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Abstract. A core in a graph is usually taken as a set of highly con-
nected vertices. Although general, this definition is intuitive and useful
for studying the structure of many real networks. Nevertheless, depend-
ing on the problem, different formulations of graph core may be required,
leading us to the known concept of generalized core. In this paper we
study and further extend the notion of generalized core. Given a graph,
we propose a definition of graph core based on a subset of its subgraphs
and on a subgraph property function. Our approach generalizes several
notions of graph core proposed independently in the literature, intro-
ducing a general and theoretical sound framework for the study of fully
generalized graph cores. Moreover, we discuss emerging applications of
graph cores, such as improved graph clustering methods and complex
network motif detection.

1 Introduction

The notion of k-core was proposed first by Seidman [1] for unweighted graphs
in 1983. We say that a subgraph H of a graph G is a k-core or a core of order
k if and only if H is a maximal subgraph such that d(v) ≥ k, for all vertices
v in H and where d(v) is the degree of v with respect to H. Although general,
this definition is intuitive and useful for the study of the structure of many real
networks, with the first applications appearing in the area of social sciences [2].
More recently Batagelj and Zaveršnik [3] introduced the notion of generalized
cores, allowing the definition of cores based on a vertex property function. In
this paper, we further extend the concept of generalized core. Instead of vertex
property functions, we consider subgraph property functions in general, leading
to fully generalized cores. Moreover, we show that many notions of graph core
and densely connected subgraphs proposed independently in the literature can
be defined as fully generalized cores.

Given a graph G = (V,E), possibly weighted, the problem consists of finding
highly connected subgraphs. This problem is well known in graph clustering,
where these subgraphs play the role of cluster or community cores. In particular,
given a core for G, we can obtain a clustering for G by taking each core connected
component as a seed set and by applying local partitioning methods [4, 5]. The
notion of core has also been used in the context of multilevel schemata for graph
clustering, where coarsening schemata were found to be closely related to the
problem of core enumeration [6, 7]. The main idea behind most of the existing



notions is to merge the vertices that are more similar, namely in what concerns
connectivity. Since we can define several vertex similarity scores and we can
take different merging strategies, there are many possible definitions of core.
The notion of fully generalized core proposed in this paper becomes particularly
useful in this context.

Cliques and, in particular, the clique percolation method by Palla et al. [8] to
detect densely connected, and possibly overlapping, clusters or communities on
networks, are also related to graph cores. A clique is a complete graph and, if it
has k vertices, then it is called a k-clique. The idea behind the clique percolation
is that the edges within a cluster or community are likely to form cliques, i.e.,
highly connected subgraphs. Conversely, the edges among clusters should not
form cliques. In this context, we say also that two k-cliques are adjacent if they
share k − 1 vertices and, thus, a k-clique community is the largest connected
subgraph obtained by the union of adjacent k-cliques. The method can be ex-
tended to weighted graphs either by considering a threshold on edge weights or
a threshold on clique weights, defined for instance as the geometric mean of the
weights of all edges [9]. Another maximal clique based approach was recently
proposed by Shen et al. [10] to uncover both the overlapping and hierarchical
community structures of networks. This method uses an agglomerative approach,
merging pairs of maximal cliques that maximize a given similarity score. The
main drawbacks of these methods are that detecting maximal cliques is an NP-
hard problem, even though the authors found that the method is fast in practice
for sparse networks, and that taking cliques as cluster building blocks may be
an assumption too strong for many real networks. As pointed out by Saito et
al. [11], methods based on the computation of graph cores or its extensions,
e.g. k-dense clusters, can be better than methods based on the computation of
maximal cliques. In particular, both k-cores and k-dense cores are less restrictive
than k-cliques. Here, we analyse also k-cliques, k-clique percolations and k-dense
clusters since these notions are particular cases of fully generalized cores.

