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Abstract. We consider secret sharing schemes in which the dealer h a  
the feature of being able (after a preprocessing stage) to activate a par- 
ticular access structure out of a given set and/or to allow the participants 
to recomtruct Merent secrets (in werent t h e  instants) by sending to 
all participants the same broadcast message. In this paper we establish 
a formal setting to study such secret sharing schemes. The security of 
the schemes presented is unconditional, since they are not based on any 
computational assumption. We give bounds on the sise of the shares held 
by participants and on the sire of the broadcast message in such schemes. 

1 Introduction 

A secret sharing scheme is a method of dividing a secret I among a set P of 
participants in such a way that: if the participants in A E 'P are qualified to 
know the secret then by pooling together their information they can reconstruct 
the secret 8 ;  but any set A of participants not qualified to know s has absolutely 
no information on the secret. The collection of subsets of participants qualified 
to reconstruct the secret is usually referred to as the amerr rtructure of the secret 
sharing scheme. 

Secret sharing schemes are useful in any important action that requires the 
concurrence of several designed people to be initiated, as launching a missile, 
opening a bank vault or even opening a safety deposit box. Secret sharing 
schemes are also used in management of cryptographic keys and multi-party 
secure protocols (see [i'] for example). We refer the reader to the excellent SUI- 
veys papers [13] and [16] for a detailed discussion of secret sharing schemes and 
for a complete bibliography on the argument. 

Simmons [13] pointed out the practical relevance of secret sharing schemes 
having the feature of being able (after some preprocessing stage) to activate a 
particular access structure out of a given set and/or to allow the participants to 
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reconstruct Merent secrets (in different time instants) simply by sending to all 
participants the same broadcast message. Ham, Hwang, La&, and Lee [8] gave 
an algorithm to set up threshold secret sharing schemes (ie., characterized by 
an access structure consisting of aU subsets of participants of cardinality not 1- 
than some integer k), in which participants could be qnaHed to recover differ- 
ent secrets in different time instants simply by receiving a broadcast message. 
However, they assumed that the access structure remained the same in eseh 
time instant. Martin [ll] presented a technique to realixe m e t  sharing schemes 
for general access structures in which by sending a broadcast message to 
participants, at each time instant a new secret is activated and a participant 19 
disenrolled from the scheme. Blakley, Blakley, Chan, and Massey [l] considered 
the problem of constructing threshold secret sharing schemes with disenrollment 
capability. The threshold of the secret sharing schemes is not changed at each 
disenrollment. They gave a lower bound on the size of the shares held by each 
participant in such schemes. 

In this paper we establish a formal setting to study secret sharing schemes 
in which different access structures and/or Merent secrets can be activated in 
subsequent t h e  instants simply by sending the same broadcast message to all 
participants. Our approach is information-theoretic based. The security of the 
schemes presented in this paper is nnconditiond, since they are not based on any 
computational assumption. W e  first study the case in which we have Merent 
access structures and we want to enable one of them to reconstruct a predefined 
secret. In this model we show that the siee of shares held by any participant 
and the size of the b r o a d a t  message are bounded from below by the size of the 
secret. We show that these bounds are optimal if one considers either the share 
of the participant or the broadcast message (see Theorem 6 and Theorem 7). 
Motivated by this result we define Ideal Secret Sharing Scheme8 with Broadcost 
as schemes for which the sise of the shares held by participants and the &e of 
the broadcast messages are the same as the size of the w e t .  We analyne ideal 
secret sharing schemes with broadcast messages when the family of the access 
structures that can be activated contains threshold access structures only. In 
Section 6 we consider the general case in which one wants to activate different 
access structures to recover possibly different secrets at subsequent time instants. 
We give sufficient conditions for the existence of a partidpant whose share size 
is lower bounded by the s u m  of the sbes of the secrets. This result generalises 
the result of [l]. 

2 Secret Sharing Schemes with Broadcast Message 

In this section we define secret sharing schemes with broadcast message. Let 'P 
be the set of participants. Denote by A the family of subsets of participants 
which we desire to be able to mover the secret; hence A E 2'. A is called 
the acce~s 8trucftm of the secret sharing scheme. In this section we consider the 
situation in which we have more than one access structure and we want to enable 
only one of them to be active to recover a predefined secret. In this scheme there 
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is a special participant called the dealer. The dealer is denoted by D and we 
assume D @ P. Let A = {dl, . . . , &} be a family of access structures on the 
set of participants P and let { p ~ ( u ) } , ~ s  be a probability distribution on the set 
of secrets S .  The dealer in the preprocessing phase, knowing { p s ( s ) } , c s  (but 
not knowing the value of the secret) and A, generates and distributes shares to 
participants in P. The dealer, in the, message-generation phase, on input a secret 
u randomly chosen accordingly to { p ~ ( u ) } , ~ s ,  the access structures d1,. . . , &, 
the shares of participants PI,. . . , P,,, and an index i E {l, 2 , .  . ., m} (arbitrarily 
chosen) computes a message bi and broadcasts it to all participants in P. At the 
end of the messagegeneration phase, only the subsets of participants in A, are 
able to recover s. These phases are described in the following algorithms. 

