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Abstract— We present an algorithm for maintaining maximal
matching in a graph under addition and deletion of edges. Ourdata
structure is randomized that takesO(log n) expected amortized
time for each edge update wheren is the number of vertices in the
graph. While there is a trivialO(n) algorithm for edge update, the
previous best known result for this problem was due to Ivković and
Llyod[4]. For a graph withn vertices andm edges, they give an
O((n + m)0.7072) update time algorithm which is sublinear only
for a sparse graph.

For the related problem of maximum matching, Onak and
Rubinfeld [6] designed a randomized data structure that achieves
O(log2

n) expected amortized time for each update for maintaining
a c-approximate maximum matching for some large constantc.
In contrast, we can maintain a factor two approximate maximum
matching inO(log n) expected amortized time per update as a
direct corollary of the maximal matching scheme. This in turn also
implies a two approximate vertex cover maintenance scheme that
takesO(log n) expected amortized time per update.

1. INTRODUCTION

In the last decade, there has been considerable research
in Dynamic Graph Algorithms where we want to main-
tain a data structure associated with some property (like
connectivity, transitive closure or matching) under insertion
and deletion of edges. Even for a simple property like
connectivity, it took researchers considerable effort to design
a polylog(n) update time algorithm [2], [3]. In this work, we
address fully dynamic maintenance of maximal matching in
a graph.

Let G = (V, E) be a graph onn vertices andm edges. A
matching inG is a set of edgesM ⊆ E such that no two
edges inM share any vertex. A maximum matching is a
matching that contains the largest possible number of edges.
A matching is said to be a maximal matching if it cannot be
strictly contained in any other matching. It is well known
that a maximal matching guarantees a 2-approximation of
the maximum matching. Ivković and Llyod [4] designed the
first fully dynamic algorithm for maximal matching with
O((n + m)0.7072) update time. In contrast, there exists a
much larger body of work for maximum matching.

Sankowski [9] gave an algorithm for the maintaining max-
imum matching which processes each update inO(n1.495)
time. Alberts and Henzinger [1] gave an expectedO(n)
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update time algorithm for maintaining maximum matching
with respect to arestricted random model. Therefore the
goal of a polylog(n) update time dynamic maximum
matching algorithm appears to be too ambitious. In par-
ticular, even achieving ao(

√
n) bound on the update time

would imply an improvement of the longstandingO(m
√

n)
bound of the best static algorithm for maximum matching
due to Micali and Vazirani [5]. So approximation appears to
be inevitable if we wish to achieve really fast update time
for maintaining matching. Recently, Onak and Rubinfeld
[6] presented a randomized algorithm for maintaining a
c-approximate (for some large constantc) matching in a
dynamic graph that takesO(log2 n) amortized time for each
edge update. This matching is not necessarily maximal, as
a maximal matching would imply a factor two approximate
maximum matching. In particular, they pose the following
question -

“Our approximation factors are large constants. How
small can they be made with polylogarithmic update time
? Can they be made 2 ? Can the approximation constant be
made smaller than two for maximum matching ?..”

We resolve one of their central questions by presenting
a fully dynamic algorithm for maximal matching which
achievesO(log n) expected amortized time per edge inser-
tion or deletion. Our bound also implies a similar result for
maintaining a two approximate vertex cover.

2. AN OVERVIEW

LetM denote the matching of the graph at any moment.
Every edge ofM is called amatchededge and an edge in
E\M is called anunmatchededge. For an edge(u, v) ∈ M,
we defineu to be themateof v andv to be themateof u.
For a vertexx if there is an edge incident to it fromM,
thenx a matchedvertex; otherwise it isfree or unmatched.

In order to maintain a maximal matching, all that is
required is to ensure that there is no edge(u, v) in the
graph such that bothu and v are free with respect to the
matching. From this observation, an obvious approach will
be to maintain the information for each vertex whether it
is matched or free at any stage. When an edge(u, v) is
inserted, add(u, v) to the matching ifu and v are free.
For a case when an unmatched edge(u, v) is deleted,
no action is required. Otherwise, for bothu and v we



search their neighborhood for any free vertex and update
the matching accordingly. It follows that each update takes
O(1) computation time except when it involves deletion of
a matched edge; in this case the computation time is of
the order of the sum of the degrees of the two vertices.
So this trivial algorithm is quite efficient forsmall degree
vertices, but is expensive forlarge degree vertices. An
alternate approach to handling deletion of a matched edge
is to use a simple randomized technique - a vertexu is
matched with a randomly chosen neighborv. Following
the standard adversarial model, it can be observed that an
expecteddeg(u)/2 edges incident tou will be deleted before
deleting the matched edge(u, v). So the expected amortized

cost per edge deletion foru is roughly O
(

deg(u)+deg(v)
deg(u)/2

)

.

If deg(v)≫ deg(u), then this update time can be as bad as
the one obtained by the trivial algorithm mentioned above;
but if deg(u) is high, the update time is better. We combine
the idea of choosing a random mate and the trivial algorithm
suitably as follows. We introduce the notion ofownership
of edges wherein we assign an edge to that endpoint which
has higher degree. We maintain a partition of the set of
vertices into two levels : 0 and 1. Level 0 consists of vertices
which own few edges and we handle the updates in level 0
using the trivial algorithm. The level 1 consists of vertices
(and their mates) which ownlarge number of edges and
we use the idea of random mate to handle their updates. In
particular, a vertex chooses a random mate from its set of
owned edges which ensures that it selects a neighbor having
a lower degree. This is the basis of our first fully dynamic
algorithm which achieves expected amortizedO(

√
n) time

per update.
A careful analysis of theO(

√
n) update time algorithm

suggests that afiner partition of vertices may help in
achieving a better update time. This leads to our final
algorithm which achieves expected amortizedO(log n) time
per update. More specifically, our algorithm maintains an
invariant that can be informally summarized as follows.