The notion of fully generalized core introduced in this paper is also closely
related with network motifs, allowing for composed network motifs. In fact, we
can think of fully generalized cores as subgraphs formed by merging together
highly connected motifs. The role of subgraph property functions is precisely
to evaluate motif connectedness with respect to some criteria. Recent works in
network analysis have made it clear that large complex natural networks reveal
many local topological patterns, regarded as simple building blocks in networks,
and named motifs. These characteristic patterns have been shown to occur much
more frequently in many real networks than in randomized networks with the
same degree sequence. For example, Milo et al. [12] discovered frequent char-
acteristic local patterns on biological networks, i.e., network motifs, observing
that certain motifs are more common on biological networks than in other com-
plex networks, revealing basic structural elements of such networks. Many efforts
were done in order to understand the importance of network motifs [13, 14] and
promising results were achieved, in spite of the rather limited network motifs
that were used. For instance, Saito et al. [13] used only five predefined network
motifs of size three and Albert et al. [14] used only four predefined small network



motifs. Note that many relevant processes in biological networks correspond to
the mesoscale and, therefore, it will be interesting to study larger network mo-
tifs. Most of current network motif finding algorithms [12, 15] are enumeration
based and limited to the extraction of smaller network motifs. The first reason
is that the number of potential network motifs increases exponentially with the
motif size [16]. A second one is that interesting motifs occur repeatedly in a
given network but not in other networks, namely in randomized ones [12]. A
third reason is that finding a given motif is closely related to the subgraph iso-
morphism problem. These reasons make the application of enumeration based
algorithms unpractical when we consider mesoscale network motifs. Although
different from motifs, we may want to study the occurrence of graphlets instead.
Usually, graphlets must be induced subgraphs while motifs may be partial sub-
graphs. See for instance the recent work by Milenković et al. [17]. Graphlet
frequency and degree distribution has been shown to provide good network sig-
natures, becoming useful for the study of complex networks and for comparing
them against proposed network models. As mentioned for motifs, the notion of
fully generalized core is also useful to study graphlet composed cores.

2 Preliminaries

A graph or an undirected graph G is a pair (V,E) of sets such that E ⊆ V × V
is a set of unordered pairs. The elements of V are the vertices and the elements
of E are the edges. In this paper we assume that a graph does not have several
edges between the same two vertices, i.e., it does not have multiple edges, or
edges that start and end at same vertex, i.e., loops. When E is a set of ordered
pairs we say that G is a directed graph. In this case the edge (u, v) is different
from the edge (v, u) since they have different directions.

Given a graph G = (V,E), the vertex set of G is denoted by V (G) and the
edge set of G is denoted by E(G). Clearly V (G) = V and E(G) = E. The number
of vertices of G is its order, denoted either by |V | or by |G|, and its number
of edges is denoted by |E|. We say that a graph G is sparse if |E| � |V |2.
Two vertices u, v ∈ V (G) are adjacent or neighbors if (u, v) is an edge, i.e.,
(u, v) ∈ E(G). Given a vertex v ∈ V , its set of neighbors is denoted by NG(v),
or by N(v) when G is clear from the context. The number of neighbors of v is
its degree denoted by dG(v), or by d(v) or dv when G is clear from the context,
i.e., d(v) = |N(v)|. Given V ′ ⊆ V (G), d(V ′) denotes the sum of d(v) for each
v ∈ V ′, i.e., d(V ′) =

∑
v∈V ′ d(v).

Let us now recall some graph properties. A graph G is complete or a clique
if all vertices of G are pairwise adjacent. Usually, if G is complete and |G| = n,
we denote G by Kn. Two graphs G and G′ are isomorphic, denoted by G ' G′,
if there is a bijection η : V (G) → V (G′) such that (u, v) ∈ E(G) if and only if
(η(u), η(v)) ∈ E(G′), for all u, v ∈ V . Sometimes we are only interested in the
notion of subgraph. G′ is said to be a subgraph of G and G a supergraph of G′

if V (G′) ⊆ V (G) and E(G′) ⊆ {(u, v) ∈ E(G) | u, v ∈ V (G′)}. G′ is said to be
a proper subgraph if V (G′) ( V (G). Given V ′ ⊆ V (G), the subgraph induced by
V ′ is the graph G′ = (V ′, E′) where E′ = {(u, v) ∈ E(G) | u, v ∈ V ′}.



A weighted graph G is a tuple (V,E,w) where V and E form a graph G =
(V,E) and w : E → IR is a function that assigns to each edge e ∈ E a weight
w(e). Note that we could also assign weights to the vertices or even arbitrary
labels to both vertices and labels.

