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Abstract— Human facial tracking is an important task in
computer vision, which has recently lost pace compared to other
facial analysis tasks. The majority of current available tracker
possess two major limitations: their little use of temporal
information and the widespread use of handcrafted features,
without taking full advantage of the large annotated datasets
that have recently become available. In this paper we present
a fully end-to-end facial tracking model based on current state
of the art deep model architectures that can be effectively
trained from the available annotated facial landmark datasets.
We build our model from the recently introduced general
object tracker Re3, which allows modeling the short and long
temporal dependency between frames by means of its internal
Long Short Term Memory (LSTM) layers. Facial tracking
experiments on the challenging 300-VW dataset show that
our model can produce state of the art accuracy and far
lower failure rates than competing approaches. We specifically
compare the performance of our approach modified to work
in tracking-by-detection mode and showed that, as such, it
can produce results that are comparable to state of the art
trackers. However, upon activation of our tracking mechanism,
the results improve significantly, confirming the advantage of
taking into account temporal dependencies.

I. INTRODUCTION

The human face is arguably one of the most important

deformable objects for analysis, especially for tracking, with

numerous real world applications, such as facial animation,

human activity recognition and human - computer interaction

[24]. The recent growth of facial datasets in the wild with

annotated landmarks such as 300W [16] and 300 Videos in

the Wild (300-VW) [17] has led to rapid development of

facial analysis tools by introducing powerful deep learning

models that are able to automatically extract more represen-

tative features from larger scale datasets. These new models

have pushed forward the state of the art, outperforming the

accuracy reported by earlier methods based on handcrafted

features. We can find examples of such models targeting face

detection [20], [32], facial classification and verification [14],

[19], and facial expression analysis [11].

However, current progress in deformable facial tracking

has been relatively slower when compared to other tasks

and it has been less influenced by deep learning models [3].

Furthermore, currently available trackers make little use of

temporal information. Indeed, most of them do not really

take into account temporal information but process each

frame independently and rely on doing so with sufficient

precision to achieve tracking-like performance. In contrast,

other trackers do some temporal modelings, but they are

mostly limited to the adjacent frames [26],[15]. This inhibits

current facial trackers to take full advantage of the temporal

information contained in video sequences [27].

In this paper we present a fully end-to-end facial tracking

model based on current state of the art deep model archi-

tectures that can be effectively trained from the available

annotated facial landmark datasets. We build our model from

the recently introduced general object tracker Re3 [4], which

allows modeling the short and long temporal dependency

between frames by means of its internal Long Short Term

Memory (LSTM) layers. While Re3 is too generic to be

directly used as facial tracker (its performance would be

suboptimal), we introduce architectural modifications that

lead to a robust facial tracker achieving state of the art

performance. More specifically, the contributions in this work

are:

1) We replaced the original Skip Convolution Networks

from Re3 by the more robust Inception Residual Net-

works [18] through transfer learning.

2) We embed our main tracker together with additional

layers that validate the tracking results at every frame

and trigger a re-initialization strategy if drifting is

detected.

3) To the best of our knowledge, we are the first to

successfully train an end-to-end network that can

achieve state of the art face tracking on the 300-VW

benchmark.

4) We investigate the impact of different temporal win-

dows in the performance of face tracking.

II. RELATED WORK

Currently, the most popular facial tracking technique is

Tracking by Detection, which consists of performing facial

detection and landmark localization at each frame. One

example of this strategy is the work from Uricar et al. [21]

which uses tree-based Deformable Part Models (DPM) for

facial landmark detection and localisation with Kalman Filter

smoothing.

Other tracking methods perform face detection only in

the first frame and then apply facial landmark localization

using the fitting result from the previous frame as initial-

ization. One such example is the work from Xiao et al.

[26] which adopts a multi-stage regression-based approach

to initialize the shape of landmarks with high semantic

meaning. Other examples include the work from Raja et

al. [15] which combines a global shape model with sets

of response maps for different head angles indexed on the

shape model parameters and the works from Wu et al



[23] who apply shape augmented regression. There are also

hybrid approaches which combine tracking by detection and

initialization based on the latest fitting result. Among these,

combinations of Coarse-To-Fine Shape Search (CFSS) [33]

landmark localiser with multiple general-object trackers have

shown to perform particularly well [3].