Each vertex tries to rise to a level higher than its current
level if upon reaching that level, there are sufficiently large
number of edges incident on it from lower levels. Once a
vertex reaches a new level, it selects a random edge from
this set and makes it matched.

2.1. Related Work

Onak and Rubinfeld [6] also pursue an approach based on
use of randomization to achieve efficient updates and main-
tain a partitioning of vertices into a hierarchy ofO(log n)
level that is along the lines of Parnas and Ron [8]. The
algorithm of Onak and Rubinfeld [6] takes a global approach
in building level i of this hierarchy as follows. For leveli,
they consider the subgraph consisting of verticesVi and their
neighbors and argue that a random subset of these edges
form a matching of size|Vi|/a with high probability for
some constanta > 1. The approximation factora is an

outcome of some probabilistic calculations using Chernoff
bounds that is chosen to be asufficientlylarge. Therefore, it
is unlikely that any simple variation of this global approach
can lead to a maximal matching.

We also maintain a hierarchical partitioning of vertices
but it is distinctly different from the scheme of Onak and
Rubinfeld [6]. Our algorithm takes a vertex centric approach
as described above for maintaining matching at each level.
Our algorithm achieves significantly better results than [6],
i.e., a guaranteed factor 2 matching. The use of random-
ization is limited to choice of a random matching vertex
and theO(log n) expected update time can be derived using
pairwise independent random numbers.

2.2. Organization of the paper

For a gentle exposition of the ideas and techniques, we
first describe a fully dynamic algorithm for maximal match-
ing which has 2 levels and achieves expected amortized
O(
√

n) time per update. This is followed by our final fully
dynamic algorithm which haslog n levels and achieves
expected amortizedO(log n) time per update (Theorem 4.1).
All logarithms in this paper are with base 2 unless mentioned
otherwise.

3. FULLY DYNAMIC ALGORITHM WITH EXPECTED

AMORTIZED O(
√

n) TIME PER UPDATE

The algorithm maintains a partition of the set of vertices
into two levels. We shall useLEVEL(u) to denote the level
of a vertexu. We defineLEVEL(u, v) for an edge(u, v) as
max(LEVEL(u), LEVEL(v)).

We now introduce the concept ofownershipof the edges.
Each edge present in the graph will be owned by one or both
of its end points as follows. If both the endpoints of an edge
are at level0, then it is owned by both of them. Otherwise it
will be owned by exactly that endpoint which lies at higher
level. If both the endpoints are at level 1, the tie will be
broken suitably by the algorithm. As the algorithm proceeds,
the vertices will make transition from one level to another
and the ownership of edges will also change accordingly. Let
Ou denote the set of edges owned byu at any moment of
time. Each vertexu ∈ V will keep the setOu in a dynamic
hash table [7] so that each search or deletion onOu can
be performed in worst caseO(1) time and each insertion
operation can be performed in expectedO(1) time. This hash
table is also suitably augmented with a linked list storingOu

so that we can retrieve all edges of setOu in O(|Ou|) time.
The algorithm maintains the following two invariants

throughout.

1) Every vertex at level 1 is matched. Every free vertex
at level 0 has all its neighbors matched.

2) Every vertex at level 0 owns less than
√

n edges at
any moment of time.

The first invariant implies that the matchingMmaintained is
maximal at each stage. A vertexu is said to be adirty vertex



at a moment if at least one of its invariants does not hold. In
order to restore the invariants, each dirty vertex might make
transition to some new level and do some processing. This
processing will firstly involve owning or disowning some
edges depending upon whether the level of the vertex has
risen or fallen. Thereafter, the vertex will executeRANDOM-
SETTLE or NAIVE -SETTLE to settle downat its new level.
The pseudocode for insert and delete operation is given in
Figure 1 and Figure 2.

Handling insertion of an edge:Let (u, v) be the edge
inserted. If eitheru or v are at level 1, there is no violation
of any invariant. So the only processing that needs to be
done is to assign(u, v) to Ou if LEVEL(u) = 1, and toOv

otherwise. This takesO(1) time. However, if bothu and
v are at level 0, then we executeHANDLING -INSERTION

procedure which does the following (see Figure 1).

Procedure HANDLING-INSERTION(u, v)

if u and v are FREE then M←M∪ {(u, v)};
if |Ov| > |Ou| then swap(u, v);
if |Ou| =

√
n then

x← RANDOM-SETTLE(u);
if x 6= NULL then NAIVE -SETTLE(x);
if w was previous mate ofu then
NAIVE -SETTLE(w);

Procedure RANDOM-SETTLE(u): Finds a random
edge(u, v) from the owned edges ofu and returns
the previous mate ofv

Let (u, v) be a uniformly randomly selected edge
from Ou;
if v is matchedthen

x← MATE(v);
M←M\{(v, x)}

else
x← NULL ;

M←M∪ {(u, v)};
LEVEL(u)← 1; LEVEL(v)← 1;
returnx;

Procedure NAIVE-SETTLE(u) : Finds a free ver-
tex adjacent tou deterministically

for each(u, x) ∈ Ou do
if x is free then
M←M∪ {(u, x)};
Break;

Figure 1. Procedure for handling insertion of an edge(u, v) where
LEVEL(u) = LEVEL(v) = 0.

If u and v are free, then insertion of(u, v) has violated
the first invariant foru as well asv. We restore it by adding
(u, v) to M. Note that insertion of(u, v) also leads to
increase|Ou| and |Ov| by one. We process that vertex out

of u andv which owns larger number of edges; letu be that
vertex. If |Ou| =

√
n, the invariant 2 has got violated. We

executeRANDOM-SETTLE(u); as a resultu moves to level 1
and gets matched to some vertex, sayy, selected randomly
uniformly fromOu. If w andx were respectively the earlier
mates ofu andy at level 0, then the matching ofu with y has
renderedw andx free. So to restore invariant 1, we execute
NAIVE -SETTLE(w) andNAIVE -SETTLE(x). This finishes the
processing of insertion of(u, v). Note that whenu rises to
level 1, |Ov| remains unchanged. Since both the invariants
for v were satisfied before the current edge update, it follows
that the second invariant forv still remains intact.

