Fully dynamic maximal matching in O(log n) updatetime
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Abstract— We present an algorithm for maintaining maximal update time algorithm for maintaining maximum matching
matching in a graph under addition and deletion of edgesdata  with respect to aestricted random model Therefore the
structure is randomized that také¥(logn) expected amortized goal of a polylog(n) update time dynamic maximum

time for each edge update wherds the number of vertices in the tchi lqorith to be t biti |
graph. While there is a triviaD(n) algorithm for edge update, the matching algorithm appears 10 be oo ambitious. In par-

previous best known result for this problem was due to Ivkarid  ticular, even achieving a(y/n) bound on the update time
Llyod[4]. For a graph withn vertices andn edges, they give an would imply an improvement of the longstanditgm./n)
O((n+m)" ™) update time algorithm which is sublinear only hound of the best static algorithm for maximum matching
for a sparse graph. due to Micali and Vazirani [5]. So approximation appears to

For the related problem of maximum matching, Onak andb inevitable if ish t hi v fast update fi
Rubinfeld [6] designed a randomized data structure thateaeh e inevitable Ir we wish 1o achieve really 1ast update ime

O(log® n) expected amortized time for each update for maintainingfor maintaining matching. Recently, Onak and Rubinfeld
a c-approximate maximum matching for some large constant [6] presented a randomized algorithm for maintaining a
In contrast, we can maintain a factor two approximate marimu c-approximate (for some large constag)t matching in a
matching inO(log n) expected amortized time per update as adynamic graph that tak@(logQ n) amortized time for each

direct corollary of the maximal matching scheme. This imtatso d date. Thi tching i ¢ i imal
implies a two approximate vertex cover maintenance schéate t eage update. This matching IS not necessarly maximal, as

takesO(logn) expected amortized time per update. a maximal matching would imply a factor two approximate
maximum matching. In particular, they pose the following
1. INTRODUCTION question -

“

. Our approximation factors are large constants. How
In the last decade, there has been considerable research : N .
. : : . ~~'small can they be made with polylogarithmic update time
in Dynamic Graph Algorithms where we want to main-

2 2 imati
tain a data structure associated with some property (like Can they be made 2 Can the approximation constant be

. " ; g made smaller than two for maximum matching ?..”
connectivity, transitive closure or matching) under itiser . . .
. . . We resolve one of their central questions by presenting
and deletion of edges. Even for a simple property like

connectivity it took researchers considerable effort to designa fully dynamicalgorithm for maximal matching which

. ; . achievesO(log n) expected amortized time per edge inser-
a polylog(x) update time algorithm [2], [3]. In this work, W€ tion or deletion. Our bound also implies a similar result for

address fully dynamic maintenance of maximal matchingin___. = .~ .
a graph, maintaining a two approximate vertex cover.
Let G = (V, F) be a graph om vertices andn edges. A 2. AN OVERVIEW
matching inG is a set of edgesvt C E such that no two
edges inM share any vertex. A maximum matching is a
matching that contains the largest possible number of edge

A matching is said to be a maximal matching if it cannot bewe defineu to be themateof v andw to be themateof .

strictly cont_alned In any other matching. It is weI_I kn_own For a vertexz if there is an edge incident to it from,
that a maximal matching guarantees a 2-approximation of

the maximum matching. Ivkovié and Llyod [4] designed thethenz a matchedvertex; otherwise it igree or unmatched

. . . . : . In order to maintain a maximal matching, all that is
first fully dynamic algorithm for maximal matching with required is to ensure that there is no edgev) in the
O((n +m)%77) update time. In contrast, there exists a q ge

much larger body of work for maximum matching. graph such that botlhy and v are free with respect to the

Sankowski [9] gave an algorithm for the maintainin rnaX_matching. From this observation, an obvious approach will
. ' 1ol gan 9 1 435 be to maintain the information for each vertex whether it
imum matching which processes each updat®©in'*"°)

. . is matched or free at any stage. When an efge) is
time. Alberts and Henzinger [1] gave an expect@th) inserted, add(u,v) to the matching ifu and v are free.

 Presently at IBM, India Research Lab, New Delhi on leave fiti For a _Cas_e When_ an unmatched edgev) is deleted,
Delhi. no action is required. Otherwise, for both and v we

Let M denote the matching of the graph at any moment.
Every edge ofM is called amatchededge and an edge in
%\M is called arunmatchecetdge. For an edge:, v) € M,



search their neighborhood for any free vertex and updateutcome of some probabilistic calculations using Chernoff
the matching accordingly. It follows that each update takedounds that is chosen to besafficientlylarge. Therefore, it
O(1) computation time except when it involves deletion of is unlikely that any simple variation of this global apprbac

a matched edge; in this case the computation time is ofan lead to a maximal matching.

the order of the sum of the degrees of the two vertices. We also maintain a hierarchical partitioning of vertices
So this trivial algorithm is quite efficient fosmall degree  but it is distinctly different from the scheme of Onak and
vertices, but is expensive foiarge degree vertices. An Rubinfeld [6]. Our algorithm takes a vertex centric apptoac
alternate approach to handling deletion of a matched edgas described above for maintaining matching at each level.
is to use a simple randomized technique - a veniels  Our algorithm achieves significantly better results thajp [6
matched with a randomly chosen neighbar Following i.e., a guaranteed factor 2 matching. The use of random-
the standard adversarial model, it can be observed that dmation is limited to choice of a random matching vertex
expectedleg(u)/2 edges incident ta will be deleted before and theO(logn) expected update time can be derived using
deleting the matched edde, v). So the expected amortized pairwise independent random numbers.

