θ = 0.4 and θ = 0.8 ) to
vary the local threshold used by every node to decide whether send or not to send a new message update
after processing a new event. For the sake of space, we omit results for F2 and we present and discuss below
accuracy/communication tradeoffs for the critical F0 estimation primitive for distance 2 neighbourhoods.
Results for distance 1 are similar and will be given in the full paper.

Figure 4 shows the results concerning the estimation of F0 within distance l = 2. The general trend is
clear: at the beginning, so for the first checkpoints, the number of first time observations of items grow
faster and accordingly, we observe a steep increase in the number of messages sent. Conversely, their
estimations stabilize after few checkpoints and the amount of exchanged messages drop dramatically. Also,
since most distinct items are observed in the first part of the stream, nodes gain very early a very good
accuracy in their estimations of F0: for θ ∈ [0.1, 0.2, 0.4, 0.8] average error at the first checkpoint is already
around 3− 4%.

We also experimented with higher values of θ ( θ ∈ [2, 10, 20]), in order to trade communication with
degrading accuracy too much. While θ = 2 does not change the picture, for higher values of θ we observed
a significant drop in the total number of message updates (by a factor in [1.7, 2]). Interestingly, the quality
of approximation still remains very good: With θ = 10, the average error gets lower than 10% as soon as
the third checkpoint is reached, and it is around 7% at the end of the observation. For θ = 20, the error
gets lower than 15% at the third checkpoint, and it is not greater than 10% at the last checkpoint.
Memory requirements. We briefly discuss the memory requirements of the sketches considered. More
details will be given in the full version of the paper. We implemented counting sketches (for F0 and F1)
using at most 575 Bytes per sketch. This figure is compatible with commercial sensor networks platforms,



although packet sizes in these platforms are typically bounded to have smaller values8. In the case of F2,
memory requirements are between 145 and 224 KBytes per sensing node. While this is perfectly compatible
with many applications (e.g., network traffic monitoring) it is clearly unfeasible in sensor networks.

●
●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●
●●●●
●●
●
●●●
●
●

●●
●

FM,l=1 
 R,T

FM,l=2 
 R,T

FM,l=2 
 R,Ra

FM,l=1 
 S;T

BJ,l=1 
 S;T

FM,l=2 
 S;T

BJ,l=2 
 S;T

FM,l=2 
 S,Ra

BJ,l=2 
 S,Ra

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Accuracy of estimation for F0 

R=Real data
S= Synth.data
T=Nodes with top degree
Ra= Random nodes
TM/BJ = Type of sketch
l = Radius of neighborhood

Fig. 2. Accuracy of the estimation computed for F0

●●●
●
●

●

●

●

●

●
●

●

●
●
●●●
●
●
●
●
●

●
●

l=1
 R,T

l=1
 R,Ra

l=2
 R,T

l=2
 R,Ra

l=1
 S,T

l=1
 S,Ra

l=2
 S,T

l=2
 S,Ra

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

R=real data
S= synth.data
T=nodes with top degree
Ra= random nodes
l = radius of neighborhood

Accuracy of estimation for F2 

Fig. 3. Accuracy of the estimation computed for F2

References

1. Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Com-
put. Syst. Sci, 66(4):671–687, 2003.

2. Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. Tracking join and self-join sizes in limited
storage. J. Comput. Syst. Sci., 64(3):719–747, 2002.

3. Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

4. M. Arlitt and T. Jin. 1998 world cup web site access logs, August 1998.
5. Brian Babcock and Chris Olston. Distributed top-k monitoring. In SIGMOD Conference, pages 28–39, 2003.

8 This can be overcome by having a constant number of packets per update message or by reducing the size of
update messages, as we show in the full paper.



6. Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct elements
in a data stream. In Proceedings of the 6th International Workshop on Randomization and Approximation
Techniques, pages 1–10, Cambridge, Ma, USA, 2002. Springer-Verlag.

7. Jeffrey Considine, Feifei Li, George Kollios, and John W. Byers. Approximate aggregation techniques for sensor
databases. In ICDE, pages 449–460, 2004.

8. Graham Cormode and Minos N. Garofalakis. Streaming in a connected world. In VLDB, page 1266, 2006.
9. Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its

applications. J. Algorithms, 55(1):58–75, 2005.
10. Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In ACM, editor,

Proceedings of the Twenty-Fourth ACM Symposium on Principles of Database Systems, pages 271–282. ACM
Press, 2005.

11. Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed, continuous monitoring
of duplicate-resilient aggregates on data streams. In Proceedings of the 22nd International Conference on Data
Engineering, page 57. IEEE Computer Society, 2006.

12. Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random
Struct. Algorithms, 22(1):60–65, 2003.

13. Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. An approximate L1-difference
algorithm for massive data streams. SIAM J. Comput, 32(1):131–151, 2002.

14. Philippe Flajolet and Nigel G. Martin. Probabilistic counting algorithms for data base applications. Journal
of Computer and System Sciences, 31(2):182–209, 1985.

15. Phillip B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries and event reports.
In VLDB, pages 541–550, 2001.

16. Michael Greenwald and Sanjeev Khanna. Power-conserving computation of order-statistics over sensor net-
works. In PODS, pages 275–285, 2004.

17. Marios Hadjieleftheriou, John Byers, and George Kollios. Robust sketching and aggregation of distributed data
streams. Technical Report 2005-011, CS Department, Boston University, 2005.

18. Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. J.
ACM, 53(3):307–323, 2006.

19. Srinivas R. Kashyap, Supratim Deb, K. V. M. Naidu, Rajeev Rastogi, and Anand Srinivasan. Efficient gossip-
based aggregate computation. In PODS, pages 308–317, 2006.

20. David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate information. In
FOCS, pages 482–491, 2003.

21. Suman Nath, Phillip B. Gibbons, Srinivasan Seshan, and Zachary R. Anderson. Synopsis diffusion for robust
aggregation in sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems, pages 250–262. ACM, 2004.

22. Yuval Shavitt and Eran Shir. Dimes: Let the internet measure itself. CoRR, abs/cs/0506099, 2005.

●
●

●
●

●
●

●
● ●

●

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Accuracy of estimation for F0 within distance 2

Time

Av
g 

er
ro

r

1 2 3 4 5 6 7 8 9 10

●
●

●
●

●
●

●
● ●

●
●

●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

● ●

●

●

● ● ● ●
●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

θθ == 0.1
θθ == 0.2
θθ == 0.4
θθ == 0.8
θθ == 2
θθ == 10
θθ == 20

● ● ● ● ● ● ● ● ● ●

2 4 6 8 10

0
50

00
10

00
0

20
00

0

Number of message updates required to estimate F0 within distance 2

Time

N.
 m

es
sa

ge
s

1 2 3 4 5 6 7 8 9 10

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

●

●
●

●
●

●
● ● ● ●

●

●
●

●
●

●
● ● ● ●

●

●

●

●

θθ == 0.1
θθ == 0.2
θθ == 0.4
θθ == 0.8
θθ == 2
θθ == 10
θθ == 20

Fig. 4. Tradeoff between communication costs and accuracy for F0, l = 2