Handling deletion of an edge:Let (u, v) be an edge that
is deleted. If(u, v) /∈ M, both invariants are still intact. So
let us consider the nontrivial case when(u, v) ∈M. In this
case, the deletion of(u, v) has madeu andv free. Therefore,
potentially the first invariant might have got violated foru
and v, making them dirty. We do the following processing
in this case.

If edge(u, v) was at level 0, then following the deletion
of (u, v), vertex u executesNAIVE -SETTLE(u), and then
vertex(v) executesNAIVE -SETTLE(v). This restores the first
invariant and the verticesu and v are clean again. If edge
(u, v) was at level 1, thenu is processed using the procedure
shown in Figure 2 which does the following (v is processed
similarly).

Procedure HANDLING-DELETION(u,v)

foreach (u, w) ∈ Ou and LEVEL(w) = 1 do
move(u, w) from Ou to Ow;

if |Ou| ≥
√

n then
x← RANDOM-SETTLE(u);
if x 6= NULL then NAIVE -SETTLE(x);

else
LEVEL(u)← 0;
NAIVE -SETTLE(u);
foreach (u, w) ∈ Ou do

if |Ow| ≥
√

n then
x← RANDOM-SETTLE(w);
if x 6= NULL then NAIVE -SETTLE(x);

Figure 2. Procedure for processingu when (u, v) ∈ M is deleted and
LEVEL(u)=LEVEL(v)=1.

Firstly u disowns all its edges whose other endpoint is at
level 1. If |Ou| is still greater than or equal to

√
n, thenu

stays at level 1 and executesRANDOM-SETTLE(u). If |Ou|
is less than

√
n, u moves to level 0 and executesNAIVE -

SETTLE(u). Note that the transition ofu from level 1 to 0
leads to an increase in the number of edges owned by each
of its neighbors at level 0. The second invariant for each such
neighbor, sayw, may get violated if|Ow| =

√
n, making

w dirty. So we scan each neighbor ofu sequentially and



:

:

LEVEL 1

LEVEL 0

natural epoch

induced epoch

Time
epoch of(u, w)

epoch of(u, w)

epoch of(u, v)

epoch of(u, v)

epoch of(v, x)

epoch of(v, x)

Figure 3. Epochs at level 0 and 1; the creation of an epoch at level 1 can destroy at most two epochs at level 0.

for each dirty neighborw (that is,|Ow| ≥
√

n), we execute
RANDOM-SETTLE(w) to restore the second invariant. This
finishes the processing of deletion of(u, v).

It can be observed that, unlike insertion of an edge, the
deletion of an edge may lead to creating a large number
of dirty vertices. This may happen if the deleted edge is a
matched edge at level 1 and at least one of its endpoints
make transition to level 0.

Remark 3.1: After every update, the two endpoints of
each matched edge will be present at the same level. In
other words, edges having endpoints at distinct levels will
never be part of the maximal matchingM maintained by
our algorithm.

3.1. Analysis of the algorithm

We analyze the algorithm using the concept ofmatched
epochs, which we explain as follows. While processing
the sequence of insertions and deletions of edges, some
matched edges become unmatched and some unmatched
edges become matched. Consider any edge(u, v), and let
it be a matched edge at timet. Then the epoch of(u, v) is
the maximal continuous time period containingt for which
it remains inM. The duration of the epoch associated
with (u, v) will be the number of updates whichu or v
undergo during the epoch. The entire life span of an edge
(u, v) would consist of a sequence of (matched) epochs of
(u, v) separated by the continuous periods when(u, v) is
not matched.

In order to bound the expected computation time per
update, first we calculate the computation involved in an
epoch at level 0 and 1.

Consider an edge(u, v) ∈ M at any moment. If
LEVEL(u, v) = 0, then the creation of the epoch associated
with (u, v) involves scanningOu (or Ov) to find the free
vertex v. An equivalent amount of work is required at the
termination of this epoch. Being at level 0,u as well as
v own less than

√
n edges each. So the total computation

involving an epoch at level 0 isO(
√

n). Let us consider the
case whenLEVEL(u, v) = 1. Suppose the epoch got created
by vertexu.

If the epoch was created whenu rises from level 0 to level
1, then|Ou| is exactly equal to

√
n, and|Ov| is at most

√
n.

Creation of this epoch would require transfer ofu (as well
asv) from level 0 to level 1, eliminating(u, x) fromOx for
each(u, x) ∈ Ou followed by eliminating(v, x) from Ox

for each(v, x) ∈ Ov. So the total computation performed
during creation of the epoch isO(

√
n).

Another way for the creation of an epoch at level 1 is
when the previous epoch ofu (say epoch of(u, w)) is
destroyed at level 1. As a result,u disowns edges at level
1 and if it still has at least

√
n edges it selects a random

vertex v and starts (new) epoch of(u, v). As we can see
that there are two tasks involved in this process. The first
task involves disowning the edges ofu; the computational
cost of this task is attributed to the termination of the old
epoch of(u, w). The other task involves transfer ofv from
level 0 to level 1, and eliminating(v, x) from Ox for each
(v, x) ∈ Ov. The computational cost of this task is attributed
to the creation of the epoch of(u, v). SinceOv is at most√

n, the computational cost performed during the creation
of the epoch of(u, v) in this case is againO(

√
n).

At the termination of the epoch, the computation involves
disowning edges incident onu andv from vertices at level
1. This computation is of the order of|Ou| + |Ov| which
can be bounded byO(n). Excluding the two updates that
cause creation and termination of an epoch of(u, v), every
other edge update onu and v during the epoch is handled
in just O(1) time. Therefore, we shall focus only on the
amount of computation performed at the time of creation
and termination of an epoch. From our analysis, it follows
that the amount of computation involved in an epoch at level
1 and level 0 areO(n) andO(

√
n) respectively.

An epoch corresponding to some edge, say(u, v), gets
terminated because of exactly one of the following causes.