. . deg(u)+deg(v)
cost per edge deletion far is rougthO(idcg(u)/2 ) 2.2. Organization of the paper

If deg(v) > deg(u), then this update time can be as bad as For a gentle exposition of the ideas and techniques, we

the one obtained by the trivial algorithm mentioned above;first describe a fully dynamic algorithm for maximal match-
but if deg(u) is high, the update time is better. We combine. yay 9

the idea of choosing a random mate and the trivial algorith ing which has 2 levels and achieves expected amortized

suitably as follows. We introduce the notion ofnership nb(\/ﬁ)_nme per update_. This is followed by our fma_l fully
. : . . dynamic algorithm which hagogn levels and achieves
of edges wherein we assign an edge to that endpoint whic . .
. o - expected amortize@(log n) time per update (Theorem 4.1).
has higher degree. We maintain a partition of the set of . L ) .
. . ] : .~ Alllogarithms in this paper are with base 2 unless mentioned
vertices into two levels : 0 and 1. Level O consists of vedice

which ownfew edges and we handle the updates in level OotherW|se.
using the trivial algorithm. The level 1 consists of verfice 3. FULLY DYNAMIC ALGORITHM WITH EXPECTED
(and their mates) which owtarge number of edges and AMORTIZED O(4/n) TIME PER UPDATE

we use the idea of random mate to handle their updates. In ¢ gigorithm maintains a partition of the set of vertices
particular, a vertex chooses a random mate from its set of,i5 two levels. We shall useeVEL
owned edges which ensures that it selects a neighbor having o \ertexu. We defineLEVEL (
a lower degree. This is the basis of our first fully dynamicmaX(LEVEL(u)7 LEVEL(v)).
algorithm which achieves expected amortizad\/n) time We now introduce the concept ofvnershipof the edges.
per update. ) _ _ Each edge present in the graph will be owned by one or both
A careful analysis of the&)(,/n) update time algorithm ¢ 15 end points as follows. If both the endpoints of an edge
sug_gegts that diner partltlon of ver.tlces may help N are at leveD, then it is owned by both of them. Otherwise it
achieving a better update time. This leads to our finaly he owned by exactly that endpoint which lies at higher
algorithm which achieves expected amortizédog n) ime 166 |t hoth the endpoints are at level 1, the tie will be
per update. More specifically, our algorithm maintains anyqen suitably by the algorithm. As the algorithm proceeds
invariant that can be informally summarized as follows. b yertices will make transition from one level to another
Eagh vertex tries to rise to a level higher th?”. Its current g the ownership of edges will also change accordingly. Let
level if upon reaching that level, there are sufficientlygkar 0. denote the set of edges owned byat any moment of
number of edges incident on it from lower levels. Once ;o Each vertex. € 1 will keep the set0, in a dynamic
vertex reaches a new level, it selects a random edge frorﬂash table [7] so that each search or deletion(dncan
this set and makes it matched. be performed in worst cas@(1) time and each insertion
2.1. Related Work operation can be performed in expected ) time. This hash

Onak and Rubinfeld [6] also pursue an approach based oiP!€ iS also suitably augmented with a linked list storihg
use of randomization to achieve efficient updates and mairg® that we can retrieve all edges of €&t in O(|0.|) time.
tain a partitioning of vertices into a hierarchy 6flog n) The algorithm maintains the following two invariants
level that is along the lines of Paras and Ron [8]. Thethroughout.
algorithm of Onak and Rubinfeld [6] takes a global approach 1) Every vertex at level 1 is matched. Every free vertex
in building leveli of this hierarchy as follows. For leve] at level 0 has all its neighbors matched.
they consider the subgraph consisting of vertizeand their 2) Every vertex at level 0 owns less thg/m edges at
neighbors and argue that a random subset of these edges any moment of time.
form a matching of sizgV;|/a with high probability for  The first invariant implies that the matchilg maintained is
some constant. > 1. The approximation factor is an  maximal at each stage. A vertexs said to be alirty vertex

(u) to denote the level
u,v) for an edge(u, v) as



at a moment if at least one of its invariants does not hold. Irof » andv which owns larger number of edges; tebe that
order to restore the invariants, each dirty vertex mightenak vertex. If |O,| = \/n, the invariant 2 has got violated. We
transition to some new level and do some processing. ThiexecuteRANDOM-SETTLE(u); as a resuli moves to level 1
processing will firstly involve owning or disowning some and gets matched to some vertex, sayelected randomly
edges depending upon whether the level of the vertex hasniformly from O,,. If w andx were respectively the earlier
risen or fallen. Thereafter, the vertex will execeteNDOM- mates ofu andy at level 0, then the matching afwith y has
SETTLE Or NAIVE-SETTLE to settle downat its new level. renderedv andx free. So to restore invariant 1, we execute
The pseudocode for insert and delete operation is given iNAIVE-SETTLE(w) andNAIVE-SETTLE(x). This finishes the
Figure 1 and Figure 2. processing of insertion ofu, v). Note that whenu rises to
Handling insertion of an edgelet (u,v) be the edge level 1,|O,| remains unchanged. Since both the invariants
inserted. If either, or v are at level 1, there is no violation for v were satisfied before the current edge update, it follows
of any invariant. So the only processing that needs to bé¢hat the second invariant for still remains intact.
done is to assigffu,v) to O, if LEVEL(u) =1, and toO, Handling deletion of an edgelet (u,v) be an edge that
otherwise. This take$)(1) time. However, if bothu and s deleted. If(u,v) ¢ M, both invariants are still intact. So
v are at level 0, then we exeCUtANDLING-INSERTION

procedure which does the following (see Figure 1).