Preprocessing-Mgorit hm 
Input: (pS(8 ) ) .6S i  ?'={pi, ...,l'n}, and .Air - a m , & .  

Output: The shares a l l . .  . ,a, for participants PI,. . . , Pn, respectively. 

Message- Generation 

Input: 8 E S, dl,...,&, al,...,anr and i E {1,2,...,m}. 

Output: The broadcast message bi that enables the access structure A. 

In this section we consider the case in which we want to enable only one access 
structure among the family A, the case in which we want to enable different 
access structures at different times will be analyzed in Section 6. 

Let P = {PI,. . ., P,,} be the set of participants and let A be an access 
structure on P. It is reasonable to require that A be monotone, that is if A E A 
and A g A' C P, then A' E A In this paper, we assume that the access 
structures are not trivial, that is, there is always at least a subset of participants 
who can reconstruct the secret, i.e., A # 0, and that not all possible subsets of 
participants arc able to recover the secret, i.e., A# 2?. 

If A is an access structure on P, then B E A is a minimal authorized subset 
if A 4 A whenever A C B. The set of minimal authorized subsets of A is denoted 
do and is called the baaia of A A is uniquely determined as a function of A', 
as we have A = {B P : A E B ,  A E A'}. We say that Ais the closure of 
do and write A = cl(do). 

L e t A = { d l ,  . . . ,A ~2'P,1<i<m}beafamilyofmonotoneaccess  
structures on P. For 1 5 j 5 m, define Pj = u X; Pj denotes the set of 

participants in the scheme with access structure A,. Let S be the set of secrets, 
bs(s)},~s be a probability distribution on S ,  and let a secret sharing scheme 
with broadcast message for secrets in S be fixed. For any participant P E P, 
let US denote by K ( P )  the set of all possible shares given to participant P. 
Given a set of participants A = {el,. . . , EJ C P, where il < i a  < , . . < t ,  
denote by K ( A )  the set K(P;J x x K(?J. A secret sharing scheme with 

XEAj  
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broadcast message for secrets in S and a probability distribution Cps(s)},~s 
naturally induce a probability distribution on K ( A ) ,  for any A P. Denote 
such probability distribution by Finally, denote by H ( S )  the 
entropy of bs(e)) ,~s  and by H ( A )  the entropy of b x ( A l ( a ) } a E K ( , i ) ,  for any 
A E 2?. 

E A, let us denote by bi a generic broadcast 
message that enables the access structure d, and by Bi the set of all possible 
broadcast messages enabling 4. A secret sharing scheme with broadcast message 
for A = CAI,. . . , &} and a probability distribution (PS(~)},~S induce, through 
the two probabilistic algorithms above, a probability distribution on each Bi. 
Denote such probability distribution by & J b ) } b G ~ , .  Finally, for all 1 5 i 5 m, 
denote by H ( B i )  the entropy of CpB. ( b ) } a C ~ < .  

By using the entropy approach, & done in [9] and [S] for usual secret sharing 
schemes, we define a secret sharing scheme with broadcast message as follows. 

For any access structure 

Definition 1. Let A = {dl, . . . , A,,,} be a family of monotone, non trivial access 
structures on P. A secret sharing scheme with broadcaaf message is a sharing of 
secrets in S among participants in P such that 

1. Before knowing the broadcast message any subset of participants has no 
information about the value of the secret: 
Formally, for any X E 2?, it holds H ( S I X )  = H ( S ) .  

Formally, for any 
2. After seeing the broadcast message, we have a perfect secret sharing scheme: 

E A and for any X E 2p, it holds 

H ( S )  ifxeq 
(0 i f X E A ,  H(SIXBi)  = 

Notice that H ( S I X )  = H ( S )  is equivalent to state that S and X are statis- 
tically independent, i.e., for all z E K(X) and for all 8 E S, p(sIz) = p s ( s )  and 
therefore the knowledge of z gives no information about the secret. Equivalently, 
H ( S I X B i )  = H ( S )  means that S and XBi  are statistically independent. More- 
over, H ( S ( X B i )  = 0 means that each set of values of the shares and broadcast 
message in K ( X )  x K(Bi)  corresponds to a unique value of the secret. In fact, 
by definition, R ( S l X B i )  = 0 is equivalent to the fact that for all z E K(X) and 
for all b E K ( B ; )  with p(2, b) > 0 a unique s E S exists such that p(+ b) = 1. 