(i) if (u, v) is deleted from the graph.
(ii) u (or v) get matched to some other vertex leaving its

current mate free.

An epoch will be called anatural epoch if it is terminated
due to cause (i); otherwise it will be called aninducedepoch.
Inducedepoch can be seen as a premature termination of an



epoch since, unlike natural epoch, the matched edge is not
actually deleted from the graph when aninducedepoch is
terminated.

It follows from the algorithm described above that every
epoch at level 1 is a natural epoch whereas an epoch at level
0 can be natural or induced depending on the cause of its
termination. Furthermore, each induced epoch at level 0 can
be associated with a natural epoch at level 1 whose creation
led to the termination of the former. In fact, there can be at
most two induced epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (see
Figure 3).

Consider an epoch at level 1 associated with an edge, say
(u, v). Suppose it was created by vertexu. If u was already
matched at level 0, letw 6= v be its mate. Similarly, ifv
was also matched already, letx 6= u be its current mate at
level 0. So matchingu to v terminates the epoch of(u, w)
as well as the epoch of edge(v, x) at level 0. Wecharge
the overall cost of these two epochs to the epoch of(u, v)
which destroys them. So the overall computationchargedto
an epoch of(u, v) at level 1 isO(n + |Ox| + |Ow|). This
cost is indeedO(n) since each of|Ox| and|Ow| is less than√

n.

Lemma 3.2:The computation charged to a natural epoch
at level 1 isO(n) and the computation charged to a natural
epoch at level 0 isO(

√
n).

In order to analyze our algorithm, we just need to get a
bound on the computationcharged to all natural epochs
at level 0 and level 1 during a sequence of updates. In
particular, we need to bound the computationchargedto all
the natural epochs which get destroyed during the updates
and the epochs which are alive at the end of all the updates.

3.1.1. Bounding the computation charged to the natural
epochs destroyed:Let t be the total number of updates.
Each natural epoch at level 0 which is destroyed can be
assigned uniquely to the deletion of its matched edge. Hence
it follows from Lemma 3.2 that the computationchargedto
all natural epochs destroyed at level 0 duringt updates is
O(t
√

n).

Now we shall analyze the number of epochs destroyed
at level 1. Let us define theduration of the epoch as the
number of edges incident onu which are deleted during the
epoch. Consider an epoch at level 1 created by some vertex,
sayu. At the time of its creationu must be owning a set of
at least

√
n edges, andu selected a matched edge out of its

owned edges uniformly randomly and independent of other
epochs. This implies the following lemma.

Lemma 3.3:The probability that a given epoch at level 1
has duration at mosti is bounded by i√

n
.

Let Xt be the random variable denoting the number of
epochs at level 1 destroyed during a sequence oft updates.

Lemma 3.4:For any givenq ≥ 1,

Pr[Xt = q] ≤
(

4et

q
√

n

)q/2

Proof: If there areq epochs destroyed duringt updates,
at least half of them have duration≤ 2t/q. Hence,Pr[Xt =
q] is bounded by the probability that there are at leastq/2
epochs of duration at most2t

q . So, using Lemma 3.3 and
exploiting the independence among the epochs,

Pr[Xt = q] ≤
(

q

q/2

) (

2t

q
√

n

)q/2

≤
(

4et

q
√

n

)q/2

For the last inequality we used
(

q
q/2

)

≤
(

eq
q/2

)i

= (2e)i.

We use Lemma 3.4 to analyzeE[Xt] and deviation ofXt.
Lemma 3.5:For anyt > 0, E[Xt] = O (t/

√
n).

Proof: Let us setq0 = 5et/
√

n. For any q > q0, it
follows from Lemma 3.4 thatPr[Xt = q] ≤ (4/5)q/2.
Hence,

Pr[Xt ≥ q] =
∑

q′≥q

Pr[Xt = q′] < 10

(

4

5

)q/2

(1)

Now we use the following well known equality which holds
sinceXt takes nonnegative integral values only.

E[Xt] =
∑

q≥1

Pr[Xt ≥ q] ≤ q0 +
∑

q>q0

Pr[Xt ≥ q] (2)

Using Equations 1 and 2, it follows thatE[Xt] = 5et/
√

n+
O(1) = O(t/

√
n).

Lemma 3.6:For anyt > 0 Xt is O(t/
√

n + log n) with
very high probability.

Proof: We chooseq0 = 4 (log n + 4et/
√

n). It follows
from Lemma 3.4 that for anyq ≥ q0, Pr[Xt = q] is of
the form bq where baseb < 1/2. HencePr[Xt ≥ q0] is
bounded by a geometric series with the first term< 2−q0 and
the common ratio less than1/2. Furthermoreq0 > 4 logn,
hencePr[Xt ≥ q0] is bounded by2/n4. Hence Xt is
bounded byO(t/

√
n + log n) with high probability.

Notice that the proofs of Lemmas 3.5 and 3.6 rely heavily on
the total independence of random numbers used for selecting
random mates. However, similar bound onE[Xt] can be
derived even if we assume only pairwise independence
between the random numbers used (see Appendix for an
alternate proof of Lemma 3.5).

Now, recall from Lemma 3.2 that each natural epoch
destroyed at level 1 hasO(n) computationcharged to it.
So Lemmas 3.5 and 3.6, when combined together, imply
the following lemma.

Lemma 3.7:The computation costcharged to all the
natural epochs which get destroyed during any sequence of
t updates isO(t

√
n) in expectation andO(t

√
n + n log n)

with high probability.



Let us now analyze the costcharged to all those epochs
which are alive at the end oft updates. Note that each vertex
is involved in at most one alive epoch. It thus follows that
the computation costchargedto all the alive epochs at any
instance isO(t). During any sequence oft updates, the total
number of epochs created is equal to the number of epochs
destroyed and the number of epochs that are alive at the
end of t updates. Hence using Lemma 3.7 we can state the
following theorem.