Procedure HANDL I NG- | NSERTI ON( u, v)

if wandv are FREEthen M — MU {(u,v)};
if |Oy] > |0, then swaf{u, v);
if |0y, =+/n then

x < RANDOM-SETTLE(u);

if x % NULL then NAIVE-SETTLE(z);

if w was previous mate af then

NAIVE -SETTLE(w);

Procedure RANDOM- SETTLE( u) : Finds a random
edge(u, v) from the owned edges af and returns
the previous mate of

Let (u,v) be a uniformly randomly selected edge
from Oy;
if v is matchedhen
x «— MATE(v);
M = M\{(v, z)}
else
| @ < NULL,;

M = MU {(u,v)};
LEVEL(u) «— 1; LEVEL(v) « 1;
returnz;

Procedure NAI VE- SETTLE( u) : Finds a free ver-
tex adjacent ta; deterministically
for each(u,z) € O, do
if z is freethen
M — MU {(u,2)};
Break;

Figure 1.  Procedure for handling insertion of an edgev) where

LEVEL(u) = LEVEL(v) = 0.

let us consider the nontrivial case when v) € M. In this
case, the deletion df:, v) has made: andwv free. Therefore,
potentially the first invariant might have got violated for
and v, making them dirty. We do the following processing
in this case.

If edge (u,v) was at level 0, then following the deletion
of (u,v), vertex u executesNAIVE-SETTLE(u), and then
vertex(v) executesNAIVE -SETTLE(v). This restores the first
invariant and the vertices andv are cleanagain. If edge
(u,v) was at level 1, then is processed using the procedure
shown in Figure 2 which does the following {s processed
similarly).

Procedure HANDL | NG- DELETI ON( u,v)
foreach (u,w) € O, and LEVEL(w)=1 do
| move (u,w) from O, to O,;
if |Oy| > +/n then
2 < RANDOM-SETTLE(u);

if % NULL then NAIVE-SETTLE(z);
else

LEVEL(u) « 0;
NAIVE -SETTLE(uw);
foreach (u,w) € O, do
if |Ow| > +/n then
2 < RANDOM-SETTLE(w);
L if £ % NULL then NAIVE-SETTLE(z);

Figure 2. Procedure for processingwhen (u,v) € M is deleted and
LEVEL(u)=LEVEL(v)=1.

Firstly u disowns all its edges whose other endpoint is at
level 1. If |0, is still greater than or equal tg'n, thenu
stays at level 1 and executRaNDOM-SETTLE(w). If |O,|
is less thany/n, v moves to level 0 and executem\IVE -
SETTLE(u). Note that the transition of, from level 1 to O

If w andv are free, then insertion dfu,v) has violated leads to an increase in the number of edges owned by each
the first invariant foru as well asv. We restore it by adding of its neighbors at level 0. The second invariant for eactsuc
(u,v) to M. Note that insertion of(u,v) also leads to neighbor, sayw, may get violated iffO0,,| = v/n, making
increasgO,,| and |O,| by one. We process that vertex out w dirty. So we scan each neighbor afsequentially and



) epoch of(u, v)
i epoch of(u, v)

...... o o LEVEL 1
O O : natural epoch
epoch of(u, w)§
,,,,,,, — n - induced epoch
"7 "epoch of(v, )
- LEVELO
Time > Om m O B OO
epoch of (u, w)

epoch of(v, )

Figure 3. Epochs at level 0 and 1; the creation of an epochvat fecan destroy at most two epochs at level 0.

for each dirty neighbow (that is,|O,,| > v/n), we execute If the epoch was created wharrises from level O to level
RANDOM-SETTLE(w) to restore the second invariant. This 1, then|O,| is exactly equal ta/n, and|O,| is at mosty/n.
finishes the processing of deletion @f, v). Creation of this epoch would require transferwofas well

It can be observed that, unlike insertion of an edge, thesv) from level 0 to level 1, eliminatingu, =) from O,, for
deletion of an edge may lead to creating a large numbegach(u,z) € O, followed by eliminating(v, z) from O,
of dirty vertices. This may happen if the deleted edge is dor each(v,z) € O,. So the total computation performed
matched edge at level 1 and at least one of its endpointduring creation of the epoch 8(y/n).
make transition to level O. Another way for the creation of an epoch at level 1 is
when the previous epoch af (say epoch of(u,w)) is
Remark 3.1: After every update, the two endpoints of destroyed at level 1. As a resuit, disowns edges at level
each matched edge will be present at the same level. In and if it still has at least/n edges it selects a random
other words, edges having endpoints at distinct levels willertexv and starts (new) epoch dfi,v). As we can see
never be part of the maximal matching! maintained by that there are two tasks involved in this process. The first
our algorithm. task involves disowning the edges of the computational
3.1. Analysis of the algorithm cost of this task is attributed tq the termination of the old
] ) epoch of(u,w). The other task involves transfer offrom
We analyze the algorithm using the conceptnaiched 10,1 ¢ 1o level 1, and eliminating, z) from O, for each
epochs which we explain as follows. While processing (v,2) € O,. The computational cost of this task is attributed

the sequence of insertions and deletions of edges, SOME the creation of the epoch 6fi, v). Since®, is at most
matched edges become unmatched and some unmatche , the computational cost performed during the creation

_edges become matched. _Consider any edge), and I_et of the epoch of(u, v) in this case is agai®)(y/n).

it be a matched e_dge at t_mteThe_n the ep(_)c_h ofu, ”)_ IS At the termination of the epoch, the computation involves
the maximal continuous time period containihépr which disowning edges incident om andv from vertices at level

it remains in M. The duration of the epoch associated1 This computation is of the order 6®.,| + |0, which

with (u,v) will be the number of updates which or v .., ho pounded b (n). Excluding the two updates that

undergo dll:jring the e'?OCh' The entirfe life s%ar; of an ﬁdg ause creation and termination of an epoct«afv), every
(u,v) would consist of a sequence of (matched) epochs o ther edge update om andv during the epoch is handled

(u,v) separated by the continuous periods whenw) is st O(1) time. Therefore, we shall focus only on the

nolt mat((j:he(:. bound th ted tation i amount of computation performed at the time of creation
n order 1o boun € expected computation IMe Per, 4 termination of an epoch. From our analysis, it follows
update, first we calculate the computation involved in a

epoch at level 0 and 1 "that the amount of computation involved in an epoch at level
. : 1 and level 0 d tively.
Consider an edggu,v) € M at any moment. If and level 0 ar®)(n) andO(y/n) respectively.