For any access structure 4 E A, let df = {X u {Bi}[X E A}, that is, 
contains all the sets that can reconstruct the secret in the access structure to- 
gether with the broadcast message that enables this access structure. Intuitively, 
in d? the broadcast message Bi "plays" the role of a participant. 

As an example let  us consider the following situation. Let P = { P I ,  Pt ,  ..., Pa) 
be the set of participants. The family A, depicted in Figure 1, contains three 
access structutes di =  PIP^, PzPa), dz = {PsP~), and d a  = {P&, PSPB}. 
The following algorithms r&e a secret sharing scheme with broadcast for A 
when the secret is uniformly chosen in GF(q) ,  where Q is a prime power. 
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Preprocessing- Algorithm 
Input: a prime power ql A = (Ail -4, As), and P = (pil. - . P6). 
Randomly select r ~ l r ~ , t ~ l r 4 1 r s l r 6  E GF(q). 
Let a1 = rl be the share of participant PI, uz = ra be the share of participant Pa, 

as = rl , t3 be the share of participant Ps a4 = r4 , rs be the share of partici- 
pant Pr, as = t g  be the share of participant 4, and ag = TS be the share of 
participant p8. 

Output: The shares UI I . . . , 06 for participants PI . . . Pg , respectively. 

Message-Generation 
Input:# E GF(q),dIId31dsl o1, ...lcr6randiE{1,213}. 
Compute zi = rl + ra mod q1 z2 = r3 + r4 mod gl and zs = rs + re mod q. 

Output: The broadcast message bi = I + z i  mod q that enables d,. 

It is easy to see that previous algorithms realize a secret sharing scheme with 
broadcast for A. 

B1 

Figure 1. 

3 The Size of Shares 

An important issue in the implementation of secret sharing schemes is the size 
of the shares, since the security of a system degrades as the amount of secret 
information increases. Thus, one of the basic problems is to analyge the amount 
of information that must be kept secret. Unfortunately, in all secret sharing 
schemes with broadcast message the sise of the shares, as well as the sise of the 
broadcast message, cannot be less than the she of the secret as we will see in 
the next lemma. Moreover, there are families of access structures for which any 
corresponding secret sharing scheme with broadcast message must either give 
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to some participant a share of size strictly bigger than the secret size, or the 
broadcast message has to  have size strictly bigger than the secret sixe, as we 
see in Section 5. 

The following lemmas are a generalization to secret sharing schemes with 
broadcast message of the results proved in [S] for secret sharing schemes with no 
broadcast message. 

Lemma2. Let A = CAI, . . . , &} be a family of monotone access structures on 
a set P of participants. Let A+ E A, i f y  E 2F"{Bi)\4B and x u Y E J$B, then 
H ( X I Y )  = H ( S )  + H ( X ( Y S ) .  

Proof: If Y E 2'pu{Bi}\4B w e  distinguish two cases: B; # Y and B; E Y .  If 
Bi $!- Y ,  then H ( S I Y )  = H ( S )  by property 1 of Definition 1. If Bi E Y ,  then 
H ( S I Y )  = H ( S )  because of property 2 of Definition 1 since Y\{Bi} $! A+. 
Now, consider the conditional mutual information I ( X ;  S l y ) ,  it can be written 
either as H ( X I Y )  - H ( X 1 Y S )  or as H ( S I Y )  - H(S1XY).  Hence, H ( X I Y )  = 
H ( X l Y S )  + H(SIY) - H ( S l X Y ) .  Because of H(S1XY) = 0 for X U Y E df 

0 

As immediate consequence of the previous lemma we get the following theorem. 

Theorem3. Let A = {All . .  . , d,,,} be a family of monotone access structures 
on  a set P of participants. For any secret sharing scheme with broadcast message 
for A the following properties hold: 

and H ( S l Y )  = H ( S ) ,  we have H ( X I Y )  = H ( S )  + E(XIYS). 

1. For any P E P ,  it holds H ( P )  2 H ( S ) .  
2. For i = 1,2,. . ., m, it holds H(&) 2 H ( S ) .  

If the secrets are uniformly chosen in S, that is H ( S )  = log ISI, then we can 
bound both the sise of the shares distributed to participants and the size of the 
broadcast messages. 

Theorem4. Let A = {dl, , . . A,,,} be a fami ly  of monotone access structures 
on a set P of purticipants. If the secrets are uniformly chosen in S, then for  
any secret sharing scheme with broadcast message for A the following properties 
hold: 

1. For ony P E P,  it holdd log IK(P)I 2 log IS/. 
2. For i = 1,2,. . ., m, it holds log lBil 2 log 15'1. 

Next lemma implies that the uncertainty on shares of participants, who can- 
not recover the secret, it cannot be decreased by the knowledge of the secret. 

