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Abstract: Many mathematicians have studied degenerate versions of quite a few special polynomials and

numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate

gamma random variables, discrete degenerate random variables and two-variable degenerate Bell poly-

nomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In

the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson

random variables with parameter α 0> , called the fully degenerate Bell polynomials. We derive some

combinatorial identities for the fully degenerate Bell polynomials related to the nth moment of the degen-

erate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully

degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters

α 0> and β 0> , called the two-variable fully degenerate Bell polynomials. We show their connection with

the degenerate Poisson central moments, special numbers and polynomials.

Keywords: Bell polynomials and numbers, degenerate Bell polynomials and numbers, Poisson random

variable, degenerate Poisson random variable, the Poisson degenerate central moments
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1 Introduction

Carlitz [1] initiated a study of degenerate versions of some special polynomials and numbers, called the

degenerate Bernoulli and Euler polynomials and numbers. In recent years, many mathematicians have

studied various degenerate versions of many special polynomials and numbers in some arithmetic and

combinatorial aspects and probability theory (see [2–16]). Recently, Kim et al. studied degenerate gamma

random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials

associated with Poisson degenerate central moments, etc. (see [11–14]).

A Poisson random variable indicates how many events occurred within a given period of time. A random

variable X is a real valued function defined on a sample space. If X takes any values in a countable set, then

X is called a discrete random variable.

A random variable X taking on one of the values 0, 1, 2,… is said to be the Poisson random variable

with parameter α 0(> ) if the probability mass function of X is given by

p i P X i e
α

i
i, 0, 1, 2, , see 11, 12 .α

i
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!
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Kim et al. [11] considered the degenerate Poisson random variable X X: λ( ) with parameter α 0(> ) if
the probability mass function of X is given by
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Let us take an interesting example in which we consider the degenerate Poisson random variable with

parameter α 0(> ). Let us assume that the probability of success in an experiment is p. We wondered if we

can say the probability of success in the 20th trial is still p after failing 19 times in 20 trial experiments.

Because there is a psychological burden to be successful. It seems plausible that the probability is less than

p (see [2]).

Thus, we study a new type of degenerate Bell polynomials associated with the degenerate Poisson

random variable with parameters in this paper. In Section 2, we introduce a new type of degenerate Bell

polynomials and numbers associated with the degenerate Poisson random variable with parameter α 0> ,

called the fully degenerate Bell polynomials and numbers (or single variable fully degenerate Bell poly-

nomials). We show their connections with nth moment of the degenerate Poisson random variable with

parameter α 0> , and give several identities related to these polynomials including the degenerate Stirling

numbers of the first kind, the degenerate Stirling numbers of the second kind, degenerate derangement

numbers, degenerate Frobenius-Euler polynomials and numbers, etc. In Section 3, we will introduce the

fully degenerate Bell polynomials associated with degenerate Poisson random variables with two para-

meters α 0> and β 0> , called the two-variable fully degenerate Bell polynomials. We show that they are

equal to the two-variable fully degenerate Bell polynomials and the Poisson degenerate central moments.

Also, we derive some explicit expressions for the two-variable degenerate Bell polynomials. Here we note

that the two-variable fully degenerate Bell polynomials are generalization of the fully degenerate Bell

polynomials associated with degenerate Poisson random variables with one parameter α 0> .

When a pandemic such as Corona virus spreads throughout society, it changes the psychology of

people on both an individual and group level, and in a broader sense the psychology of the community

as a whole. In this respect, it is expected that relations with the fully degenerate Bell polynomials and

moment of the degenerate Poisson random variable will be applied to predict how many people will be

infected within a given period when a number of variables interact in a given environment.

Now, we give some definitions and properties needed in this paper.

For any nonzero �λ ∈ (or �), the degenerate exponential function is defined by

e t λt e t λt1 , 1 see 2–14 .λ
x

λ
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It is well known that

x S n l x n, 0 see 3–5 .n λ
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As an inversion formula of (3), the degenerate Stirling numbers of the first kind are defined by
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For �u ∈ with u 1≠ , the classical Frobenius-Euler polynomials h x un( ∣ ) are defined by means of the

following generating function

u
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In the special case when x 0= , h u h u0n n( ) = ( ∣ ) are called nth Frobenius-Euler numbers. When u 1= − ,

h x E x: 1n n( − ) = ( ), are called the Euler polynomials (see [1]).