LEVEL(u,v) = 0, then the creation of the epoch associated An_ epo(;:r:a correspo?dmg tlo somefeggef, l?ayi_;), gets
with (u,v) involves scanningd, (or O,) to find the free term|r_1ate gcause of exactly one of the following causes.
vertexv. An equivalent amount of work is required at the (i) if (u,v) is deleted from the graph. o
termination of this epoch. Being at level @,as well as (i) w (or v) get matched to some other vertex leaving its
v own less than/n edges each. So the total computation current mate free.

involving an epoch at level 0 i©(y/n). Let us consider the An epoch will be called anatural epoch if it is terminated
case whenEeVEL(u,v) = 1. Suppose the epoch got created due to causei; otherwise it will be called amducedepoch.

by vertexu. Inducedepoch can be seen as a premature termination of an



epoch since, unlike natural epoch, the matched edge is not Lemma 3.4:For any giveng > 1,
actually deleted from the graph when amucedepoch is

: /2
terminated. Pr[X, = ¢ < ( det >q

It follows from the algorithm described above that every avn

epoch at level 1 is a natural epoch whereas an epoch at level Proof: If th hs d d duri d
0 can be natural or induced depending on the cause of its root: It there areg epoc S estroyed duringipaates,
th least half of them have duratieh2¢/q. Hence Pr[X; =

termination. Furthermore, each induced epoch at level 0 caft’ . bounded by th bability that th .
be associated with a natural epoch at level 1 whose creatio is bounded by the probability that there are at leg

led to the termination of the former. In fact, there can be atepolch§ of rc]iur.at(ljon atdmos(ilf. So, usnr:g Lemrrr:a 3.3 and
most two induced epochs at level 0 which can be associategP'olting the independence among the epochs,
with an epoch at level 1. It can be explained as follows (see

Figure 3). PrlX, — g < <q72) (%yz/? . <q4%>q/2

Consider an epoch at level 1 associated with an edge, say

(u,v). Suppose it was created by vertexIf v was already  For the last inequality we use(c%) < (ﬂ)l =(2¢). m

. L - = \a/2
matched at level O, letv # v be its mate. Similarly, ift  \y\e use Lemma 3.4 to analy® X,] and deviation ofX;.

was also matched already, let# u be its current mate at Lemma 3.5:For anyt > 0, E[X,] = O (t//n).
level 0. So matching: to v terminates the epoch @i, w) Proof: Let us setgy — '5et/\/ﬁ. For anyq > qo, it

as well as the epoch of edde, z) at level 0. Wecharge  ¢511ows from Lemma 3.4 thaPr[X; = ¢ < (4/5)7/2.
the overall cost of these two epochs to the epocliugb) -

Hence,
which destroys them. So the overall computatibiargedto P
an epoch of(u,v) at level 1 isO(n + |Oy| + |Oy]). This B iy 4\1
cost is indeed)(n) since each ofO0, | and|O,,| is less than Pr(X; > q] = ; Pr(X; =q] <10 5 (1)
V. a'>q

Lemma 3.2:The computation charged to a natural epochN_OW we use the fO”OWi”Q W?” known equality which holds
at level 1 isO(n) and the computation charged to a naturalSince X« takes nonnegative integral values only.

epoch at level 0 I©)(v/n). ElX] = Y. PriXi>q < a+ 3 Pr[X;2q (2)
In order to analyze our algorithm, we just need to get a a>1 a>qo
bound on the computatlonharged to all natural epochs Using Equations 1 and 2, it follows thBYX,] = et/ /i +
at level 0 and level 1 during a sequence of updates. “b(l) — Ot/ /) -
particular, we need to bound the computatabrargedto all N o : .
; . Lemma 3.6:For anyt > 0 X; is O(t/y/n + logn) with
the natural epochs which get destroyed during the updates . "
and the epochs which are alive at the end of all the update\s/ery high probability.
" Proof: We chooseyy = 4 (logn + 4et/\/n). It follows
3.1.1. Bounding the computation charged to the naturaffrom Lemma 3.4 that for any > ¢, Pr[X; = ¢] is of
epochs destroyedlLet ¢ be the total number of updates. the form? where basé < 1/2. HencePr[X; > qo] is
Each natural epoch at level O which is destroyed can b&ounded by a geometric series with the first tetr@—% and
assigned uniquely to the deletion of its matched edge. Hendle common ratio less thaty2. Furthermorey, > 4logn,
it follows from Lemma 3.2 that the computatiehargedto hencePr[X; > qo] is bounded by2/n*. Hence X; is
all natural epochs destroyed at level O duringpdates is bounded byO(t/+/n + logn) with high probability. [ |
O(t\/n). Notice that the proofs of Lemmas 3.5 and 3.6 rely heavily on

Now we shall analyze the number of epochs destroye(ﬁhemtal independence of rar_wd(_)m numbers used for selecting
at level 1. Let us define thduration of the epoch as the fandom mates. However, similar bound &1.X,] can be
number of edges incident anwhich are deleted during the derived even if we assume only pairwise independence
epoch. Consider an epoch at level 1 created by some verteR€tween the random numbers used (see Appendix for an
sayu. At the time of its creation: must be owning a set of alternate proof of Lemma 3.5).
at least,/n edges, and: selected a matched edge out of its NOw, recall from Lemma 3.2 that each natural epoch

owned edges uniformly randomly and independent of otheflestroyed at level 1 ha®(n) computationchargedto it.
epochs. This implies the following lemma. So Lemmas 3.5 and 3.6, when combined together, imply

the following lemma.