However, all methods derived from tracking by detec-

tion share the limitation of not considering the temporal

information contained in video sequences. Furthermore, it

is difficult to obtain consistent initializations from most

face detectors, which tends to reduce the final landmark

localisation accuracy [12]. Some approaches try to mitigate

this problem by including the information from the adjacent

frames to capture short temporal dependencies. For example,

Yang et al. [28] used time series regression on adjacent two

frames, which led them to achieve the best result reported

so far on the biggest deformable facial tracking dataset: 300

Videos in the Wild (300-VW) [17].

With the recent growth of facial landmark datasets, such as

300W [16], Menpo [30], 300-VW and LS3D-W [2], current

methodologies on facial analysis started to shift from systems

based on handcrafted features towards incorporating deep

learning architectures [31], [5]. Rapid progress can be seen

on the development of various convolutional architectures

as the main spatial feature extractor used on both facial

detection [32] and landmark localisation models [2], [34]

and achieving state of the art accuracy. In spite of this,

localization is still mainly performed on every single frame,

without taking into the temporal information.

On the other hand, introduction of recurrent neural net-

works (RNN), especially Long Short Term Memory (LSTM)

[9], has allowed incorporating temporal information with

great success in several applications [6]. This is the case

of the recently introduced general object tracker Re3 [4],

which is robust against image occlusions and can be trained

on long sequences thanks to its internal LSTM networks.

Nonetheless, RNN have received little attention in the context

of facial tracking. The only exception so far has been the

work by Jiang et al. [7], who proved that an end-to-end

RNN is capable to work on multiple domains including facial

landmark tracking. However, even though they obtained very

low failure rates, their accuracy was still inferior to other

state of the art facial trackers.

III. FULLY-END-TO END RECURRENT FACIAL TRACKER

Our tracking model is a composite network that receives

raw frames as input and returns the localization of facial

landmarks as the final output. It is composed by four sub-

networks, arranged in a way that permits the end-to-end

training of the whole network, without involving any hand-

crafted features. Specifically, if Xt and Xt−1 denote the

current and previous frame, respectively, our Composite

Recurrent Convolution Tracker (CRCT ) will estimate the

position of n facial landmarks in the current frame lt:

lt = {(x̂1, ŷ1)...(x̂n, ŷn)} = CRCTΦ(Xt, Xt−1,bt−1) (1)

where Φ are the parameters {Φ1,Φ2, Φ3} of our composite

networks CRCT and {x̂1...x̂n, ŷ1...ŷn} ∈ R>0.

Our CRCT consists of four individual sub-networks:

Multi-Task Cascaded Neural Network faces detector

(MTCNN ), facial bounding Box Tracker (BT ), Facial

Validator (FV ) and Facial Landmark Localizer (FLL). Note

that for face detection we relied on the state of the art

MTCNN [32].

A schematic diagram of our tracker can be seen in Figure

1. We start by assuming a tracking scenario, where we have

an existing estimate for the bounding box of the preceding

frame.1 This bounding box, together with the current and

previous frames {Xt,Xt−1} are fed to our BT network to

produce a first estimate of the targeted landmarks (lBT
t ) and

bounding box (bBT
t ), while at the same time updates its

internal state.

Once we have our first landmarks estimate lBT
t , we use the

FV network to validate the result obtained by the tracker. To

do so, we train the FV network to estimate the probability

that the objects tracked within lBT
t is a face (p(f)). In case

of obtaining a low probability, which would suggest that the

BT network has lost track, we use the MTCNN to perform

face detection on the current frame and re-initialize the whole

network for the next time step.

In contrast, if lBT
t is successfully validated by the FV

network, the current frame and its bounding box bBT
t are

fed to the FLL network, which produces the final estimates

for the target landmarks, lFt and the corresponding bounding

box, bF
t . Note that, while FLL and BT have similar

convolutional layers, FLL works from an already detected

and validated bounding box, which allows it to achieve a

more accurate result.