Kim et al. introduced the degenerate Frobenius-Euler polynomials defined by

u

e t u
e t h x u

t

n

1
see 7 .

λ
λ
x

n

n λ

n

0

,∑−
( ) −

( ) = ( ∣ )
!
( [ ])

=

∞
(7)

When x 0= , h u h u0n λ n λ, ,( ) = ( ∣ ) are called the degenerate Frobenius-Euler numbers.

As is well known, the Bell polynomials (also called Tochard polynomials or exponential polynomials)

are defined by the generating function

e x
t

n
Bel see 17–20 .x e
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Kim et al. studied the degenerate Bell polynomials of as which are given by
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When x 1= ,Bel 1 Beln λ n λ, ,( ) = are called the degenerate Bell numbers. We note that x xlim Bel Belλ n λ n0 , ( ) = ( )→ .

2 Fully degenerate Bell polynomials associated with degenerate

Poisson random variable with parameter α 0>
In this section, we introduce a new type of degenerate Bell polynomials and numbers associated with

degenerate Poisson random variable with parameter α 0> , called the fully degenerate Bell polynomials

and numbers. We give several combinatorial identities related to these polynomials and numbers.
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From this section, for �λ ∈ , let X X: λ( ) be the degenerate Poisson random variable with parameter α 0>
if the probability mass function of X is given by
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For �n ∈ , we note that the expectation and the nth moments of X with parameter α 0> are
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respectively.

From (2), we also observe
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(11)

In view of (11), naturally, we can define a new type of degenerate Bell polynomials, called the fully

degenerate Bell polynomials as follows:
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When α 1= , Bel 1 Beln λ n λ, ,( ) ≔∗ ∗ is called the fully degenerate Bell numbers.

We note that α αlim Bel Belλ n λ n0 , ( ) = ( )→
∗ .

Theorem 1. Let X be a degenerate Poisson random variable with parameter α 0(> ). For �n ∈ , we have
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On the other hand, from (2), (11) and (13), we have
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Therefore, by comparing the coefficients on both sides of (14), we have the desired result. □
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From Theorem 1 and (13), we obtain the following Dovinski-like formula for the fully degenerate Bell

numbers as follows:

Corollary 2. For �n ∈ , we have

e
k

k
Bel 1 1 .n λ λ

k

k λ
n λ

,
1

0

,
,∑= ( ) ( ) ( )
!

∗ −

=

∞

In addition, when limλ 0→ , we get
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Therefore, by comparing the coefficients on both sides of (15), we get the desired result. □

Theorem 4. For �n ∈ , we have
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By using Theorem 1 and (14), we have
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Therefore, from (17), we get the desired result. □

Theorem 5. For �n ∈ , we have
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Thus, by comparing the coefficients on both sides of (18), we get the desired result. □

A derangement is a permutation with no fixed points. The number of derangements of an n-element set

is called the nth derangement number and denoted by dn. This number satisfies the following recurrences:
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Recently, Kim et al. considered the derangement polynomials by the generating function
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When x 1= , d d1n n( ) = , n 0≥ .
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From (22), we naturally define the degenerate derangement polynomials by
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(24)

On the other hand, from (7), we get
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
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1
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n λ

n
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n
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1
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1
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1
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+
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−
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∞
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−
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−
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∞
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=

∞
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=

∞
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=

∞

=
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−
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(25)

Thus, from (24) and (25), we get
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!
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∞

=
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−
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=

∞

= =

∞
− (26)

Therefore, by comparing the coefficients on both sides of (26), we arrive at what we want. □

Theorem 7. For �n ∈ , we have
















α

α
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h λ α α α

d

d
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1

1
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l

n
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0

,
1 1

, ,∑( ) =
+

( ∣− ) ( ) − ( )∗

=

∗ − −
−
∗ ∗

where h x un λ, ( ∣ ) are called the degenerate Frobenius-Euler polynomials.