Theorem 3.1:Starting with a graph onn vertices and no
edges, we can maintain maximal matching for any sequence
of t updates inO(t

√
n) time in expectation andO(t

√
n +

n log n) with high probability.

3.2. On improving the update time beyondO(
√

n)

In order to extend our 2-LEVEL algorithm for getting
better update time, it is worth exploring the reason un-
derlying O(

√
n) update time guaranteed by our 2-LEVEL

algorithm. For this purpose, let us examine the second
invariant more carefully. Letα(n) be the threshold for the
maximum number of edges that a vertex at level 0 can own.
Consider an epoch at level 1 associated with some edge, say
(u, v). The computation associated with this epoch is of the
order of the number of edgesu and v own which can be
Θ(n) in the worst case. However, the expected duration of
the epoch is of the order of the minimum number of edgesu
can own at the time of its creation, i.e.,Θ(α(n)). Therefore,
the expected amortized computation per edge deletion for an
epoch at level 1 isO(n/α(n)). Balancing this with theα(n)
update time at level 0, yieldsα(n) =

√
n.

In order to improve the running time of our algorithm,
we need to decrease the ratio between the maximum and
the minimum number of edges a vertex can own during an
epoch at any level. It is this ratio that actually bounds the
expected amortized time of an epoch. This insight motivates
us for having a finer partition of vertices : the number of
levels should be increased toO(log n) instead of just 2.
When a vertex creates an epoch at leveli, it will own at
least2i edges, and during the epoch it will be allowed to
own at most2i+1−1 edges. As soon as it starts owning2i+1

edges, it should migrate to higher level. By following these
guidelines, notice that the ratio of maximum to minimum
edges owned by a vertex during an epoch gets reduced from√

n to a constant, which is what we aimed for.
We pursue the approach sketched above and some new

ideas in the following section. This leads to a fully dynamic
algorithm for maximal matching which achieves expected
amortizedO(log n) update time per edge insertion or dele-
tion.

4. FULLY DYNAMIC ALGORITHM WITH EXPECTED

AMORTIZED O(log n) TIME PER UPDATE

The fully dynamic algorithm maintains a partition of
vertices among⌊log n⌋+ 2 levels. The levels are numbered

from −1 to L0 = ⌊log n⌋. Note that the level starts from
-1 and not 0. We again use the notion of ownership of
edges which is slightly different from the one used in 2-
LEVEL algorithm. Each edge is owned by exactly one of
its endpoints. In particular, the endpoint at the higher level
always owns the edge. If the two endpoints are at the
same level, then the tie is broken suitably by the algorithm.
Like the 2-LEVEL algorithm, each vertexu will maintain
a dynamic hash table storing the edgesOu owned by it.
In addition, the generalized fully dynamic algorithm will
maintain the following data structure for each vertexu. For
each i ≥ LEVEL(u), let E i

u be the set of all those edges
incident onu from vertices at leveli and are not owned by
u. For each vertexu and leveli ≥ LEVEL(u), the setE i

u

will be maintained in a dynamic hash table. Note that the
onus of maintainingE i

u will not be on u. In fact, for any
edge(u, v) ∈ E i

u, it will be v which will be responsible for
the maintenance of(u, v) in E i

u since(u, v) ∈ Ov.

4.1. Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it pays for each
vertexu to get settled at a higher level once it owns alarge
number of edges. Pushing this idea still further, our fully
dynamic algorithm will allow a vertex to rise to a higher
level if it can ownsufficiently largenumber of edges after
moving there. In order to formally define this approach, we
introduce an important notation here.

For a vertexv with LEVEL(v) = i,

φv(j) =

{ |Ov|+
∑

i≤k<j |Ek
v | if j > i

0 otherwise

In other words, for any vertexv at leveli and anyj > i,
φv(j) denote the number of edges whichv can own if v
rises to levelj. Our algorithm will be based on the following
strategy. If a vertexv hasφv(j) ≥ 2j , thenv would rise to
the levelj. In case, there are multiple levels to whichv can
rise,v will rise to the highest such level. With this key idea,
we now describe the two invariants which our algorithm will
maintain.

1) Every vertex at level≥ 0 is matched and every vertex
at level -1 is free.

2) For each vertexv and for allj > LEVEL(v), φv(j) <
2j holds true.

The second invariant implies that a vertex at level -1 will
have no neighbor at level -1. This fact together with the
first invariant imply that the matching maintained by the
algorithm will indeed be a maximal matching. In fact, similar
to the 2-LEVEL algorithm, the endpoints of each matched
edge will lie at the same level. Figure 4 depicts a snapshot
of the algorithm. The second invariant captures the key idea
described above - after processing every update there is no
vertex which fulfills the criteria of rising. An edge update
may lead to violation of the invariants mentioned above
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Figure 4. A snapshot of the algorithm onK9: all vertices are matched(
thick edges) except vertexx at level -1. Vertexv is the owner of just the
edge(v, x). φv(2) = 2 < 22 andφv(3) = 4 < 23, sov cannot rise to a
higher level.

and the algorithm basically restores these invariants. This
may involve rise or fall of vertices. Notice that the second
invariant of a vertex is influenced by the rise and fall of
its neighbors. We now state and prove two lemmas which
capture this influence in precise words.

Lemma 4.1:Consider a vertexu at level k for which
both invariants hold. The rise of any neighbor, sayv, cannot
violate the second invariant foru.

Proof: Since the invariants hold true foru before rise
of v, soφu(i) < 2i for all i > k. It suffices if we can show
that φu(i) does not increase for anyi due to the rise ofv.
We show this as follows.

Let vertexv rises from levelj to ℓ. If ℓ ≤ k, the edge
(u, v) continues to remain inOu, and so there is no change
in φu(i) for anyi. Let us consider the case whenℓ > k. The
rise ofv from j to ℓ causes removal of(u, v) fromOu (or Ej

u

if j ≥ k) and insertion toEℓ
u. As a resultφu(i) decreases by

one for eachi in [max(j, k)+1, ℓ], and remains unchanged
for all other values ofi.

