Fully Homomorphic Encryption

Craig Gentry IBM Watson MIT Guest Lecture April 2010

The Goal

I want to delegate processing of my data, without giving away access to it.

Application: Cloud Computing

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

Storing my files on the cloud

- Encrypt them to protect my information
- Later, I want to retrieve the files containing "cloud" within 5 words of "computing".
 - Cloud should return only these (encrypted) files, without knowing the key

Privacy combo: Encrypted query on encrypted data

Outline

Why is it possible even in principle?

- A physical analogy for what we want
- What we want: fully homomorphic encryption (FHE)
 - Rivest, Adleman, and Dertouzos *defined* FHE in 1978, but *constructing* FHE was open for 30 years

Our FHE construction

Can we separate processing from access? Actually, separating processing from access even makes sense in the physical world...

An Analogy: Alice's Jewelry Store

- Workers assemble raw materials into jewelry
- But Alice is worried about theft
 - How can the workers process the raw materials without having access to the raw?

An Encryption Glovebox?

- Alice delegated <u>processing</u> without giving away <u>access</u>.
- But does this work for encryption?
 - Can we create an "encryption glovebox" that would allow the cloud to process data while it remains encrypted?

No info about m₁, ..., m_t, f(m₁, ...m_t) is leaked
 f(m₁, ...m_t) is the "ring" made from raw materials m₁, ..., m_t inside the encryption box

FHE: What does "Efficient" Mean? Here is a trivial (inefficient) FHE scheme: ■ $(f, c_1, ..., c_n) = c^* \leftarrow Eval(pk, f, c_1, ..., c_n)$ Dec(sk, c^*) decrypts individual c_i 's, applies f to m_i 's (The worker does nothing. Alice assembles the jewelry by herself.) But the point is to delegate processing! What we want: c* is a "normal" compact ciphertext Time to decrypt c* is independent of f.

Efficiency of FHE

KeyGen, Enc, and Dec all run in time polynomial in the security param λ.

In particular, the time needed to decrypt $c \leftarrow Eval(pk, f, c_1, ..., c_t)$ is *independent* of f.

Eval(pk, f, c₁,...,c_t) runs in time g(λ) • S_f, where g is a poly and S_f is the size of the boolean circuit (# of gates) to compute f.
 S_f = O(T_f • log T_f), T_f is Turing complexity of f

Outline

□ Why is it possible even in principle?

- A physical analogy for what we want
- What we want: <u>fully homomorphic encryption (FHE)</u>
 - Rivest, Adleman, and Dertouzos *defined* FHE in 1978, but *constructing* FHE was open for 30 years

Our FHE construction

Not my original STOC09 scheme. Rather, a simpler scheme by Marten van Dijk, me, Shai Halevi, and Vinod Vaikuntanathan

Smart and Vercauteren recently proposed an optimization of the STOC09 scheme.

Somewhat Homomorphic" Scheme

Why a somewhat homomorphic scheme?

Can't we construct a FHE scheme directly?

- If I knew how, I would tell you.
- Later: somewhat homomorphic → FHE
 - If somewhat homomorphic scheme has a certain property (bootstrappability)

Homomorphic Public-Key Encryption Secret key is an odd p as before Public key is many "encryptions of 0" • $x_i = [q_i p + 2r_i]_{x_0}$ for i = 1, 2, ..., n $\Box \operatorname{Enc}_{pk}(m) = [\operatorname{subset-sum}(x_i's) + m + 2r]_{x0}$ $\Box \operatorname{Dec}_{sk}(c) = (c \mod p) \mod 2$ Eval as before

Security of E Approximate GCD (approx-gcd) Problem: Given many $x_i = s_i + q_i p$, output p Example params: $s_i \sim 2^{\lambda}$, $p \sim 2^{\lambda^2}$, $q_i \sim 2^{\lambda^5}$, where λ is security parameter \succ Best known attacks (lattices) require 2^{λ} time Reduction: if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

Basically because:

If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is E homomorphic? $\Box c_1 = m_1 + 2r_1 + q_1p$, $c_2 = m_2 + 2r_2 + q_2p$ Noise: Distance to nearest multiple of p $\Box c_1 + c_2 = \frac{(m_1 + m_2) + 2(r_1 + r_2)}{(m_1 + m_2) + 2(r_1 + r_2)} + (q_1 + q_2)p$ $(m_1+m_2)+2(r_1+r_2)$ still much smaller than p \Rightarrow c₁+c₂ mod p = (m₁+m₂) + 2(r₁+r₂) $\Box C_1 \times C_2 = (m_1 + 2r_1)(m_2 + 2r_2)$ $+(c_1q_2+q_1c_2-q_1q_2)p$ $(m_1+2r_1)(m_2+2r_2)$ still much smaller than p \Rightarrow c₁xc₂ mod p = (m₁+2r₁)(m₂+2r₂)

 $\bigstar(c_1xc_2 \mod p) \mod 2 = m_1xm_2 \mod 2$

Why is E *somewhat* homomorphic?