A. The Recurrent Facial Bounding Box Tracker

We base our BT network on the structure of the Re3

tracker [4], which is a full end-to-end object tracker with

LSTM networks to capture the temporal dependencies

from video. Given input frames {Xt,Xt−1} cropped as

{XPb
t ,XPb

t−1} with the previous Bounding Box (Pb = bt−1),

the BT network estimates the landmark positions for the

current frame lBT
t and updates the internal state of the LSTM

ht as follows:

ht, l
BT
t = BTΦ1(Xt,Xt−1, Pb, ht−1)

= BTΦ1(XPb
t ,XPb

t−1, ht−1)

= LSTMΦ1(ELΦ1(XPb
t ,XPb

t−1), ht−1)⊙WBT
Φ1

(2)

where LSTM refers to the set of internal LSTM [9] net-

works, EL stands for the Embedding Layer, WBT ,WEL is

the set of weight of each fully connected layers of BT and

EL respectively and res is the Inception-Residual Network

[18] (Inception-Resnet). The Embedding Layer is a weighted

concatenation of the residual network coefficients:

EL = [resΦ1(XPb
t ); resΦ1(XPb

t−1)]⊙WEL
Φ1 (3)

1For initialization, this estimate can be obtained from the MTCNN

detector or from an external input.



Fig. 1. General overview of our tracker

We use Φ1 to denote the parameters of all sub-networks

contained in BT . Finally, we also generate an estimate of

the bounding box for the current frame bBT
t directly from

the estimated landmarks:

bBT
t = {(x̂min, ŷmin), (x̂max, ŷmax)|x̂, ŷ ∈ lBT

t } (4)

Note that, even though the architecture of BT is based

on Re3, we introduce several key modifications to adapt this

recurrent tracker model into this new problem domain:

1) First we preconditioned the convolutional network of

our BT to contain common facial features by replacing

the internal Skip Convolution Networks (SkipNet) with

the more sophisticated Inception-Resnet that has been

pre-trained on the MS-Celeb [8] and CasiaWebFace

[29] datasets2 with triplet loss [14]. Figure 2 visualizes

the differences between the original SkipNet on Re3

versus the more complex structure of BT , which

is inherited from the Inception-Resnet (Version 1).

Each block of Inception-Resnet architecture can be

expressed as below:

ri+1 = H(ri) + F (ri,Wi) (5)

Where ri and ri+1 are the input and output of the i-th

block, H(bi) is the identity matrix and F represents

the combined effect of the various convolutional and

ReLU layers. Notice that SkipNet does not have the

advantage of residual connection as in the Inception-

Resnet which eases the gradient flows in optimization

[18].

2) Second we use the BT network to produce a first esti-

mate of landmark locations (Lb
t ) following the work of

2The trained inception resnet is publicly available on:
https://github.com/davidsandberg/facenet

Fig. 2. Convolution architectures of Skip Network vs Inception-Residual
Network block

[7], but we split the fully-connected layer that receives

the output from the LSTMs into five independent fully-

connected networks so that each of them is focused on

a specifically facial region. Specifically, we divide the

facial landmarks in the following regions: facial sil-

houette (our outer contour), eyebrows, eyes, nose and

lips. Thus WBT = {WR1,WR2,WR3,WR4,WR5}.
3) Finally, we reduce by half the number of neurons from

the original Re3, which implies an input image size to

128x128. This enables us to train the network faster

while still achieving state of the art accuracy.

B. The Facial Validator

After the initial estimates produced by the BT network

we use the FV network to validate the results before further

processing. The main reason for doing so is to avoid the drift

problem, well known in the tracking literature [22]. Specif-

ically, the FV network can be understood as a conditional

function that determines whether to continue the processing

pipeline based on the current estimates from BT or to reset

the tracker and attempt to re-detect the facial region because



the current estimates are not reliable enough.