Lemma 4.2:Consider a vertexu at levelk for which both
invariants hold. Then any fall of one of its neighbors, sayv,
from level j to j − 1 increasesφu(j) by at most one.

Proof: In casek ≥ j, there is no change inφu(i) for any
i due to fall ofv. So let us consider the casej > k. In this
case, the fall ofv from levelj to j−1 leads to the insertion
of (u, v) in Ej−1

u and deletion fromEj
u. Consequently,φu(i)

increases by one only fori = j and remains unchanged for
all other values ofi.

In order to detect any violation of the second invariant
for a vertexv due to rise or fall of its neighbors, we shall
maintain{φv(i)|i ≤ L0} in an arrayφv[] of size L0 + 2.
The updates on this data structure during the algorithm will
involve the following two types of operations.

• DECREMENT-φ(v, I): this operation decrementsφv(i)
by one for all i in interval I. This operation will be
executed when some neighbor ofv rises.

• INCREMENT-φ(v, i): this operation increasesφv(i)
by one. This operation will be executed when some
neighbor ofv falls from i to i− 1.

It can be seen that a singleDECREMENT-φ(v, I) operation
takesO(|I|) time which isO(log n) in the worst case. On the
other hand any singleINCREMENT-φ(v, i) operation takes
O(1) time. However, sinceφv(i) is 0 initially and is non-
negative always, we can conclude the following.

Lemma 4.3:The computation cost of allDECREMENT-
φ() operations is upper-bounded by the computation cost of
all INCREMENT-φ() operations during the algorithm.

Observation 4.1:It follows from Lemma 4.3 that we just
need to analyze the computation involving allINCREMENT-
φ() operations since the computation involved inDECRE-
MENT-φ() operations is subsumed by the former.

Procedure GENERIC-RANDOM-SETTLE(u, i)

if LEVEL(u) < i then //u owns edges till it

reaches level i

for eachj = LEVEL(u) to i− 1 do
for each(u, w) ∈ Ej

u do
transfer(u, w) from Ej

u to E i
w;

transfer(u, w) from Ow to Ou;
DECREMENT-φ(w, [j + 1, i]);

Let (u, v) be a uniformly randomly selected edge
from Ou;
if v is matchedthen

x← MATE(v);
M←M\{(v, x)}

else
x← NULL

for eachj = LEVEL(v) to i− 1 do //v rises to

level i and thus owns edges incident from

vertices at levels LEVEL(v) to i − 1

for each(v, w) ∈ Ej
v do

transfer(v, w) from Ej
v to E i

w;
transfer(v, w) from Ow to Ov;
DECREMENT-φ(w, [j + 1, i]);

M←M∪ {(u, v)};
LEVEL(u)← i; LEVEL(v)← i;
returnx;

Figure 5. Procedure used by a free vertexu to settleat level i.

If any invariant of a vertex, sayu, gets violated, it might
rise or fall, though in some cases, it may still remain at
the same level. However, in all these cases, eventually the
vertex u will execute the procedure,GENERIC-RANDOM-
SETTLE, shown in Figure 5. This procedure is essentially a
generalized version ofRANDOM-SETTLE(u) which we used
in the 2-level algorithm.GENERIC-RANDOM-SETTLE(u, i)
starts with movingu from its current level (LEVEL(u)) to
level i. If level i is higher than the previous level ofu,



u acquires the ownership of all the edges whose endpoints
lie at the level∈ [LEVEL(u), i − 1]. For each such edge
(u, v) that is now owned byu, we performDECREMENT-
φ(v, [LEVEL(v) + 1, i]) to reflect that the edge is now
owned by vertexu which has moved to leveli. Henceforth,
the procedure then resemblesRANDOM-SETTLE. It finds a
random edge(u, v) from Ov and movesv to level i. The
procedure returns the previous mate ofv, if v was matched.

Lemma 4.4:Consider a vertexu executing GENERIC-
RANDOM-SETTLE(u, i) and selecting a matev. Excluding
the time spent inDECREMENT−φ operations, the computa-
tion time of this procedure is of the order of|Ou| + |Ov|
whereOu andOv is the set of edges owned byu andv just
at the end of the procedure.

4.2. Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic pro-
cedure calledPROCESS-FREE-VERTICES. The input to this
procedure is a sequenceS consisting of ordered pairs of the
form (x, k) wherex is a free vertex at levelk ≥ 0. Observe
that the presence of free vertices at level≥ 0 implies
that matchingM is not necessarily maximal. In order to
preserve maximality of matching, the procedurePROCESS-
FREE-VERTICES restores the invariants of each such free
vertex. We now describe our fully dynamic algorithm.

Handling deletion of an edge:Consider deletion of an
edge, say(u, v). For eachj > max(LEVEL(u), LEVEL(v)),
we decrementφu(j) and φv(j) by one. If (u, v) is an
unmatched edge, no invariant gets violated. Hence noth-
ing needs to be done except deleting the edge(u, v)
from the data structures ofu and v. Otherwise, letk =
LEVEL(u) = LEVEL(v). We execute ProcedurePROCESS-
FREE-VERTICES(〈(u, k), (v, k)〉).

Handling insertion of an edge:Consider insertion of
an edge, say(u, v). We check if the second invariant
has got violated for either ofu or v. The invariant may
get violated for u (likewise v) if there is any integer
i > max(LEVEL(u), LEVEL(v)), such thatφu(i) was2i− 1
just before the insertion of edge(u, v). In case there are
multiple such integers, letimax be the largest such integer.
We incrementφu(ℓ) and φv(ℓ) by one for eachℓ > imax.
To restore the invariant,u leaves its current mate, sayw,
and rises to levelimax. We executeGENERIC-RANDOM-
SETTLE(u, imax), and let x be the vertex returned. Letj
andk be respectively the levels ofw andx. Note thatx and
w are two free vertices now. We executePROCESS-FREE-
VERTICES(〈(x, k), (w, j)〉).
Remark 4.5: If the insertion of edge(u, v) violates the
second invariant for bothu and v, we select that vertex
which can rise to the higher level to restore its invariant and
process that vertex.