Lemma5. Let A = {dl, . . . , A,,,} be a family of monotone access structures on 
a set P of participants. Let 4 E A, i f  X U Y E 2PU{Bi}\4F, then H(YIX)  = 

Proof: The conditional mutual information I(Y, SIX) can be written either as 
H(YIX) - H(Y IXS) or as H(SIX)  - R ( S l X Y ) .  Hence, H(YIX)  = H(Y IXS) + 
H(SIX) -R(S lXY) .  B W ~ W  of H ( S 1 X Y )  = H(SIX)  = E(S),  for XUY 4 

0 

H ( Y  IXS).  

we have H ( Y  IX) = H ( Y  IXSl. 
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Next theorems prove that for any family of monotone access structures there 
are secret sharing schemes with broadcast message such that the size of the 
shares given to a predefined participant or the size of the broadcast messages is 
the same than that of the secret. 

The secret sharing schemes with broadcast message presented in this paper 
are all realized by considering uniform distributions on S. In this case, we suppose 
that S = GF(q) ,  where q is a prime power. 

Theorem& Let A = {Al, . , . , A,,,} be a family of monotone uccess structures 
on a set P of participants and le t  P E 'P be a fixed participant. If the secret 
i s  uniformly chosen then there ezists a secret sharing scheme with broadcast 
message such that 

H ( P )  = H ( S ) .  

In Section 2 we presented a scheme for the family of monotone access struc- 
tures A = ((PlP2, P2P3}, (P3P4}, ( P ~ P s ,  PsPe}} on the set of participants 
P = {PI, P2,.  . . , Pe}. In such scheme participants Pa and P4 get a share whose 
size is twice the size of the secret. By previous theorem there exists a scheme 
where either Ps or P4 can have a share of the same size than that of the secret. 
A possible scheme, in which Pa gets a shares whose size is equal to the size of the 
secret, is the following. In this sheme the secret is uniformly chosen in GF(Q) ,  
where q is a prime power. 

Preprocessing- Algorithm 
Input:aprimepowerq, A={Al,d~,As),  a n d P = { 9 ,  ..., Pe). 
Randomly select r1, Fa, .  . . , rs E GP(q).  
Let (11 = r1 be the share of participant P I ,  a2 = r 2 ,  r 3  be the share of participant Pz, 

a3 = r 4  be the share of participant PJ, a4 = r 6 ,  r e  be the share of participant 
Pt,  a6 = r 7 , r a  be the share of participant Ps, and a6 = r o  be the share of 
participant Ps. 

Output: The shares a1,. . . , a6 for participants 4 , .  . . , p6, respectively. 

MessageGeneration 
Input: 8 E S = GF(q) ,  &,d2,A3, al,. . . ,a, and i E {1,2,3} .  
Compute b1 = s + rl + r 2  mod q,  8 + r g  + 7-4 mod q,  h = 8 + r 4  + r b  mod q, and 

Output: The broadcast message bi that enables the access structure A. 
b3 = ra + r 7  mod q,  a + r8 + r9 mod q. 

It is easy to  see that previous algorithms realize a secret sharing scheme with 
broadcast for A, in which the participant Pa gets a shares whose size is equal to 
the size of the secret. 

Next theorem states that for any family of monotone access structures there 
are secret sharing schemes with broadcast message such that the size of the 
broadcast messages is the same than that of the secret. 
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Theorem 7. Let A = {Al, . . . , &} be a family of monotone access structures 
on  a set P of participants. If the secret is uniformly chosen then there ezists a 
secret sharing scheme with broadcast message such that, for  all i E {1 ,2 , .  . . , m), 
it holds 

H ( B i )  = H ( S ) .  

4 Ideal Schemes 

In the previous section we have seen that for any family of access structures A 
either the shares given to a participant in P, or the broadcast messages can be 
of the same dimension than that of the secret. In this section we give a sufficient 
condition for which there exists a secret sharing scheme with broadcast message 
for a family of access structures A = {Al, . . . , A,,,) such that for any P E P and 
for any i E {1 ,2 , .  . ., m}, it holds H ( P )  = H(Bi)  = H ( S ) .  That is, we consider 
schemes in which both the broadcast messages and the shares of participants 
have the same dimension than the secret. We d use the following lemma that 
is an extension of a lemma proved in [S]. 

Lemmas. Let be A, B ,  C ,  D ,  F, S aiz random variables such that 

1. H(SIABF) = H(S1BCF)  = H(S1ACDF) = 0, 
2. H ( S I B F )  = B(S1ACF) = H(SIADF)  = H(S1F) .  

Then H(BC1F) 3 3 H ( S I F ) .  

An ideal secret sharing scheme with broadcast message is defined as follows. 