We follow the methodology in [3] to build a strong

classifier to estimate the probability p(f) that the object

currently being tracked by BT is a face. To this end, we

use concatenated small patch regions from the estimated

landmarks (lBT
t ) as follows:

p(f |Xt, l
BT
t ) = FVΦ2(Xt, l

BT
t )

=
1

1 + e
−(WFV

Φ2
⊙cnn

Φ2 (Xt,l
BT

t
))

(6)

Where cnn is the composite function of standard stacked

convolution layers followed by a bottleneck layer with WFV

parameterized by Φ2 and 0 < p(f) < 1. We use the value

of Tc as the threshold level.

C. The Facial Landmark Localiser

The FLL is built by reusing the same pretrained

Inception-Resnet as in BT , with the assumption that the

internally extracted facial feature should also be useful to

estimate the locations of the facial landmarks. This landmark

localization procedure can be expressed mathematically as

below:

lt = FLLΦ3(XPb
t ) = WFLL

Φ3 ⊙ resΦ3(XPb
t ) (7)

With FLL consisting of Inception-Resnet (res) and a regres-

sion layer of weight matrix WFLL parameterized by Φ3.

D. Recurrent Facial Tracking Algorithm

The operation of our Composite Recurrent Convolution

Tracker, CRCT , is shown in Algorithm 1. When a suit-

able detection of the facial region is available, e.g. from

initialization or the previous frame (lines 8 and 10), the BT

network produces a first estimate of facial landmarks (line

13) and bounding box (line 14). Then, the FV network is

used to estimate the probability p(f) that the output from

BT corresponds to a face. If p(f) is sufficiently high (above

threshold Tc), the initial estimate is refined by the FLL

network to produce the final tracker estimate (lines 18 and

19). Otherwise, it is assumed that the BT has lost track and

there is a need to re-initialize the tracker (line 16).

We perform reinitialization between lines 3 and 6. We

start by detecting the face in the current frame by means of

the MTCNN network. This detector is likely to produce

multiple detections, hence its outputs are validated with

respect to the bounding box of the previous frame bt−1.

Specifically, we compare the Euclidean distance between

each new detection and the center of the previous bounding

vox d(bt−1, b
MT ) with respect to the magnitude of the

previous bounding box, and keep the one that produces the

minimum ratio:

Pb =















b, min
∀b∈bMT

d(bt−1,b)
‖bt−1‖

< TB

b0, dim(bt−1) < 0

bt−1, otherwise

(8)

as long as there is at least one detection whose ratio is

below threshold TB . Otherwise, all new detections are too

far from the previous tracking result and no re-initialization

is performed. The latter is necessary to tackle the cases in

which the face being tracked moves out of the visual field.

In such cases, without threshold TB the system might be

incorrectly re-initialized to track another face. In contrast, by

using TB the tracker remains in its latest valid coordinates

awaiting for the tracked object to come back to the field of

view.

Finally, (SeqBT ) controls the length of the temporal

window that is considered by the tracker (in frame units),

which is fixed at training time (see next section). If the

tracker is re-initialized or if the sequence length (SeqT )

exceeds the temporal window (SeqBT ), then the internal

state of the the BT network is reset (line 8).

Algorithm 1 Recurrent Facial Tracking Algorithms

Input : Frame of X0..N

Initial value of b0 and h0

Threshold value of TB , TC , and SeqBT

Network parameters of Φ1,Φ2 and Φ3

Output : Facial Landmark of l1..N

1: redetect← FALSE, SeqT ← 0, bt ← b0
2: for t← 1 to N do

3: if redetect then

4: bMT ←MTCNN(Xt)

5: if length(d(bt−1, b
MT ) > TB) > 0 then

6: Pb ← bMT [min(d(bt−1, b
MT ))]

7: else

8: Pb ← bt

9: if dim(Pb) < 0 then

10: Pb ← b0

11: if redetect OR SeqT > SeqBT) then

12: ht ← h0 and SeqT ← 0

13: ht,l
BT
t ← BTΦ1 (Xt,Xt−1,PBB)

14: bt
BT ← [max(lBT

t ),min(lBT
t )]