A vertex similarity function σ maps each pair of vertices to a positive real
value, σ : V 2 −→ IR+

0 . Note that σ may be different from, although usually
related to, the edge weight function w. Since σ reflects the similarity between
two vertices u, v ∈ V , we usually say that u and v are the more similar the higher
the value σ(u, v). Moreover, we ignore pairs of vertices u, v ∈ V for which σ(u, v)
is 0.0. The choice of the σ functions will always depend on the problem under
study. For instance, we can simply use the vertex degree or the edge weights, if a
suitable edge weight function w is provided. But, in general, these are not enough.
For instance, we can consider a structural similarity function based on the cosine
similarity. Note that we could start with other similarity functions, e.g., with the
Jaccard-Tanimoto index [18, 19]. Let w be the edge weight function. Given two
connected vertices (u, v) ∈ E, their structural similarity σ(u, v) is given by

σ(u, v) =
2w(u, v) +

∑
x∈N(u)∩N(v) w(u, x)w(v, x)√

1 +
∑

x∈N(u) w(u, x)2
√

1 +
∑

x∈N(v) w(v, x)2
. (1)

This equation reflects the cosine similarity between the neighborhoods of u and
v. The term 2w(u, v) in the numerator and the 1’s in the denominator were
introduced to reflect the connection between u and v, being the only difference
with respect to the usual definition of cosine similarity. In particular, if we extend
this definition to all distinct pairs of vertices u, v ∈ V or if we consider directed
graphs, we may want to drop these terms. The version of Eq. (1) for unweighted
graphs was first proposed by Xu et al. [20]. The similarity function σ as defined in
Eq. (1) takes values in [0, 1] and, given (u, v) ∈ E, σ(u, v) grows as u and v share
more neighbors. If u and v share all neighbors with equal weights, σ(u, v) is 1.0. In
particular, σ(u, v) is 1.0 even if u and v share all neighbors through equal lowly
weighted edges. In order to distinguish common neighbors connected through
lowly weighted edges from common neighbors connected through highly weighted
edges, we can compute the average weight among the common neighbors

w(u, v) =
w(u, v) +

∑
x∈N(u)∩N(v) w(u, x) + w(v, x)

1 + |N(u) ∩N(v)|
(2)

and redefine σ as the product of w(u, v) by Eq. (1). Note that we may consider
other terms instead of the weight average. For instance we could compute the
maximum weight. Note also that σ as redefined above only takes values in [0, 1]
if w also takes values in [0, 1].

We say that the subgraph H of G induced by C ⊆ V is a k-core or a core
of order k if and only if dH(v) ≥ k, for all v ∈ C, and H is a maximal sub-
graph with this property. The notion of k-core was proposed first by Seidman [1]
for unweighted graphs. Usually, by abuse of nomenclature, each connected com-
ponent of H is also called a k-core. More recently, Batagelj and Zaveršnik [3]



proposed a generalization of the notion of core, allowing the use of other prop-
erties of vertices than their degree. A vertex property function p on V is such
that p : V × 2V −→ IR. Given τ ∈ IR, a subgraph H of G induced by C ⊆ V is
a τ -core with respect to p, or a p core at level τ , if p(v, C) ≥ τ for all v ∈ C and
H is a maximal subgraph with this property.

Given a vertex property function p, we say that p is monotone if and only if,
given C1 ⊆ C2 ⊆ V , p(v, C1) ≤ p(v, C2) for all v ∈ V . Then, given a graph G, a
monotone vertex property function p and τ ∈ IR, we can compute the τ -core of
G with respect to p by successively deleting vertices with p value lower than τ :

1. set C ← V ;
2. while exists v ∈ C such that p(v, C) < τ , set C ← C \ {v}.

Theorem 1. Given a graph G, a monotone vertex property function p and τ ∈
IR, the above procedure determines the τ -core with respect to p.

Corollary 1. Given a monotonic vertex property function p and τ1, τ2 ∈ IR such
that τ1 < τ2, the cores are nested, i.e., C2 ⊆ C1.

These two results are due to Batagelj and Zaveršnik [3] and are particular cases
of the more general results presented in this paper.