Lemma 3.7:The computation costhargedto all the
natural epochs which get destroyed during any sequence of
Let X; be the random variable denoting the number oft updates iSO(¢1/n) in expectation and(t/n + nlogn)
epochs at level 1 destroyed during a sequenceugfdates. with high probability.

Lemma 3.3:The probability that a given epoch at level 1
has duration at mostis bounded b%.



Let us now analyze the coshargedto all those epochs from —1 to Ly = |logn]. Note that the level starts from
which are alive at the end ofupdates. Note that each vertex -1 and not 0. We again use the notion of ownership of
is involved in at most one alive epoch. It thus follows thatedges which is slightly different from the one used in 2-
the computation costhargedto all the alive epochs at any LEVEL algorithm. Each edge is owned by exactly one of
instance igD(t). During any sequence ofupdates, the total its endpoints. In particular, the endpoint at the higheelev
number of epochs created is equal to the number of epocteways owns the edge. If the two endpoints are at the
destroyed and the number of epochs that are alive at theame level, then the tie is broken suitably by the algorithm.
end oft updates. Hence using Lemma 3.7 we can state theike the 21 EVEL algorithm, each vertex. will maintain
following theorem. a dynamic hash table storing the edg@s owned by it.
Theorem 3.1:Starting with a graph om vertices and no In addition, the generalized fully dynamic algorithm will
edges, we can maintain maximal matching for any sequenamaintain the following data structure for each vertexor
of ¢ updates inO(t\/n) time in expectation and(t\/n +  eachi > LEVEL(u), let £, be the set of all those edges

nlogn) with high probability. incident onu from vertices at level and are not owned by
) ) ) u. For each vertex, and leveli > LEVEL(u), the set&!
3.2. On improving the update time beyo@d,/n) will be maintained in a dynamic hash table. Note that the

In order to extend our 2EVEL algorithm for getting onus of maintainingg’ will not be onw. In fact, for any
better update time, it is worth exploring the reason un-edge(u,v) € £, it will be v which will be responsible for
derlying O(y/n) update time guaranteed by ourLBvEL  the maintenance dfu,v) in £ since(u,v) € O,.
algorithm. For this purpose, let us examine the second
invariant more carefully. Letv(n) be the threshold for the 4.1. Invariants and a basic subroutine used by the algorithm

maximum number of edges that a vertex at level O can own. As can be seen from the 2-level algorithm, it pays for each
Consider an epoch at level 1 associated with some edge, sg¥rtexw to get settled at a higher level once it ownkeaye
(u,v). The computation associated with this epoch is of thenumber of edges. Pushing this idea still further, our fully
order of the number of edges and v own which can be  dynamic algorithm will allow a vertex to rise to a higher
©(n) in the worst case. However, the expected duration ofevel if it can ownsufficiently largenumber of edges after

the epoch is of the order of the minimum number of edges moving there. In order to formally define this approach, we
can own at the time of its creation, i.€{a(n)). Therefore, introduce an important notation here.
the expected amortized computation per edge deletion for an [ £q, 5 vertexw with LEVEL (v) = 4,
epoch at level 1 i$)(n/a(n)). Balancing this with thex(n) b e
update time at level 0, yields(n) = \/n. b0(j) = { Oul + Xicne; €51 1F 5>
In order to improve the running time of our algorithm, 0 otherwise
we need to decrease the ratio between the maximum and
the minimum number of edges a vertex can own during an, . : .
epoch at any level. It is this ratio that actually bounds the _”(3) denotg the numb_er of (_adges whiehcan own 'hf
expected amortized time of an epoch. This insight motivate§' S¢S to levelj. Our algorithm _W'” be based on the fqllowmg
us for having a finer partition of vertices : the number of strategy. If a vertex has¢,(j) > 27, theny would rise to

levels should be increased @(logn) instead of just 2. the Ieve!y. !n case, thgre are multiple Ievells to \_/vhrch:gn
When a vertex creates an epoch at leieit will own at rise,v will rise to the highest such level. With this key idea,

least2’ edges, and during the epoch it will be allowed to we now describe the two invariants which our algorithm will

own at mosi*! — 1 edges. As soon as it starts owniig!  Mantain. _
edges, it should migrate to higher level. By following these 1) Every vertex at level 0 is matched and every vertex

In other words, for any vertex at level: and any; > 1,

guidelines, notice that the ratio of maximum to minimum at level -1 is free. _ .
edges owned by a vertex during an epoch gets reduced from 2) For each vertex and for allj > LEVEL(v), ¢, (j) <
/1 to a constant, which is what we aimed for. 27 holds true.

We pursue the approach sketched above and some néle second invariant implies that a vertex at level -1 will
ideas in the following section. This leads to a fully dynamichave no neighbor at level -1. This fact together with the
algorithm for maximal matching which achieves expectedfirst invariant imply that the matching maintained by the
amortizedO(logn) update time per edge insertion or dele- algorithm will indeed be a maximal matching. In fact, simila
tion. to the 2+EVEL algorithm, the endpoints of each matched
edge will lie at the same level. Figure 4 depicts a snapshot
of the algorithm. The second invariant captures the key idea
described above - after processing every update there is no

The fully dynamic algorithm maintains a partition of vertex which fulfills the criteria of rising. An edge update
vertices amonglogn | + 2 levels. The levels are numbered may lead to violation of the invariants mentioned above

4. FULLY DYNAMIC ALGORITHM WITH EXPECTED
AMORTIZED O(logn) TIME PER UPDATE
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Figure 4. A snapshot of the algorithm diig: all vertices are matched(
thick edges) except vertex at level -1. Vertexv is the owner of just the
edge(v, z). ¢ (2) = 2 < 22 and ¢, (3) = 4 < 23, sowv cannot rise to a
higher level.

and the algorithm basically restores these invariantss Thi
may involve rise or fall of vertices. Notice that the second
invariant of a vertex is influenced by the rise and fall of

its neighbors. We now state and prove two lemmas which

capture this influence in precise words.