Definition 9. Let A = {dl , . . . , &} be a family of monotone access structures 
on a set P of participants. A secret sharing scheme with broadcast message 
for A is said ideal if for any P E P and for any i E { 1 , 2 , .  . . ,m} ,  we have 
H ( P )  = H ( B i )  = H ( S ) .  

We first consider the simple case in which A = {Al}. 

Theorem 10. Assume that the secret is uniformly chosen. A n  ideal secret shar- 
ing scheme with broodcast message for A = {Al} ezists i f  and onZy i f  there ezists 
an ideal secret sharing scheme for the access structure d1. 

Therefore, in such a case the classification of ideal secret sharing schemes with 
no broadcast messages given in [5] applies. 

Definition 11. Two access structures -41 and d2, on the sets of participants ’Pi 
and P, respectively, are compatible if and only if 
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Let d1 and Az be two access structures on the sets of participants PI and P2, 
respectively. UP1 nP2 # 0 we say that the two access structures are connected. If 
A1 and A2 are not connected, then for A = {dl, d 2 )  there exists an ideal secret 
sharing scheme with broadcast message if and only if it exists an ideal secret 
sharing scheme with broadcast message for both Al = {dl} and A2 = {dz}. 
We say that m access structures d1 , .. . , d,,, are connected if the set UE”=,pi 
cannot be partitioned into two nonempty sets X and Y such that each Pi,  for 
i = 1,. . . , m, is all contained either in X or in Y. When dl, .. . , A,,, are not 
connected, we can study separately each connected part. 

Theorem 12. Let A = {All. . . , A,,,) be a family of m connected access struc- 
tures pairwise compatible such that there ezists an ideal secret sharing scheme 
with broadcast message for each A, i = 1,. . . , m. If the secret is uniformly cho- 
sen, then thew ezists an ideal secret sharing scheme with broadcast message for 
A. 

5 Threshold Schemes with Broadcast Message 

In this section we analyze the case in which all access structures in A are dis- 
tinct threshold structures. That is, A = {d(kl,Tl.), d(ka,’pa) ,  ..., where 
d ( k i , p ; )  is the set of all subsets consisting of at  least ki participants in Pi. In pre- 
vious section we gave a sufficient condition for which ideal secret sharing schemes 
with broadcast message exist. Each access structure in the scheme must admit 
an ideal secret sharing scheme. This condition is necessary but not sufficient. In 
fact, threshold schemes that admit ideal secret sharing schemes not always have 
ideal secret sharing schemes with broadcast message as we wil l  see in the follow- 
ing. If t = 1, then by Theorem 10 and [12] there exists an ideal secret sharing 
scheme with broadcast message for A. We observe that for a threshold structure 
.+;,Ti) a participant P belongs to X if and only if ki = JPpil, that is 

ld~b4,Td~l = 1. Thus, two connected access structures dq,,,?,) and are 
compatible if and only if kl = ]PI I and k2 = lP, I. 

n 
X q k ; , , ; )  

Theoremla* Let A = { d ( & i , P x ) ,  .Af&,,’P,)r - - I  d(k , ,P , ) }  
(distinct) connected access structures. There ezists an ideal secret sharing scheme 
with broadcast message for A if and only if the accesa structures composing A 
are pairwise compatible. 
If an ideal secret sharing scheme with broadcast message does not ezist then, for 
each participant P E ‘Pi, f l  Pi, there i s  an indez j E {1,2), such that for any 
secret shoring scheme with broadcast message at holds H ( P )  + H(Bi j )  3 3 H ( S ) .  

a family of 2 

The previous theorem proves a gap for the dimension of the shares of participants 
and of the broadcast message. Either there is an ideal scheme (and thus they all 
have the same sbe than the secret) or the size of at least one of them is 50% 
bigger the the secret size. Thus, we have proved that there are families of access 
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Structures for which any corresponding secret sharing scheme with broadcast 
message must either give to some participant a share of she strictly bigger than 
the secret size, or the broadcast message has to have size strictly bigger than the 
secret size even though each access structure belonging to these fades admits 
an ideal secret sharing scheme. 
Next corollary is a consequence of Theorem 13. 

Corollary 14. Let A = { 4 1 , ~ ~ ) , .  . . , A(l,Ftl} be a famiry o f t  2 2 (distinct) 
access structures. There ezists an ideal secret sharing scheme with broadcast 
message for A if and only i f  the access structures composing A are not connected, 
that is, Pi n Pj = 8 ,  for all i # j .  

In some cases a better bound on the size of the shares distributed to par- 
ticipants holds. Consider the set of participants P = {XO, XI  , XZ , - . - , Xn} and 
the Mn be the closure of { X l X z . .  . X,,) U (XoX1 , X o X z , .  . . , XoX,- l ) .  In a 
similar way of Theorem 4.1 in [3] one can easily prove that for any n - 2 indices 
i l ,  iz,. . . , k-2 E { I ,  Z,, . . , n - l}, it holds 

The following theorem holds. 