We can devise many vertex property functions. Here, we discuss three exam-
ples. Given a graph G = (V,E), we can recover the classical definition of k-core
by defining the vertex property function

p(v, C) = dH(v), (3)

where H is the subgraph of G induced by C. Thus, given k ∈ IN, a k-core with
respect to p is precisely a classical k-core as defined by Seidman. Given a vertex
similarity function σ, we can extend Eq. (3) as

p(v, C) =
∑

u∈N(v)∩C

σ(v, u). (4)

Note that, taking σ as the weight function w, Eq. (4) is the natural extension of
the k-core notion to weighted graphs leading to the notion of τ -core with τ ∈ IR.

As in Eq. (1), the similarity function may already evaluate how strongly a
vertex is connected to its neighbors. Thus, we may prefer the property function

p(v, C) = max
u∈N(v)∩C

σ(v, u). (5)

In this case, for τ ∈ IR, all vertices v in the τ -core H are connected to some other
vertex u in H such that σ(u, v) ≥ τ . With the vertex property function (5) the
problem of finding cores becomes closely related to graphic matroids [21, 22]. In
particular, taking σ as the weight function, a τ -core H is the maximal subgraph
of G such that all edges in a maximum spanning forest of H have weight higher
than τ . There are two efficient and well known approaches to enumerate the
cores. We can sort the pairs of distinct vertices u, v ∈ V by decreasing order of
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Fig. 1. Cores for different vertex property functions: a) 2-core with respect to the vertex
property function (3); b) 3-core with respect to Eq. (3); d) 0.75-core with respect to
Eq. (5); d) 0.85-core with respect to Eq. (5).

σ(u, v) and iteratively merge them to form cores, which is the principle behind
the algorithm of Kruskal [23]. Or we can iteratively visit each vertex u and
merge it with the neighbor v that maximizes σ(u, v), an approach related to the
algorithm of Bor̊uvka [24]. Thus, as is well known, both these approaches take
O(m log n) where n is the number of vertices and m is the number of pairs such
that σ(u, v) > 0. Note also that, if we consider the algorithm of Kruskal, we can
get the full core hierarchy in a single run. We just need to store the cores for the
thresholds we are interested in or, if preferred, the full dendrogram.

The examples of vertex property functions above are all monotonic, i.e.,
p(v, C1) ≤ p(v, C2) for C1 ⊆ C2 ⊆ V . This is a straightforward consequence
from the fact that, for the first two examples, σ is always positive and p is
additive with respect to C and, in the third example, that the maximum can
only increase as C grows.

3 Fully generalized cores

Let us now extend the notion of generalized core. Recently, Saito et al. [11]
studied k-dense communities, where each pair of adjacent vertices must share at
least k−2 neighbors. This is clearly related to the k-core notion. The difference is
that they consider pairs of connected vertices instead of a single vertex. Moreover,
Saito et al. pointed out that an extension would be the use of cliques, in general,
instead of vertices or edges. Here, we further exploit these ideas and we propose
an extension of generalized cores, allowing the evaluation of density for any
subgraph. Let G = (V,E) be a graph and let 2G denote the set of subgraphs
of G. Given M ⊆ 2G a set of subgraphs of G, for instance a set of motifs, a
subgraph property function p over M is such that p : M× 2G −→ IR. We say
that p is monotone if and only if the following conditions hold:

1. if H1 is subgraph of H2 ∈ 2G, then p(M,H1) ≤ p(M,H2), for all M ∈M;
2. if L1 ∈M is subgraph of L2 ∈M, then p(L1, H) ≥ p(L2, H), for all H ∈ 2G.



The first condition is the generalization of the monotonicity condition discussed
in the previous section. The second condition will allow us to refine cores with
respect to p by changing the set of subgraphsM, as stated in Proposition 1 and
depicted in Fig. 2.

Let H be a subgraph of G, i.e., H ∈ 2G. We define M(H) as the set of
subgraphs of H in M, i.e., M(H) =M∩ 2H . Given τ ∈ IR, H is a τ -core with
respect to p, or a p core at level τ , if

1. V (H) ⊆
⋃

M∈M(H) V (M),

2. p(M,H) ≥ τ , for all M ∈M(H),
3. and H is a maximal subgraph of G with properties 1 and 2.