4.2.1. Description of Procedure PROCESS-FREE-
VERTICES: The procedure receives a sequenceS of
ordered pairs(x, i) such thatx is a free vertex at level

Procedure PROCESS-FREE-VERTICES(S)

for each(x, i) ∈ S do ENQUEUE(Q[i], x);
for i = L0 to 0 do

while Q[i] 6= ∅ do
v ← DEQUEUE(Q[i]);
if FALLING (v) then //v falls to i − 1

LEVEL(v)← i− 1;
ENQUEUE(Q[i− 1], v);
φv(i)← |Ov|;
for eachu ∈ Ov do

transfer(u, v) from E i
u to E i−1

u ;
INCREMENT-φ(u, i);
if φu(i) ≥ 2i then //u rises to i

x← GENERIC-RANDOM-
SETTLE(u, i);
if x 6= NULL then

ℓ← LEVEL(x);
ENQUEUE(Q[ℓ], x);

else //v settles at level i

x← GENERIC-RANDOM-SETTLE(v, i);
if x 6= NULL then

ℓ← LEVEL(x);
ENQUEUE(Q[ℓ], x);

Function FALLING(v)

i← LEVEL(v);
for each(u, v) ∈ Ov such thatLEVEL(u) = i do
//v disowns all edges at level i

transfer(u, v) from Ov to Ou;
transfer(u, v) from E i

u to E i
v;

if |Ov| < 2i then return TRUE else return FALSE;

Figure 6. Procedure for processing free vertices given as a sequenceS
of ordered pairs(x, i) wherex is a free vertex atLEVELi.

i. It processes the free vertices in the decreasing order of
their levels starting from L0. We give an overview of this
processing at leveli. For a free vertex at leveli, if it owns
sufficiently large number of edges, then it settles at level
i and gets matched by selecting a random edge from the
edges owned by it. Otherwise the vertex falls down by one
level. Notice that the fall of a vertex from leveli to i − 1
may lead to rise of some of its neighbors lying at level< i.
However, as follows from Lemma 4.2, this rise will be only
to level i. After these rising vertices settle at leveli, we
move onto leveli − 1 and proceed similarly. Overall, the
entire process can be seen as a wave of free vertices falling
level by level. Eventually this wave of free vertices reaches
level -1 and fades away ensuring maximal matching. With
this overview, we now describe the procedure in more
details. Its complete pseudocode is given in Figure 6.

The procedure uses an arrayQ of sizeL0 +2, whereQ[i]



is a pointer to a queue (initially empty). For each ordered
pair (x, k) ∈ S, it insertsx into queueQ[k]. The procedure
executes a for loop fromL0 down to 0 where theith iteration
extracts and processes the vertices of queueQ[i] one by one
as follows. Letv be a vertex extracted fromQ[i]. First we
execute the functionFALLING (v) which does the following.
v disowns all its edges whose other endpoint lies at level
i. If v owns less than2i edges then it is decided thatv
has to fall, otherwisev will continue to stay at leveli. In
casev has to stay at leveli, v executesGENERIC-RANDOM-
SETTLE and selects a random mate, sayw, from levelj < i
(if w is present inQ[j] then it is removed from it and is
raised to leveli). If x was the previous mate ofw, thenx is
a falling vertex. Vertexx gets added toQ[j]. This finishes
the processing ofv. Note that this processing ofv does not
changeφu for any neighboru of v. Furthermore, the rise
of w does not lead to the violation of any invariant due to
Lemma 4.1. Let us discuss the more interesting case when
v owns less than2i edges and has to fall. In this case,v
falls to level i − 1 and is inserted toQ[i − 1]. This fall
leads to increaseφu(i) by one for each neighboru of v
lying at level lower thani (see Lemma 4.2). In caseφu(i)
has become2i, u has to rise to leveli and is processed as
follows. u executesGENERIC-RANDOM-SETTLE and selects
a random mate, sayw from level j < i. If w was in Q[j]
then it is removed from it. Ifx was the previous mate ofw,
thenx is a falling vertex, and so it gets added to queueQ[j].
Based on the description of the procedurePROCESS-FREE-
VERTICES, and using Lemmas 4.1 and 4.2, we can conclude
the following.

Lemma 4.6:After ith iteration of the for loop of
PROCESS-FREE-VERTICES, the free vertices are present only
in the queues at level< i, and for all vertices not belonging
to these queues the two invariants holds.

Lemma 4.6 establishes that after termination of procedure
PROCESS-FREE-VERTICES, there are no free vertices at level
≥ 0 and the two invariants get restored globally.

4.3. Analysis of the algorithm

Processing deletion or insertion of an edge(u, v) begins
with decrementing or incrementingφu(i) andφv(i) for all
levels i ≥ max(LEVEL(u), LEVEL(v)). The computation
associated with this task over a sequence oft updates will
be O(t log n). This task may be followed by executing
the procedurePROCESS-FREE-VERTICES. We would like to
mention an important point here. Along with other process-
ing, the execution of this procedure involvesINCREMENT-
φ() and DECREMENT-φ() operations. However, as implied
by Observation 4.1, in our analysis we can safely ignore the
computation involvingDECREMENT-φ() operations.

Our analysis of the entire computation performed while
processing a sequence oft updates is along similar lines to
the 2-LEVEL algorithm. We visualize the entire algorithm as
a sequence of creation and termination of various matched

epochs. All we need to do is to analyze the number of epochs
created and terminated during the algorithm and computation
involved with each epoch.