Lemma 4.1:Consider a vertex: at level & for which
both invariants hold. The rise of any neighbor, sagannot
violate the second invariant far.

Proof: Since the invariants hold true far before rise
of v, s0¢, (i) < 2¢ for all i > k. It suffices if we can show
that ¢, (7) does not increase for anydue to the rise ob.
We show this as follows.

Let vertexwv rises from levelj to /. If ¢ < k, the edge
(u,v) continues to remain id,,, and so there is no change
in ¢,,(7) for anyi. Let us consider the case whén- k. The
rise ofv from j to ¢ causes removal dfu, v) from O,, (or &7
if 7 > k) and insertion te€’. As a resultp, (i) decreases by
one for each in [max(j, k) + 1, ¢], and remains unchanged
for all other values of. |

Lemma 4.2:Consider a vertex at levelk for which both
invariants hold. Then any fall of one of its neighbors, say
from level j to j — 1 increasesp, (j) by at most one.

Proof: In casek > j, there is no change ip, () for any
¢ due to fall ofv. So let us consider the cage> k. In this
case, the fall ob from levelj to j — 1 leads to the insertion
of (u,v) in &' and deletion fron€;. Consequentlyp, (i)
increases by one only far= j and remains unchanged for
all other values of. |

o INCREMENT-¢(v,7): this operation increases, (i)
by one. This operation will be executed when some
neighbor ofv falls fromi to 7 — 1.

It can be seen that a singBECREMENT¢(v, I) operation
takesO(|7]) time which isO(log n) in the worst case. On the
other hand any singleNCREMENT-¢(v,¢) operation takes
O(1) time. However, sincep, (i) is 0 initially and is non-
negative always, we can conclude the following.

Lemma 4.3:The computation cost of albECREMENT
¢() operations is upper-bounded by the computation cost of
all INCREMENT-¢() operations during the algorithm.

Observation 4.1:1t follows from Lemma 4.3 that we just
need to analyze the computation involving RAIEREMENT-
¢() operations since the computation involved DECRE
MENT-¢() operations is subsumed by the former.

Procedure GENERI C- RANDOM- SETTLE( u, 1)

if LEVEL(u) < 4 then
reaches | evel
for eachj = LEVEL(u) to i — 1 do
for each(u,w) € & do
transfer(u, w) from & to £ ;
transfer(u, w) from O, to O,;
DECREMENT@(w, [ + 1,4]);

/] w owns edges till it

i

Let (u,v) be a uniformly randomly selected edge
from Oy;
if v is matchedthen
x — MATE(v);
M = M\{(v, )}
else

L @ < NULL

for eachj = LEVEL(v) toi—1do //v rises to

| evel ¢ and thus owns edges incident from

vertices at levels LEVEL(v) to i—1

for each(v,w) € & do

transfer(v, w) from &J to £ ;
transfer(v, w) from O,, to O,;
DECREMENT¢(w, [j + 1,14]);

M — MU{(u,v)};
LEVEL(u) « i; LEVEL(v) « 4;
returnz;

Figure 5. Procedure used by a free verteto settleat level.

If any invariant of a vertex, say, gets violated, it might

In order to detect any violation of the second invariantrise or fall, though in some cases, it may still remain at

for a vertexv due to rise or fall of its neighbors, we shall
maintain {¢, (¢)|¢ < Lo} in an arraye,[] of size Ly + 2.
The updates on this data structure during the algorithm wil
involve the following two types of operations.
o DECREMENT¢(v,I): this operation decrements,(7)
by one for alli in interval I. This operation will be
executed when some neighborwofises.

the same level. However, in all these cases, eventually the
vertex v will execute the procedureGENERICG-RANDOM-
KSETTLE, shown in Figure 5. This procedure is essentially a
generalized version G(ANDOM-SETTLE(u) which we used

in the 2-level algorithm GENERIG-RANDOM-SETTLE(u, 7)
starts with movingu from its current level (EVEL (u)) to
level i. If level ¢ is higher than the previous level af,



u acquires the ownership of all the edges whose endpointsProcedure PROCESS- FREE- VERTI CES( S)

lie at the levele [LEVEL(u),i — 1]. For each such edge
(u,v) that is now owned by, we performDECREMENT
¢(v, [LEVEL(v) + 1,i]) to reflect that the edge is now
owned by vertex: which has moved to level Henceforth,
the procedure then resemblR8NDOM-SETTLE. It finds a
random edg€gu,v) from O, and movesv to leveli. The
procedure returns the previous matevpff v was matched.

Lemma 4.4:Consider a vertexu executing GENERICG
RANDOM-SETTLE(u, ) and selecting a mate. Excluding
the time spent iMECREMENT—¢ operations, the computa-
tion time of this procedure is of the order @,| + |O,|
whereQ,, andQ,, is the set of edges owned hyandv just
at the end of the procedure.

4.2. Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic pro-
cedure calledPROCESSFREEVERTICES The input to this
procedure is a sequengeconsisting of ordered pairs of the
form (z, k) wherex is a free vertex at levet > 0. Observe
that the presence of free vertices at level 0 implies
that matchingM is not necessarily maximal. In order to
preserve maximality of matching, the procederOCESS

FREE-VERTICES restores the invariants of each such free

vertex. We now describe our fully dynamic algorithm.

Handling deletion of an edgeConsider deletion of an
edge, say(u, v). For eachj > max(LEVEL(u), LEVEL(v)),
we decrementp,(j) and ¢,(j) by one. If (u,v) is an
unmatched edge, no invariant gets violated. Hence not
ing needs to be done except deleting the edgev)
from the data structures af and v. Otherwise, letk =
LEVEL(u) = LEVEL(v). We execute ProceduiROCESS
FREEVERTICEY((u, k), (v, k))).