The first condition states that H must be a subgraph of G induced by a set of
subgraphs inM. The second condition ensures that all subgraphs of H inM are
densely connected within H and with respect to p. Finally, the third condition
requires that H is maximal, i.e., that there is not any τ -core H ′ with respect
to p such that H is subgraph of H ′. As before, by abuse of nomenclature, each
connected component of H may also be called a core.

Given a graph G, M ⊆ 2G, a monotonic subgraph property function p over
M and τ ∈ IR, we can compute the τ -core H of G with respect to p as follows:

1. set H as the subgraph of G induced by
⋃

M∈M V (M), i.e., initialize H as
the subgraph of G induced by the vertices of all subgraphs in M;

2. while exists M ∈M(H) such that p(M,H) < τ , set H as the subgraph of G
induced by

⋃
M ′∈M\{M} V (M ′), i.e., remove M from the list of subgraphs

under consideration.

Theorem 2. Given a graph G, M⊆ 2G, a monotonic subgraph property func-
tion p overM and τ ∈ IR, the above procedure determines the τ -core wrt p.

Proof. Let H be the core returned by the procedure. We must show that

1. p(M,H) ≥ τ , for all M ∈M(H);
2. H is maximal and independent of the order of deletions, i.e., unique.

It is clear that 1 holds since all subgraphs M such that p(M,H) < τ are deleted
in the procedure. Let us show that 2 also holds by absurd. Suppose that exists H ′

also determined by the above procedure, but such that H ′ 6= H. Thus, we have
eitherM(H ′)\M(H) 6= ∅ orM(H)\M(H ′) 6= ∅. Let M ∈M(H ′)\M(H) and
M1, . . . ,Mk be the sequence of subgraphs removed by the procedure to obtain
H. Since M ∈ M(H ′) \M(H), we have that M /∈ M(H) and, thus, M = Mj

for some 1 ≤ j ≤ k (M is one of the removed subgraphs). Let U0 = ∅ and
Ui = Ui−1 ∪ {Mi}, for 1 ≤ i ≤ k. Note that M(G) \ Uk = M(H) and, given
the deletion condition in the procedure, it is clear that p(Mi, Hi−1) < τ , for
1 ≤ i ≤ k, where Hi−1 is the subgraph of G induced by the vertices of all
subgraphs in M(G) \ Ui−1. Since M(H ′) ⊆ M(G) and p is monotone, we also
have that M(H ′) \ Ui−1 ⊆ M(G) \ Ui−1 and p(Mi, H

′
i−1) < τ , for 1 ≤ i ≤ k,

where H ′i−1 is the subgraph of Hi−1 induced by the vertices of all subgraphs in
M(H ′) \ Ui−1. In particular p(M,H ′j−1) < τ and, thus, M should be removed



in the procedure. Hence, if H ′ was returned, we have that M /∈ M(H ′) for any
M ∈M(H ′)\M(H) – an absurd. So,M(H ′)\M(H) = ∅ and, by an analogous
argument, M(H) \M(H ′) = ∅, i.e., M(H) =M(H ′) and H = H ′. Therefore,
H is unique, independent of the order of subgraph removal and maximal by
construction, i.e., 2 holds.

Corollary 2. Given a monotonic subgraph property function p and τ1, τ2 ∈ IR
such that τ1 < τ2, the τ1-core H1 and the τ2-core H2 with respect to p are nested,
i.e., H2 is subgraph of H1.

Proof. By Theorem 2 we have that H1 and H2 are unique and independent of
the order of deletions. Thus, since τ1 < τ2, we may apply the procedure to obtain
H1 and, by continuing the procedure, we may remove more subgraphs to obtain
H2. Therefore, H2 is a subgraph of H1.

Although a subgraph property function p is only required to be defined over
a set of subgraphsM, the following result holds whenever p is extensible to any
set M, namely p : 2G × 2G −→ IR is well defined.