Theorem15 Let A = ( A . ( ~ l , ~ l ) , d . ( ~ a , ~ a ) } J  with kl 5 k2, be a famiZy of two 
distinct connected access structures. Lei T = IPl n P z  I. 
If k1 < r then 

1. If k1 < ka, then for any A,, . . .,PI,+ E P I  n P Z  where t = min{k2 , r } ,  at 
holds 
H(&) + ~~~~' B ( R j )  2 ( 2 ( t  - h i )  + l )B(s ) .  

I = m;l{k - 1 , t i  - r } ,  it hoIds H ( B 1 )  + H ( P i j )  2 (2L+ l )B (S ) .  

L = m i n { k  - 1 , t z  - T } ,  it holds H ( B 2 )  + c f Z l  H(Pij) 2 (24 + l)H(S). 

2. I f  k l  = k2 = k and T = 2 2 ,  then for ony Pr,, ..., PI, E Pl n Pz, where 

9. If kl = kz = k and T < t z ,  then for  any Prll.. ., PI, E PI n 'Pz, where 

I ~ T  5 kl  then 

1. I f k z  < t 2 ,  t h e n f o r a n y p ~ , ,  E ' P ~ ~ P Z ,  wheret = m i n { t , t 2 - k 2 + 1 } ,  
it holds 
q 3 Z )  + xi:: H(Rj)  2 (2 ( t  - 1)  + l)H(S). 

H ( 4 )  + c;:: H ( P I j )  2 (2 ( t  - 1 )  + l)H(S). 

2. I fk2  = t z ,  t h e n f o r a n y 4 , ,  . . . ,%_~ E P ~ ~ P , ,  wheret = m i n ( r , t l - k 1 + l } ,  
it hold8 

We now analyze the case in which the access structures in A consist of all pos- 
sible distinct threshold structures on 'P, that is, A = {4~,'p,) 1 1 5 k 5 lF'l 5 
n and P' (J P]\{&~,F)}. From Theorem 13 there is no ideal secret sharing 
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scheme with broadcast message for A. A scheme based on a geometric construc- 
tion (for an overview of geometric constructions for secret sharing schemes, the 
reader is advised to consult [13], see also [15] and [14]) is the following: Let Q be a 
prime power, consider the (n+ 1)-dimensional vector space over GF(q) .  Consider 
the (n + 1)-dimensional affine geometry AG(n + 1, Q). Let VD be a fixed line in 
AG(n + 1, q )  and let VI be a hyperplane such that IV, n VII = 1. The secret will 
be the point s E VD n VI. Choose 2n points N, yz, . . . , yzn E VI such that no 
n + l o f t h e 2 n + l  pointsyl ,~2,  ..., 3bn,sarecouinear. F o r i = 1 , 2  ,... ,n ,@ve 
the point 'yi to the participant Pi. The broadcast message bk,Ft  that enables the 
access structure d @ , ' p t )  d be equal to 

b h , ' P r =  ( u {%+i ) )  " (  u (%I)- 
l<i<lF'I - k + l  Pi @?' 

It is easy to see that in the previous scheme for any P in 7J we have, H ( P )  = 
(n + l)H(S). Moreover, the broadcast message b k , ~ t  that enables the access 
structure & ~ , F I )  has entropy equal to I Z ( B ~ , F , )  = (n - k + l)(n+ 1)H(S). With 
a slight modification of the previous scheme (using tecniques described in [I61 
and [lo]), we can obtain a geometric scheme in which H ( P )  = H ( S ) .  
The following algorithms describe a secret sharing scheme with broadcast mes- 
sage such that for all P in P, H ( P )  = H ( S ) .  We suppose that S = GF(q) ,  where 
q 2 max{2n, m} + 1 is a prime power. 

Threshold Preprocessing-Algorithm 
Input: a prime power p and 'P = { P I , .  . . , Pn}. 
For all Pi E 'PI randomly select r; E GF(p) and set a; = r, to be the share of P; E P. 
Output: The shares al,. . . ,an for participants PI,. . . , P,,, respectively. 

Threshold MessageGeneration 
Input: 8 E S = GF(p), al,. . . , an, I c ,  and P', such that 1 5 k 5 lP'l 5 n 

Use a threshold scheme (n -+ 1,2n) for the secret 8 t o  generate the shares y1 , .. . I ~ 2 n  

in such a way that y; = a;, for i = I , .  . . , n. 
Compute 

bk,?" = ( u {?ht;))u( u {ai)). 
l < i < l P ' l - k + l  P; pP' 

I Output: The broadcast message bk,?' that enables the access structure &b,.pr).  