290  Hye Kyung Kim



Proof. First, we note that

α
e α e α

α
e α

λα
e α

d

d
and

d

d

1

1
.λ λ

λ
λ λ

1 1 1( ) = ( ) ( ) = −
+

( )− − − (27)

By using (1), (7) and (27), we get
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


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l
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t
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n
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l
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t
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d

d
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d

1

1
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1
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1
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1
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1
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1

1
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1

1
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1

1
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n
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n
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λ

λ λ λ λ

λ λ λ λ λ
λ

λ

λ
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m

λ
λ

m
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m

l
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l

m
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m

n
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n
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n

n l

n

l λ n l λ n λ

n

0

,
1

1 1 1

1

0

,

1

1

1

1
0

,

0

,
1 1

0

,

0

,
1 1

,

0

,
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,
1 1

, ,

∑

∑

∑

∑ ∑

∑ ∑

∑ ∑

( )
!
= ( ( ( )) ( ))

= ( ) ( ) ( ( )) −
+

( ) ( ( ))

= ( ) ( ( )) ( ) ( ( )) −
+

= ( )
+ ( )

−
+

( )
!

= ( )
+ ( )

− (−( ) )
( ) − (−( ) )

( ) −
+

( )
!

=
+

( ∣− )
!
−
+

( )
!

=
+

( ∣ − ) ( )
!
−
+

( )
!

=
+

( ∣− ) ( ) − ( )
!
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∞
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− − −

− −

=

∞
∗

−

−

−

−
=

∞
∗

=

∞
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∞
∗
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∞
∗ − −

−
∗
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∞
∗

=

∞

=

∗ − −
−
∗ ∗

(28)

Therefore, by comparing the coefficients on both sides of (28), we get what we want. □

Theorem 8. For �n ∈ , we have









α e α α

m
m λBel 1

1

1
.n λ λ

m

m λ
m

n λ1,
1

0

, ,∑( ) = ( ) ( )
( − )!

( − )+
∗ −

=

∞

Proof. By using (2), we get













































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


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




t
α

t

n t
e α e αe t

e α
t

λαe t

e α
t m
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e α α
m

e t

e α α
m

m λ
t

n

e α α
m
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t

n

d

d
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d

d

d

d
1

d

d

1
1

1

1
1

1

1
1

1
.

n

n λ

n

λ λ λ

λ λ

λ

m

λ m
λ
m

λ

m

m λ
m

λ
m λ

λ

m

m λ
m

n

n λ

n

λ

n m

m λ
m

n λ

n

0

,
1

1

1

0

1

1

0

,

1

0

,

0

,

1

0 0

, ,

λ
1

∑

∑

∑

∑ ∑

∑ ∑

( )
!
= ( ( ) ( ( )))

= ( ) ( + ( ))

= ( ) ( ) ( )

= ( ) ( )
( − )!

( )

= ( ) ( )
( − )!

( − )
!

= ( ) ( )
( − )!

( − )
!

=

∞
∗ −

−

−

=

∞

−

=

∞
−

−

=

∞

=

∞

−

=

∞

=

∞

(29)
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On the other hand, we have









t

α
t

n
α

t

n
α

t

n

d

d
Bel Bel

1
Bel .

n

n λ

n

n

n λ

n

n

n λ

n

0

,

1

,

1

0

1,∑ ∑ ∑( )
!
= ( )

( − )!
= ( )

!=

∞
∗

=

∞
∗

−

=

∞

+
∗ (30)

Therefore, by comparing the coefficients of (29) and (30), we get the desired result. □

3 Two-variable fully degenerate Bell polynomials

In this section, as one of the generalizations of the fully degenerate Bell polynomials in Section 2, we will

introduce the two-variable fully degenerate Bell polynomials associated with degenerate Poisson random

variables with two parameters α 0> and β 0> , and show their connection with the degenerate Poisson

centralmoments.We also derive some explicit expressions for the two-variable degenerate Bell polynomials.

For a Poisson random variable X with parameter α 0> , Kim et al. [13] considered the Poisson degenerate

central moments given by E X α n λ,[( − ) ], n 0( ≥ ), where X α 1λ0,( − ) = , X α X α X α λn λ,( − ) = ( − )( − − )⋯
X α n λ1( − − ( − ) ), n 1( ≥ ).