Handling insertion of an edge:Consider insertion of
an edge, say(u,v). We check if the second invariant
has got violated for either ofi or v. The invariant may
get violated forwu (likewise v) if there is any integer
i > max(LEVEL (u), LEVEL(v)), such thatp, (i) was2‘ — 1
just before the insertion of edge:,v). In case there are
multiple such integers, let, .. be the largest such integer.
We incrementp,, (¢) and ¢, (¢) by one for eacll > ipax.
To restore the invarianty leaves its current mate, say,
and rises to level,,,.. We executeGENERICG-RANDOM-
SETTLE(u, imax), and letxz be the vertex returned. Let
andk be respectively the levels af andz. Note thatx and
w are two free vertices now. We exeClHROCESSFREE
VERTICES{(z, k), (w, 7))).

Remark 4.5: If the insertion of edggu,v) violates the
second invariant for both: and v, we select that vertex
which can rise to the higher level to restore its invariartt an
process that vertex.

4.2.1. Description of Procedure PROCESSFREE
VERTICES The procedure receives a sequen§e of
ordered pairs(x,i) such thatx is a free vertex at level

for each(x,7) € S do ENQUEUHQ[], z);
for : =Lg to 0do

while Q[¢] # 0 do

v +— DEQUEUHGQ[:]);
if FALLING(v) then
LEVEL(v) «— i —1;
ENQUEUHQ[i — 1], v);

Gu(i) — [Oul;

for eachu € O, do

transfer(u, v) from & to £i-1;
INCREMENT-¢(u, ©);

if ¢, (i) >2"then //wu rises to i
T «— GENERIGRANDOM-

SETTLE(u, 7);
if £ # NULL then

¢ «— LEVEL(z);

L ENQUEUHQI(], x);

else [l v settles at level i
T + GENERIG-RANDOM-SETTLE(v, 7);
if £ % NULL then
L ¢ «— LEVEL(z);

[lvfalls toi—1

ENQUEUHQI(], x);
Function FALLI NG( v)

i« LEVEL(v);

h. for each(u,v) € O, such thatLEVEL(u) = i do

/] v disowns all edges at level i
transfer(u,v) from O, to Oy;
transfer(u,v) from & to &¢;

if |O,| < 2¢ then return TRUE €else returnFALSE;

Figure 6. Procedure for processing free vertices given asqaenceS
of ordered pairgx, i) wherez is a free vertex atEVEL4.

1. It processes the free vertices in the decreasing order of
their levels starting from §. We give an overview of this
processing at level. For a free vertex at level if it owns
sufficientlylarge number of edges, then it settles at level
1 and gets matched by selecting a random edge from the
edges owned by it. Otherwise the vertex falls down by one
level. Notice that the fall of a vertex from levelto i — 1
may lead to rise of some of its neighbors lying at lexel.
However, as follows from Lemma 4.2, this rise will be only
to level i. After these rising vertices settle at levelwe
move onto leveli — 1 and proceed similarly. Overall, the
entire process can be seen as a wave of free vertices falling
level by level. Eventually this wave of free vertices reache
level -1 and fades away ensuring maximal matching. With
this overview, we now describe the procedure in more
details. Its complete pseudocode is given in Figure 6.

The procedure uses an arr@yof sizeL, + 2, whereQ[i]



is a pointer to a queue (initially empty). For each orderedepochs. All we need to do is to analyze the number of epochs
pair (x, k) € S, it insertsz into queue@|[k]. The procedure created and terminated during the algorithm and computtatio
executes a for loop fromy, down to 0 where théth iteration  involved with each epoch.
extracts and processes the vertices of quglieone by one Let us analyze an epoch of a matched edgev). Let
as follows. Letv be a vertex extracted from[i]. First we  this epoch got created by vertexat level j. Sov would
execute the functioRALLING (v) which does the following. have executedsENERIG-RANDOM-SETTLE and selected:
v disowns all its edges whose other endpoint lies at levehs a random mate from levet j. Note thatv must be
i. If v owns less thar2’ edges then it is decided that owning less thar’*! edges and would be owning at most
has to fall, otherwise will continue to stay at level. In 2/ edges at that moment. This observation and Lemma 4.4
casev has to stay at level v executeSSENERIG-RANDOM- imply that the computation involved in creation of the epoch
SETTLE and selects a random mate, sayfrom levelj < i is O(27). Once the epoch is created, any update pertaining
(if w is present inQ[j] then it is removed from it and is to u or v will be performed in jusO(1) time until the epoch
raised to level). If = was the previous mate af, thenxz is  gets terminated. Let us analyze the computation performed
a falling vertex. Vertexx gets added t@[;]. This finishes when the epoch gets terminated. At this moment one or
the processing of. Note that this processing efdoes not  both ofu andv become free vertices. Letbecomes freev
changeg, for any neighboru of v. Furthermore, the rise executes the following task (see procedBROCESSFREE
of w does not lead to the violation of any invariant due to VERTICESIn Figure 6).v scans all edges owned by it, which
Lemma 4.1. Let us discuss the more interesting case wheis less tham2’™!, and disowns those edges incident from
v owns less thar2’ edges and has to fall. In this case, vertices of levelj. Thereafter, ifv still owns at least2’
falls to leveli — 1 and is inserted taQ[i — 1]. This fall  edges, it settles at levgland becomes part of a new epoch
leads to increase, (i) by one for each neighbox of v at level j. Otherwise,v keeps falling one level at a time.
lying at level lower than (see Lemma 4.2). In casg,(:) For a single fall ofv from level: to i — 1, the computation
has becomé&’, u has to rise to level and is processed as performed involves three tasks: scanning the edges owned
follows. © executeSSENERIG-RANDOM-SETTLE and selects by v, disowning those incident from vertices at levebnd
a random mate, say from level j < i. If w was inQ|[j] incrementinge,, values for each neighbar of v lying at
then it is removed from it. If: was the previous mate af, level less than. All this computation is of the order of
thenz is a falling vertex, and so it gets added to quélj¢].  the number of edges owns at leveli which is less than
Based on the description of the procedemOCESSFREE-  2'T1. Eventually eitherv settles at some levet > 0 and
VERTICES and using Lemmas 4.1 and 4.2, we can concluddecomes part of a new epoch or reaches level -1. The total
the following. computation performed by is, therefore, of the order of
Lemma 4.6:After ith iteration of the for loop of Y 7_, 2/*1 = O(27). This entire computation involving
PROCESSFREE-VERTICES, the free vertices are present only (and ) in this process is the computation associated with
in the queues at levet i, and for all vertices not belonging the the epoch ofu,v). Hence we can state the following
to these queues the two invariants holds. Lemma.
Lemma 4.6 establishes that after termination of procedure Lemma 4.7:For anyi > 0, the computation associated
PROCESSFREE-VERTICES, there are no free vertices at level with an epoch at level is of the order of2‘.