Notice that we can always construct the threshold scheme (n  + 1,2n) used in 
the Message-Generation algorithm. Indeed, we can use the threshold scheme 
proposed by Shamir [12]. We have to construct a polynomial f(z) over GF(q) 
of degree n such that f ( i )  = 'yi, i = 1 , 2 , .  . ., n, and f(0) = 8 .  This can be done 
by using the Lagrange interpolation. Thus, f ( i )  = yi, i = n + 1,. . ., 2n. The 
broadcast message bk,-p that enables the access structure d ( k , . p , )  has entropy 
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equal to H ( B k , F i )  = (n - k + l)H(S). Moreover, the entropy of the shares of 
each participant P E P is equal to H ( P )  = B ( S ) .  Since each broadcast message 
bk,?' consists of n - k + 1 shares, every k participants in the threshold structure 
A(k , 'P ' )  know n + 1 shares and can reconstruct the secret 8 .  But k - 1, or less, 
participants are not able to recover the secret. 
It is clear that the previous algorithm can be easily adapted to handle the case in 
which only a subset of all threshold structures can be activated by the broadcast 
message. 

6 Fully Dynamic Secret Sharing Schemes 

In previous sections we have analyzed the situation in which we have various 
access structures and by using a public message we enable one of them to recover 
the secret. A more interesting situation arises when we want to activate Merent 
access structures at subsequent times. At time i we want to enable an access 
structure dz', chosen in a fixed family A( i ) ,  to recover the i-th secret si. The 
family A(;) of access structures that can be enabled at time i may depend on the 
access structures activated at previous times. If bj;) . . . b(j-') are the broadcast 
messages sent by the dealer from time 1 up to time i - 1, then we should denote 
the family of access structures that can be enabled at time i by Ag!...,ji.l but 
to avoid overburdening the notation we will denote this family by AP). 

Suppose that at  time i the dealer enables the access structure A:'. Thus, 
after the publication of all i - 1 previous broadcast messages, the subsets of 
participants in d!) will recover the i-th secret after seeing the i-th broadcast 
message. Moreover, at time i each subset of participants knowing only the i - 1 
previous broadcast messages have no information on the secret si . 

Suppose that we want to enable Merent access structures to reconstruct a 
secret a number of times, say T. Let S(') be the set from which we choose the 
i-th secret, and A(') = {d), . . . , A!} be the family of possible access structures 
at time i, for i = 1,2,. . . , 2'. Denote by P ( i )  the set of participants involved at 

time i and let P = u P('). Denote by B(') = {BPI , .  . . , B:!} the family of all 

sets of broadcast messages for all possible access structures at  time i. A f a y  
dynamic secret sharing scheme is defined as follows. 

3;-1 

T 

i=l 

Definition 16. Let A('), . . . , A(T) be families of monotone, non trivial access 
structures on P. A fully dynamic secret sharing scheme is a sharing of secrets in 
S(l), . . . , dT) among participants in P such that 

1. Before knowing the new broadcast message any subset of participants has 
no information about the new secret: 
Formally, for all X E 2'p1 for all i = 1 , .  . .,TI and for all j 1 , .  . . , ji-1, where 
1 < - j l  5 mt, it hold8 H(Sfi)IXB,!:) . . . Bj,-l (;-'I) = qq. 
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2. After seeing the new broadcast message, we have a new perfect secret sharing 
scheme: 
Formally, for all i = 1,. . . , T ,  for all X E 2?, and for all j1,. . . , j i ,  where 
1 5 jl 5 mc, it holds 

The following theorem is a generalieation to fully dynamic secret sharing schemes 
of Theorem 3 

Theorem 17. Let A(1), . . , I A(T) be families of monotone accesd structures on 
a set P of participants. In any f i l l y  dynamic secret sharing scheme for i = 
1,2, . . . , T the following properties hold: 

1. For any P E P( i ) ,  it holds H ( P )  2 E(S( i ) ) .  
2. For j = 1 , 2 , .  . . )mi,  it holds H(Bj(i))  >_ H ( S ( i ) ) .  

Definition 16 says nothing on the sets X of participants such that X $! A::) 
and that know all secrets 81,. . . , s i - l  previously recovered. A natural require- 
ment is that the information of these sets of participants have on the i-th secret 8i 

given the secrets 81,. . . , ai-1, is equal to zero. That is, the knowledge of previous 
secrets does not give information about the i-th secret to all sets of participants 
not in A:). Next we define a strongfulIy dyncrrnic secret $haring scheme, that is 
a fully dynamic secret sharing scheme with an additional property. 

Definition 18. Let A('), . . . , A(T) be families of monotone, non trivial access 
structures on P. A strong fully dynamic secret sharing scheme is a f d y  dynamic 
secret sharing scheme such that after seeing the new broadcast message, any 
subset of participants that is not in the new access structure, even knowing all 
the previous secrets, has no information about new secret: 
Formally, for all i = 1, .  ..,T, for all j , , .  . . I j i ,  where 1 5 jl 5 mi, and for all 
X $! A:), it holds 

H(S(')IXBj(;). . .Bj(i)S(l). . . sP-1)) = H(S(4). 