Proposition 1. Let G be a graph, p be a monotonic subgraph property function
over 2G, τ ∈ IR and M,M′ ⊆ 2G. If all subgraphs M ′ ∈ M′ can be induced
by a sequence of subgraphs M1, . . . ,Mk ∈ M, i.e., M ′ is a subgraph induced by⋃k

i=1 V (Mi), then the τ -core H ′ with respect to p over M′ is a subgraph of the
τ -core H with respect to p overM.

Proof. SinceH ′ is a τ -core with respect to p overM′, there areM ′1, . . . ,M
′
` ∈M′

such that H ′ is the subgraph induced by
⋃`

j=1 V (M ′j) and p(M ′j , H
′) ≥ τ , for

1 ≤ i ≤ `. By hypothesis, each M ′j is a subgraph induced by
⋃k

i=1 V (Mi), where
M1, . . . ,Mk ∈ M. Then, since p is monotone, p(Mi, H

′) ≥ p(M ′j , H
′) ≥ τ , for

1 ≤ i ≤ k, and thus M1, . . . ,Mk are part of the τ -core with respect to p over
M. Therefore, all M1, . . . ,Mk, for all M ′j with 1 ≤ j ≤ `, are subgraphs of H,

i.e., H ′ is subgraph of H.

By Proposition 1, given a suitable subgraph property function, we are able to
incrementally build the τ -core by refining the set of subgraphsM. For instance,
let p be the subgraph property function

p(M,H) = |V (M) ∩ V (H)|+ |X ∩ V (H)|, (6)

where X =
⋂

u∈V (M)NG(u). Note that p is monotone only if we restrict M to

cliques. TakingM as the set of singleton subgraphs, i.e.,M = {({u}, ∅) | u ∈ V },
Eq. (6) is equivalent to Eq. (3) minus one. Thus, given k ∈ IN, a k-core with
respect to p overM is a classical (k−1)-core as defined by Seidman. If we takeM′
as the set of subgraphs induced by E, i.e.,M′ = {({u, v}, {(u, v)}) | (u, v) ∈ E},
the k-cores with respect to p over M′ are precisely the k-dense communities as
proposed by Saito et al.. Note that, given k ∈ IN, the k-dense community requires
that two connected vertices share at least k−2 neighbors. In a way analogous to
the method proposed by Saito et al., we can compute a k-core with respect to p



a)

b)
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Fig. 2. Graph cores identified using the subgraph property function (6) and different
sets of subgraphs M, including the comparison with k-clique percolations. The shad-
owed vertices are: a) a 4-core with respect to (6) over K1, i.e., a classical 3-core; b) a
4-core with respect to (6) over K2, i.e., three classical 4-dense communities; c) a 4-core
with respect to (6) over K3; d) three 4-clique percolation communities. Note that the
clique percolations in d) are subgraphs of the core in c), which is subgraph of the core
in b), which is also subgraph of the core in a).

overM and, then, we can refine it to obtain a k-dense community by computing
a k-core with respect to p over M′. This is a straightforward application of
Proposition 1, as illustrated by the two first cases in Fig. 2.

Clearly, we can consider any set of subgraphs with the subgraph property
function (6). For instance, given ` ∈ IN, let K` be the set of subgraphs of G
isomorphic to the clique K`′ of size `′, for all `′ ≤ `, i.e.,

K`(G) = {H | H is subgraph of G, H ' K`′ and `′ ≤ `}. (7)

Note that if we consider ` = 1 or ` = 2, we recover the definitions of classical
k-core and k-dense community, respectively. Moreover, for any k ∈ IN, each
vertex in the k-core with respect to p over Kk−1 belongs to at least one k-clique.
This is interesting since it is closely related to the communities found with the
clique percolation method [8]. In particular a k-clique percolation community is
a subgraph of the k-core with respect to p over Kk−1 and, by Proposition 1, it is
a subgraph of the k-core with respect to p over K` for any ` < k (see Fig. 2). In



particular, this establishes a relation of nesting between classical k-cores, k-dense
communities and k-clique communities.

As we did for Eq. (3), we can easily extend Eq. (6) to weighted graphs. Given
a vertex similarity function σ, the subgraph property function becomes

p(M,H) =
∑

u∈V (M)

∑
v∈X∩V (H)

σ(u, v), (8)

where X =
⋂

u∈V (M)NG(u). Note that p is monotone only if the weights are
equal to 1.0, otherwise the second monotonocity contidion may not hold. Taking
σ as the weight function w and considering M = K2, Eq. (8) is the natural
extension of the k-dense notion to weighted graphs leading to the notion of
τ -dense community with τ ∈ IR.