> 0 and the two invariants get restored globally. Remark 4.8: As shown in Procedur®ROCESSFREE
VERTICES, when vertexv falls from level i to i — 1,
4.3. Analysis of the algorithm the instruction %, (i) < |O,|" is executed. For the sake
Processing deletion or insertion of an edgev) begins  of analysis, this instruction can be viewed as a total of
with decrementing or incrementing, (i) and ¢, (i) for all  |O,| increment operations o, (i) starting from 0. Note
levels i > max(LEVEL(u), LEVEL(v)). The computation that this does not increase the asymptotic bound obtained
associated with this task over a sequence apdates will in Lemma 4.7. Even though, (i) is not initialized by

be O(tlogn). This task may be followed by executing increment operation, by analyzing the above instruction in
the procedur@ROCESSFREE-VERTICES. We would like to  this way we can claim that Observation 4.1 still holds.
mention an important point here. Along with other process- Let us now analyze the number of epochs terminated
ing, the execution of this procedure involvescREMENT- ~ during any sequence gfupdates. An epoch corresponding
#() and DECREMENT-¢() operations. However, as implied to edge(u,v) at leveli could be terminated if the matched
by Observation 4.1, in our analysis we can safely ignore th@dge(u, v) gets deleted. However, it could be terminated by

computation involvingbECREMENT-¢() operations. any of the following reasons also.
Our analysis of the entire computation performed while « u or v get selected as a random mate by one of their
processing a sequence ofipdates is along similar lines to neighbors present aEVEL > i.

the 24 EVEL algorithm. We visualize the entire algorithm as  « u oOr its mate starts owning*** or more edges.
a sequence of creation and termination of various matched Each of the above factors render the epoch induced. We



shall assign the cost of each induced epoch to the epogber edge insertion or deletion. Maximal matching is also
which led to the destruction of the former. For this objegtiv  2-approximation of maximum matching. It would be a chal-
we now introduce the notion of computatichargedto an  lenging problem to see i-approximate maximum matching
epoch at any level. Note that no epoch is created at level for ¢ < 2 can also be maintained if(logn) update time.

-1 as the vertices at level -1 are always free:i ¥ 0, the
computationchargedto the epoch is the actual computation
performed during the epoch which @(1). For any level We thank Pankaj K. Agarwal for his valuable feedback
i > 0, the creation of an epoch causes destruction of a@n the presentation of the paper.

most two epochs at levels i. The computation charged to
an epoch at level > 0 is defined recursively as the actual
computation cost of the epoch and the computatisarged ~ [1] D- Alberts and M. R. Henzinger, “Average case analysis of
to at most two epochs destroyed by it at leveli. This dynamic graph algorithms,” ISODA 1995, pp. 312-321.

L . . . [2] M. R. Henzinger and V. King, “Randomized fully dynamic
definition and Lemma 4.7 immediately lead to the following graph algorithms with polylogarithmic time per operatiod,
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Lemma 4.11:For any sequence afupdates, the compu- APPENDIX
tationchargedto all the natural epochs which get terminated
is O(tlogn) in expectation and)(tlogn + nlog®n) with Alternate proof for Lemma 3.5 Consider the first epoch
high probability. which is terminated during a sequencetafipdates. Let at

The total computation cost associated witipdates is equal the moment of its creation, its owner owngfledges. It can
to the computation costhargedto all the natural epochs. be seen that its duration is a random variaBlelistributed
It follows from Lemma 4.11 that the expected computationuniformly in the rangg1...M]. Using the law of conditional
chargedto all natural epochs which gets terminated during€xpectation, that isE[X;] = E[E[X,|Z]], and settingy;, =
¢ updates isO(tlogn). The computatiorthargedto all the — E[X¢], we obtain the following useful recurrence.

natural epochs which are alive at the endtofipdates is . { 1\14 Zf\il(ym 1) fort>M
;=

t
following result. o Zim (i1 +1) for 0<t <M

Theorem 4.1:Starting from an empty graph onvertices, wherey, = 0 andy; = Pr[Z = 1] = 1/M. By subtracting
a maximal matching in the graph can be maintained over anshe recurrence af;_; fromy;, we obtainy; < (1 + %)M_
sequence of insertion and deletion of edges @(tlogn) 1 <efori < M. Usingy; > y;—1, one can verify that
time in expectation an@(tlog n+nlog® n) time with high  the solution for the recurrence in Equation 3 is given by
probability. y < e+ cﬁ for ¢ > 2.

Notice that this proof does not rely on the independence
of the random numbers.

®3)

anyway bounded by)(¢logn). Hence we can conclude the A

5. CONCLUSION

We presented a fully dynamic algorithm for maximal
matching which achieves expected amortizgdog n) time