Notice that the property H(S(') IXBj:) . . . Bj:)S(l) . . . S(i-l)) = R(S(')) in 

the above definition implies that H(S(')IXBj(:). . . Bj(f)) = H(S('))  if X A?) J i  
in Definition 16. In fact, for all i = 1 , .  . . , T, for all jl, . . . , ji, where 1 5 jt L. mc, 
and for all X @ d:) it holds 

B(S('))  2 R(S(') , x B p  . . . B p )  

2 El(S(') I X B p  . . . Bp') . . . s(i-1)) 
= H ( d i ) ) .  
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If the families of monotone access structures A(1), . . . , A(T) satisfy some con- 
dition, then we can prove a lower bound on the she of shares held by a k e d  
participant. Next theorem holds. 

Theorem 19. Let  'P be a set ofparticipantr, A(1), . . . , A(=) be families of mono- 
tone, non t r iv ia l  access structures on  ?. If there ezist T indices j , ,  . . . , j T ,  a 
participant P E 'P, and subrets of participants Xi C I 'P, i = 1,. , . , T, such that 

- Xi @ dg), but Xi u {P) E A:), fm i = 1 , .  . .,T, 
- Xtc_Xi+l , fori=l ,  ..., T-1, 

then, in any strong fuZZy dynamic secret sharing scheme for A(1), . . . , A(T) the 
entropy of P satisfies 

T 

We point out that Theorem 19 does not hold if we assume fully dynamic secret 
sharing schemes instead of strong f d y  dynamic secret sharing schemes. 
As an example, consider the following situation. Let A(') = {&I3 and A(') = 
{#I), be two families of monotone access structures on the set of participants 
P = {PI, Pa, Pa}, where 4) =  PIP^}} and 4) = {{PzPa}}. Suppose that 
at time 1 the dealer enables 4) to reconstruct the secret d l )  and at time 2 
the dealer enables 4) to reconstruct the secret a('). The following algorithms 
describe a fully dynamic secret sharing scheme for A@) and A(2). 

Preprocesdng-Algorithm 
Input: a prime power q, A('), A(2), and P = {PI, A, Ps). 
For i = 1,2,3, randomly eel& ri E GP(q) and set a, = 
Output: The h e n  ax, aa, as for participants Pi I 4, Ps , respectively. 

to be the share of P; E P. 

Message-Generation 
h p u t :  E GF(q), A('), A('), and a1,aa,as. 

land 
that are the broadcast measages for the two access structures #) and 4). 
Output: The broadcast messages and b y ) .  

The scheme above is a fully dynamic secret sharing scheme, but it is not a strong 
one. In fact, it is easy to see that 
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The scheme above satisfies the remaining hypothesis of Theorem 19 by setting 
P = Pz, XI = {PI} and X2 = {P l ,Pa} .  On the other hand, we have H(P2) = 
H ( S ( ' ) )  = H ( S ( 2 ) ) ,  thus 

H(P2) < H(S( ' ) )  + H ( S ( 2 ) ) .  

The following corollaries hold. 

Corollary 20. Let P be a set of participants and let A(1), . . .,A(*) be families 
of monotone, non trivial access structures on  P such that 4k,,.pi) E A(i), for 
i = 1,2 , .  . .,T. If kl 5 k2 5 -. .  5 kT and PI  s P2 E C PT then the entropy 
of any participant P E PI satisfies 

T 

Corollary21. Let P be a set of n participants and k an  integer, 1 5 k 5 n. 
Let A(o), . . . , A(T), 1 5 T 5 n - k be families of monotone, non trivial accesd 
structures on P such that &*,,'pi) E A('), for 1 = 0,1, . . . , T ,  where P = Po 2 
PI >...>PT, a n d J P l I =  lPl-11-1 f o r l = l ,  ..., T .  Then, i n a n y s t r o n g f i l l y  
dynamic secret sharing scheme for A('), . . . , A(T) the entropy of any porticipunt 
P E PT satisfies 

T 

A particular class of strong fully dynamic secret sharing scheme which satisfies 
the hypothesis of Corollary 21 are (k, n)  threshold schemes with disenrollment 
[l]. At each subsequent time instant we disenroll a participant from the scheme, 
but the threshold of the new scheme remains unchanged. Thus, in any (k,n) 
threshold scheme with L-fold disenrollment capability (as defined in [l]), with 

0 5 L 5 n - k, for any participant P E P, it holds H ( P )  >_ x H ( S ( ' ) ) .  
L 

i =O 
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