15: if FVΦ2 (Xt,l
BT
t ) < TC then

16: redetect ← TRUE

17: else

18: lt ← FLLΦ3 (Xt,b
BT
t )

19: bt ← [max(lt),min(lt)]
20: SeqT ← SeqT + 1

21: redetect ← FALSE

E. Training procedure

We train BT ,FLL and FV with ℓ1,ℓ2 and Cross Entropy

Loss respectively. Specifically for BT , we follow the same

curriculum learning as in Re3 [4] using sequence lengths

between SeqBT = 2 to SeqBT = 32 frames. We used mul-

tiple transfer learning to condition the pre-trained Inception-

Resnet. To do so, we fine-tuned this network on the FLL

network before its integration into BT .

We trained our BT network using 300-VW training

dataset for 2D Landmark tracking and LS3D-W annotation

[2] for 3D-2DA landmark tracking. The FV and FLL

networks were trained with the 300W [16] and Menpo



Fig. 3. OPE scores on rigid facial bounding box tracking experiment

datasets [30] for both 2D and 3DA-2D landmark localization.

We performed data augmentations by means of horizontal

flipping, −45◦ to 45◦ degree rotations and artificial strip

boxes across the frames to simulate occlusions.

We trained our model using ADAM optimizer [10] with

scheduled weight learning decay every 10.000 iterations.

Two NVIDIA tesla GPUs were used for training which took

approximately two to three days to train a single BT for a

defined sequence length, and around two days for both FLL

and FV . Our pre-trained models and results are publicly

available for additional reference 3.

IV. EXPERIMENTS

A. Experiment Settings

We conducted two main facial tracking experiments: rigid

facial bounding box tracking and deformable 2D and 3DA-

2D facial landmark tracking. We performed the experiments

on the 300-VW dataset [17] comprising 55 videos divided

into three categories according to the difficulty level. We

used the original 2D facial landmarks directly as ground-

truth for deformable 2D facial landmark tracking and their

corresponding bounding box for rigid facial bounding box

tracking.

We used the projected 3DA-2D dataset video dataset [30]

for deformable 3DA-2D facial landmark tracking, which

consists of a subset of the videos from 300-VW dataset. To

facilitate comparison to other works in all cases we report

the projected result and follow the conventional 68 facial

landmark locations. We set the thresholds TB = 1.0 and

TC = 0.5 for all experiments.

B. Rigid - Facial bounding boxes tracking

In this experiment, we compare our bounding box tracker

(BT ) with three state of the art general object trackers:

1) MDNET[13] (abbreviated MD) which performs a se-

ries of convolutions and has a specialized regression

layer on the single individual frames without taking

any temporal information between frames

2) Siamese Net (abbreviated SM) [1] which uses both the

previous and the current frame to be fed to its Siamese

3https://github.com/deckyal/RT/tree/master

Network based tracker. This can be seen as capturing

a short temporal context of 2 frames.

3) Recurrent Tracker Re3 (abbreviated RE), as provided

in [4], which is pre-trained on sequences of 32 frames.

In this test, all trackers are initialized with the same

initial bounding box (the ground truth). Our system is tested

without the FLL block, which means that bt = bBT
t , and

we report results for different sequence lengths between

SeqBT = 2 and SeqBT = 32 frames (BT 2, BT 4, BT 8,

BT 16 and BT 32), to see the impact of longer temporal

context in our BT .

TABLE I

AUC RESULT OF ALL CATEGORIES OF RIGID FACIAL TRACKING ON

300-VW DATASET

Method
Temporal sequences

0 2 4 8 16 32

RE [4] - - - - - 0.363

SM [1] - 0.445 - - - -

MD [13] 0.616 - - - - -

BT - 0.783 0.784 0.754 0.761 0.705

Figure 3 shows the performance of each model, computed

with One Pass Evaluation (OPE)[25] in terms of the success

rate against the bounding box overlap ratios. We observe that

our models, BT , achieve the best results in all three cate-

gories, outperforming all other trackers including the original

Re3. The main reason for these results is that, as opposed

to our model, none of the compared trackers is specifically

designed to track faces. Furthermore, with the exception of

MDNET, other models lack any drift prevention mechanism,

which explains the performance drop on category 3, where

the extreme facial poses and illumination changes occur. As

illustrated in Figure 5, our model demonstrated the ability to

consistently track the facial bounding box on extreme pose

and illumination conditions.