Let us analyze an epoch of a matched edge(u, v). Let
this epoch got created by vertexv at level j. So v would
have executedGENERIC-RANDOM-SETTLE and selectedu
as a random mate from level< j. Note thatv must be
owning less than2j+1 edges andu would be owning at most
2j edges at that moment. This observation and Lemma 4.4
imply that the computation involved in creation of the epoch
is O(2j). Once the epoch is created, any update pertaining
to u or v will be performed in justO(1) time until the epoch
gets terminated. Let us analyze the computation performed
when the epoch gets terminated. At this moment one or
both ofu andv become free vertices. Letv becomes free.v
executes the following task (see procedurePROCESS-FREE-
VERTICES in Figure 6).v scans all edges owned by it, which
is less than2j+1, and disowns those edges incident from
vertices of levelj. Thereafter, ifv still owns at least2j

edges, it settles at levelj and becomes part of a new epoch
at level j. Otherwise,v keeps falling one level at a time.
For a single fall ofv from level i to i− 1, the computation
performed involves three tasks: scanning the edges owned
by v, disowning those incident from vertices at leveli, and
incrementingφw values for each neighborw of v lying at
level less thani. All this computation is of the order of
the number of edgesv owns at leveli which is less than
2i+1. Eventually eitherv settles at some levelk ≥ 0 and
becomes part of a new epoch or reaches level -1. The total
computation performed byv is, therefore, of the order of
∑j

i=k 2i+1 = O(2j). This entire computation involvingv
(and u) in this process is the computation associated with
the the epoch of(u, v). Hence we can state the following
Lemma.

Lemma 4.7:For any i ≥ 0, the computation associated
with an epoch at leveli is of the order of2i.
Remark 4.8: As shown in ProcedurePROCESS-FREE-
VERTICES, when vertexv falls from level i to i − 1,
the instruction “φv(i) ← |Ov|” is executed. For the sake
of analysis, this instruction can be viewed as a total of
|Ov| increment operations onφv(i) starting from 0. Note
that this does not increase the asymptotic bound obtained
in Lemma 4.7. Even thoughφv(i) is not initialized by
increment operation, by analyzing the above instruction in
this way we can claim that Observation 4.1 still holds.

Let us now analyze the number of epochs terminated
during any sequence oft updates. An epoch corresponding
to edge(u, v) at level i could be terminated if the matched
edge(u, v) gets deleted. However, it could be terminated by
any of the following reasons also.

• u or v get selected as a random mate by one of their
neighbors present atLEVEL > i.

• u or its mate starts owning2i+1 or more edges.
Each of the above factors render the epoch induced. We



shall assign the cost of each induced epoch to the epoch
which led to the destruction of the former. For this objective,
we now introduce the notion of computationchargedto an
epoch at any leveli. Note that no epoch is created at level
-1 as the vertices at level -1 are always free. Ifi = 0, the
computationchargedto the epoch is the actual computation
performed during the epoch which isO(1). For any level
i > 0, the creation of an epoch causes destruction of at
most two epochs at levels< i. The computation charged to
an epoch at leveli > 0 is defined recursively as the actual
computation cost of the epoch and the computationcharged
to at most two epochs destroyed by it at level< i. This
definition and Lemma 4.7 immediately lead to the following
lemma.

Lemma 4.9:Computation charged to an epoch at leveli
is O(i2i).
Henceforth we just proceed along the lines of the analysis
of our 2-LEVEL algorithm. We need to calculate the com-
putationchargedto all the natural epochs that are created
during any sequence oft updates. Let us define level of
an update, say insertion or deletion of edge(u, v), as
max(LEVEL(u), LEVEL(v)). We partition all thet updates
into their respective levels. Letti edge deletions among these
t updates occur at leveli. The proof of the following lemma
proceeds exactly along the lines of Lemma 3.5.

Lemma 4.10:The number of natural epochs terminated
at level i is O(ti/2i) on expectation andO(ti/2i + log n)
with high probability.
It thus follows from Lemma 4.9 and Lemma 4.10 that the
computationchargedto all natural epochs terminated at level
i is O(iti) in expectation andO(iti + i2i log n) with high
probability. Summing up for all the levels, we can conclude
the following lemma.

Lemma 4.11:For any sequence oft updates, the compu-
tationchargedto all the natural epochs which get terminated
is O(t log n) in expectation andO(t log n + n log2 n) with
high probability.
The total computation cost associated witht updates is equal
to the computation costchargedto all the natural epochs.
It follows from Lemma 4.11 that the expected computation
chargedto all natural epochs which gets terminated during
t updates isO(t log n). The computationchargedto all the
natural epochs which are alive at the end oft updates is
anyway bounded byO(t log n). Hence we can conclude the
following result.

Theorem 4.1:Starting from an empty graph onn vertices,
a maximal matching in the graph can be maintained over any
sequence oft insertion and deletion of edges inO(t log n)
time in expectation andO(t log n+n log2 n) time with high
probability.

5. CONCLUSION

We presented a fully dynamic algorithm for maximal
matching which achieves expected amortizedO(log n) time

per edge insertion or deletion. Maximal matching is also
2-approximation of maximum matching. It would be a chal-
lenging problem to see ifc-approximate maximum matching
for c < 2 can also be maintained inO(log n) update time.
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APPENDIX

Alternate proof for Lemma 3.5 :Consider the first epoch
which is terminated during a sequence oft updates. Let at
the moment of its creation, its owner ownedM edges. It can
be seen that its duration is a random variableZ distributed
uniformly in the range[1...M ]. Using the law of conditional
expectation, that is,E[Xt] = E[E[Xt|Z]], and settingyt =
E[Xt], we obtain the following useful recurrence.

yt =

{

1
M

∑M
i=1(yt−i + 1) for t ≥M

1
M

∑t
i=1(yi−1 + 1) for 0 < t < M

(3)

wherey0 = 0 andy1 = Pr[Z = 1] = 1/M . By subtracting
the recurrence ofyt−1 from yt, we obtainyi ≤

(

1 + 1
M

)M−
1 ≤ e for i ≤ M . Using yi ≥ yi−1, one can verify that
the solution for the recurrence in Equation 3 is given by
yt ≤ e + c t

M for c ≥ 2.
Notice that this proof does not rely on the independence

of the random numbers.