The Corollary 2 (or 1 in the simpler case) ensures that, given a monotonic
subgraph property function p, we can built a hierarchy of nested cores by con-
sidering different values of τ . This is interesting since, by ranging over different
values of τ , we get a hierarchy of cores.

4 Discussion and applications

In this paper we propose fully generalized cores, which extend several core def-
initions proposed in the literature under a common framework. Moreover, we
discuss a greedy approach to solve the problem of identifying fully generalized
cores. The complexity of this approach is clearly dependent on subgraph prop-
erty functions, which may be computationally costly. Although for some sub-
graph property functions this problem can be stated as graphic matroid [21, 22],
it remains to be seen under which formal conditions this combinatorial problem
becomes a matroid.

In what concerns interesting and desirable properties, there are other related
approaches to core enumeration. Recently Xu et al. [20] implicitly proposed the
following alternative definition of core. Given the similarity function (1), n ∈ IN
and ε > 0, we say that (u, v) ∈ E is a core edge if σ(u, v) ≥ ε, and that u ∈ V
is a core vertex if |{v ∈ N(u) | σ(u, v) ≥ ε}| ≥ n. Then, a set of vertices C ⊆ V
is a core in G if all u ∈ C is a core vertex and if, for all u, v ∈ C, there is
a connecting path composed only of core edges. The parameter n is the main
difference with respect to the core enumeration approaches discussed in this
paper. Given n ∈ IN, we compute the ε-core H with respect to the property
function (5), but we further filter it by leaving just the vertices u ∈ V such that
|{v ∈ H | σ(u, v) ≥ ε}| ≥ n. Thus, although the definition of core proposed
by Xu et al. is related to the notion of generalized core, it introduces an extra
degree of freedom that is interesting if we require higher resolutions.

There are several interesting applications for fully generalized cores. Here, we
briefly discuss two of them. As discussed before, an application is the detection
of densely connected subgraphs within graph clustering methods. Given a core,
we can take each connected component as a seed set and apply well known local
partition methods [25–27]. Note that by using the approach described in this



paper, we can get a hierarchy of cores and, thus, we are able to get a hierarchi-
cal clustering. There are several alternatives for hierarchical clustering and local
optimization. For instance, Lancichinetti et al. [28] proposed a multiresolution
method that optimizes a local fitness score by adding and removing vertices to
increase the fitness score, following an approach like the one proposed by Blon-
del et al. [29]. These are equivalent to the approaches based on ranking, where
each vertex constitutes a core or seed set. The main issue with these simpler
approaches is that there is not any guarantee about their effectiveness. On the
other hand, local ranking based on, e.g., the heat kernel has supporting results
both with respect to local optimization complexity and clustering quality [27].
These approaches allow also for the detection of vertices that appear in multi-
ple clusters, i.e., overlapping clusterings. Note also the ability to obtain local
clusterings, in particular when we do not know all the graph. This problem is
partially addressed by the local optimization or local clustering techniques. But
an important issue remains: what happens if the seed set is composed by vertices
already within an overlap? If we just use a standard local clustering approach,
we will obtain just a big cluster composed of several smaller and overlapping
clusters. By partially exploring the neighborhood of the seed set, by enumerat-
ing the cores, and by applying local clustering to the obtained seed sets, we can
detect the smaller and overlapping clusters.

A second application is the detection of complex network motifs, which we
already mentioned. Given a set of motifs or graphlets, we can enumerate the
cores composed only by vertices belonging to these motifs or graphlets. The main
task becomes defining a suitable subgraph property function. The resulting cores
can then be statically evaluated, identifying possible mesoscale network motifs.
This is of high importance since enumerating and evaluating motifs or graphlets
with a reasonable size is computationally demanding. Unlike graphlets, network
motifs may not be induced subgraphs and, thus, we may want to consider the
merging of motifs instead of vertex induced subgraphs in our definition of fully
generalized cores. The results presented herein remain valid.
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