Note that we show the results for our BT tracker under

different training sequence lengths (2, 4, 8, 16 and 32). The

highest scores were achieved for SeqBT = 2 and 4 frames in

all categories, with very small differences between these two

settings as shown in Table I. Bigger SeqBT values generally



Fig. 4. AUC graphs on 2D and 3DA-2D facial landmark tracking experiments.

Fig. 5. Some visual results of rigid facial tracking on 300-VW dataset.

resulted in lower scores. This suggests that a rather short

temporal context is sufficient to optimize facial tracking.

Nevertheless, these results must be read in relation to the

test sequences, which show quite irregular (not necessarily

natural) facial movements. This is especially noticeable in

category 3, where rapid face movement with pose changes

occur in relatively short sequences. In such cases, BT 2
and BT 4, trained to capture the temporal information from

shorter sequences have an advantage since they are restarted

more frequently.

C. 2D and 3DA-2D facial landmark tracking

In this section we show the results of 2D and 3DA-2D

facial landmark tracking. In the 2D setting, we compared

our model with other 8 facial trackers: 1) two hybrid

trackers, MEEM CFSS and MD CFSS, which showed the

best performance in the recent facial tracking review from

Chrysos et al. [3]; 2) the current state of the art tracker, from

Yang et al. [28]; 3) the recent tracker from Gu et al. [7] based

on Bayesian RNNs; 4) four other trackers from the original

300VW competition [17].

In 3DA-2D facial landmark tracking, we follow a similar

procedure to [3] to build four hybrid trackers combining

both MDNET and MTCNN with state of the art 3D facial

localizers for comparison: 1) Facial Alignment Network

[2] resulting in FA MD 3D and FA MT 3D; 2) 3DFFA[34]

to create other two hybrid trackers: 3DFFA MD 3D and

3DFFA MT 3D.

Similarly to the previous section, we evaluate our full

tracker, CRCT , under different operation conditions. First,

analogously to the previous section, we build trackers with

different lengths of training sequences, SeqBT = 2, 4,

8, 16 and 32. Then, we also report results for our model

in tracking-by-detection mode (FLL MT), where we use

MTCNN for face detection in each frame and FLL

for landmark localisation. This experiment is to assess the

impact of the BT network on the performance of the full

tracker.

Our results are summarized in Tables II and III, while the

curves for some of the trackers are also displayed in Fig. 4.

In all cases, we use the Normalized Mean Error (NME) by

Facial Bounding Box [30], and report the Area Under the



Fig. 6. Some visual results of landmark tracking on challenging case from 300-VW testset.

TABLE II

RESULTS ON THE LANDMARK 2D TRACKING DATASET

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

CRCT 2 0.784 0.50 0.790 0.05 0.729 1.75

CRCT 4 0.778 1.01 0.790 0.07 0.725 1.80

CRCT 8 0.772 1.88 0.788 0.07 0.725 1.91

CRCT 16 0.773 1.64 0.787 0.07 0.725 2.02

CRCT 32 0.769 1.79 0.778 0.07 0.723 1.86

FLL MT 0.729 5.38 0.769 2.60 0.691 3.39

MD CFSS [3] 0.784 1.80 0.783 0.34 0.713 7.47

ME CFSS [3] 0.758 3.56 0.772 0.38 0.659 11.3

Yang [28] 0.791 2.40 0.788 0.32 0.710 4.46

Jinwei [7] 0.718 1.20 0.703 0.20 0.617 4.83

Uricar [21] 0.657 7.62 0.677 4.13 0.574 7.96

Xiao [26] 0.760 5.90 0.782 3.84 0.695 7.38

Raja [15] 0.735 6.56 0.717 3.91 0.659 8.29

Wu [23] 0.674 13.9 0.732 5.60 0.602 13.1

Curve (AUC) and Failure Rate (FR) for NME scores up to

0.08 [3].