Note that

E X α E X αlim .
λ

n λ
n

0
,[( − ) ] = [( − ) ]

→

In this section, we give a definition of two-variable fully degenerate Bell polynomials as follows:

α β
t

n
e α e αe t e tBel , .

n

n λ

n

λ λ λ λ
β α

0

,
1∑ ( )

!
= ( ) ( ( )) ( )

=

∞
∗ − −

(31)

When β α= , for n 0≥

α α α nBel , Bel , 0 .n λ n λ, ,( ) = ( ) ( ≥ )∗ ∗

Theorem 9. Let X be a degenerate Poisson random variable with two parameters α 0> and β 0> . For n 0≥ ,

we have

α β E X α βBel , .n λ n λ, ,( ) = [( − + ) ]∗

Proof. By using (13), we have

E e t e t p k

e t e t e α
α

k

e t e α e t
α

k

e t e α e αe t α β
t

n

1

1

Bel , .

λ
X α β

k
λ
k α β

λ

λ
β α

k

λ
k

λ

k
k λ

λ
β α

λ

k

λ
k

k
k λ

λ
α β

λ λ λ

n

n λ

n

0

0

1 ,

1

0

,

1

0

,

∑

∑

∑

∑

[ ( )] = ( ) ( )

= ( ) ( ) ( ) ( )
!

= ( ) ( ) ( ) ( )
!

= ( ) ( ) ( ( )) = ( )
!

− +

=

∞
− +

−

=

∞
−

− −

=

∞

− + −

=

∞
∗

(32)

On the other hand, from (10), we observe













E e t E X α β
t

n
E X α β

t

n
.λ

X α β

n

n λ

n

n

n λ

n

0

,

0

,∑ ∑[ ( )] = ( − + )
!
= [( − + ) ]

!
− +

=

∞

=

∞
(33)

Therefore, by comparing the coefficients of (34) and (33), we obtain what we want. □
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Theorem 10. For n 0≥ , we have


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α β
n
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l
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=
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In particular,
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=
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Proof. From (2) and (11), we have
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n
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n
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1
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0 0
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= ( )
!
( − )
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∞
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=

∞
∗
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∞

=

∞

=

∗
−

(34)

Therefore, by comparing the coefficients on both sides of (34), we obtain the desired result. □

The following equation is needed to prove the next theorem.








x y
n

k
x y n 0 .n λ

k

n

k λ n k λ,

0

, ,∑( + ) = ( ) ( ) ( ≥ )
=

− (35)

Theorem 11. For n 0≥ , we have
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Proof. From Theorems 3 and 10, we have
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, , 2,
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( ) ( )
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−
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=
−
=
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(36)

Thus, we get the desired result. □

Corollary 12. Let X be a degenerate Poisson random variable with parameter α 0(> ).
For n 0≥ , we get the Poisson degenerate central moments of X as follows:

  









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In particular, α 1= , we have
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Theorem 13. For n 0≥ , we have
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Proof. By using (12), (16) and (31), we have
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Therefore, by comparing the coefficients on both sides of (37), we have what we want. □

Theorem 14. For n 0≥ , we have
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where h un λ, ( ) are called the degenerate Frobenius-Euler numbers.

Proof. By using (16) and (23),
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On the other hand, by the same way of (25), we get
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
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t

m α

n

l
h α α β

t
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λ m
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∞
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(39)

Thus, by comparing the coefficients of (38) and (39), we get the desired result. □

4 Conclusion

In this paper, we introduced the fully degenerate Bell polynomials associated with degenerate Poisson

random variables with parameter α 0> and the two-variable fully degenerate Bell polynomials associated

with degenerate Poisson random variables with two parameters α 0> and β 0> . We showed their connec-

tions with nth moment of the degenerate Poisson random variables and the Poisson degenerate central
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moments, respectively. We also expressed those polynomials and numbers in terms of the degenerate

Stirling numbers of the second kind; the degenerate Stirling numbers of the first kind; the degenerate

derangement numbers and the Stirling numbers of the first kind; and degenerate Frobenius-Euler

polynomials.

It is important that the study of the degenerate version is widely applied not only to numerical theory

and combinatorial theory, but also to symmetric identity, differential equations and probability theory. The

Bell numbers have also been extensively studied in many different context in such branches of Mathematics

[16–22]. With this in mind, as a future project, I would like to continue to study degenerate versions of

certain special polynomials and numbers.
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