In Table II we see that our CRCT trackers trained with

SeqBT = 2 and 4 frames achieves the highest AUC for

Categories 2 and 3, while they rank within the top-3 trackers

in the Category 1 dataset, slightly below [28]. Additionally,

our models have far lower Failure Rates than all other

compared trackers, Which for some applications is even more

important than having smaller landmark localisarion errors

[7]. We also see similar results in Table III for the 3DA-

2D scenario, Where in overall terms our model outperforms

other trackers across all categories with higher AUC and low

Failure Rates.

TABLE III

RESULTS ON THE LANDMARK 3DA-2D TRACKING DATASET

Method
Category 1 Category 2 Category 3

AUC FR AUC FR AUC FR

CRCT 2 3D 0.760 0.09 0.772 0.20 0.605 9.97

CRCT 4 3D 0.760 0.14 0.772 0.19 0.603 10.0

CRCT 8 3D 0.758 0.34 0.773 0.20 0.603 10.2

CRCT 16 3D 0.750 1.36 0.771 0.22 0.604 10.3

CRCT 32 3D 0.747 1.72 0.770 0.21 0.596 10.6

FLL MT 3D 0.730 4.14 0.757 0.45 0.603 11.5

FA MD 3D [2][32] 0.732 1.35 0.757 0.90 0.544 14.2

FA MT 3D [2][13] 0.706 2.41 0.722 0.57 0.566 10.3

3DFFA MD 3D [34][32] 0.721 4.30 0.702 1.85 0.504 19.8

3DFFA MT 3D [34][13] 0.595 4.12 0.590 4.07 0.497 12.4

Another observation is that our simpler tracking-by-

detection model (FLL MT ) reaches fairly high AUC and

low Failure Rates, with a performance comparable to other

trackers. This demonstrates the maturity of tracking by

detection models, as also reported in [3]. Nevertheless, these

results are still inferior to those from our full CRCT

models, which incorporates BT to benefit from the temporal

dependency between frames. This proves that the BT net-

work provides a more consistent facial bounding box which

impacts the final landmark estimation from FLL. This effect

has also been demonstrated in the recent work from Lv et

al. [12].

D. Visual Results Analysis

We provide several examples of 2D and 3DA-2D tracking

in Figure 6, where we see that our tracker is able to



accurately localize the facial landmarks in especially difficult

cases. These include extreme head poses up to full profile,

blurring (e.g. due to sudden movements of the face or the

camera, see 2nd row of examples), partial occlusions (1st

and 3rd rows) and strong illumination changes (4th row).

Specifically, for 2D landmark tracking, our model performs

well in cases in which the state of the art tracker from Yang et

al. [28] often gives inaccurate landmark positions. Similarly,

for 3DA-2D tracking, comparison of our results to those

from FA MD 3D, highlights the robustness of our tracker

to handle the difficulties mentioned above from this dataset.

V. CONCLUSIONS

In this paper we present the first composite deformable

facial tracker that, while being fully end-to-end, is able to

achieve state-of-the-art results for in the wild benchmarks.

Unlike other trackers, our model benefits from the temporal

information captured by our internal recurrent tracker. Fur-

ther, our model can be tuned to consider shorter or longer

temporal contexts and analyze their impact on facial tracking

performance.

Facial tracking experiments on the challenging 300-VW

dataset show that our model can produce state of the art ac-

curacy and far lower failure rates than competing approaches.

We specifically compared the performance of our approach

modified to work in tracking-by-detection mode and showed

that, as such, it can produce results that are comparable

to state of the art trackers. However, upon activation of

our tracking mechanism, the results improve significantly,

confirming the advantage of taking into account temporal

dependencies.

Our results suggest that the optimal temporal context to

consider for this dataset is between 2 and 4 frames (∼ 70
to 160 ms). Nevertheless, these results must be read in

relation to the test sequences, which show quite irregular

(not necessarily natural) facial movements.
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