□ What if $|f(m_1+2r_1, ..., m_t+2r_t)| > p/2?$

- $c = f(c_1, ..., c_t) = f(m_1 + 2r_1, ..., m_t + 2r_t) + qp$
 - > Nearest p-multiple to c is q'p for q' \neq q
- (c mod p) = $f(m_1+2r_1, ..., m_t+2r_t) + (q-q')p$
- (c mod p) mod 2
 - = $f(m_1, ..., m_t) + (q-q') \mod 2$ = ???
- We say E can <u>handle</u> f if:
 - $|f(x_1, ..., x_t)| < p/4$
 - whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_E

Step 2: Somewhat Homomorphic → FHE (if somewhat homomorphic scheme has a certain property: <u>bootstrappability</u>)

Back to Alice's Jewelry Store

- After the worker works on the jewel for 1 minute, the gloves stiffen!
- Some complicated pieces take 10 minutes to make.
- Can Alice still use her boxes?
- Hint: you can put one box inside another.

Back to Alice's Jewelry Store

- Yes! Alice gives worker more boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1 minute.
- □ Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- □ Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store

A weird question: Is it safe to put a key inside a glove box? What if the key can unlock the box from the inside?

- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- □ Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Back to Alice's Jewelry Store

In any case, it definitely should be safe to have distinct keys, and to put the key for box #1 inside box #2, and so on...

- Yes! Alice gives worker a boxes with a copy of her key
- Worker assembles jewel inside box #1 for 1
- □ Then, worker puts box #1 inside box #2!
- With box #2's gloves, worker opens box #1 with key, takes jewel out, and continues assembling till box #2's gloves stiffen.

Warm-up: Applying Eval to Dec_E

Blue means box #2. It also means encrypted under key PK₂.

Red means box #1. It also means encrypted under key PK₁.

Warm-up: Applying Eval to Dec_F \Box Suppose c = Enc(pk, m) $\Box \text{ Dec}_{F}(sk_{1}^{(1)}, ..., sk_{1}^{(t)}, c_{1}^{(1)}, ..., c_{1}^{(u)}) = m,$ where I have split sk and c into bits \Box Let $sk_1^{(1)}$ and $c_1^{(1)}$, be ciphertexts that encrypt $sk_1^{(1)}$ and $c_1^{(1)}$, and so on, under pk_2 . Then, Eval(pk_2 , Dec_F , $sk_1^{(1)}$, ..., $sk_1^{(t)}$, $c_1^{(1)}$, ..., $c_1^{(1)}$) = m i.e., a ciphertext that encrypts m under pk_2 .

Applying Eval to (Dec_E then Add_E)

Blue means box #2. It also means encrypted under key PK₂.

Applying Eval to (Dec_E then Mult_E)

Blue means box #2. It also means encrypted under key PK₂. If E can evaluate $(Dec_E \text{ then } Add_E)$ and $(Dec_E \text{ then } Mult_E)$, then we call E "bootstrappable" (a selfreferential property).

And now the recursion...

Arbitrary Functions

- Suppose E is bootstrappable i.e., it can handle Dec_E augmented by Add_E and Mult_E efficiently.
- □ Then, there is a scheme E_d that evaluates arbitrary functions with d "levels".
- \Box Ciphertexts: Same size in E_d as in E.
- Public key:
 - Consists of (d+1) E pub keys: pk₀, ..., pk_d
 - and encrypted secret keys: {Enc(pk_i, sk_(i-1))}
 - Size: linear in d. Constant in d, if you assume encryption is "circular secure."

The question of circular security is like whether it is "safe" to put a key for box i inside box i.

Step 2b: Bootstrappable Yet? Is our Somewhat Homomorphic Scheme Already Bootstrappable?

Adding Two Numbers $f(c,p^{-1}) = LSB([c \times p^{-1}])$					
<u>Carries</u> :	$x_1y_1 + x_1x_0y_0 + y_1x_0y_0$ x_2	x ₀ y ₀ X ₁	X ₀		
	У ₂	y ₁	y ₀		
<u>Sum</u> :	$x_2+y_2+x_1y_1+x_1x_0y_0+y_1x_0y_0$	$x_1 + y_1 + x_0 y_0$	x ₀ +y ₀		

Adding two t-bit numbers:

Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers f(c,p⁻¹) = LSB([c×p⁻¹])

□ 3-for-2 trick:

- 3 numbers \rightarrow 2 numbers with same sum
- Output bits are up to degree-2 in input bits

	x ₂	X ₁	x ₀
	y ₂	Y ₁	y ₀
	Z ₂	Z ₁	Z ₀
	$x_2 + y_2 + z_2$	$x_1 + y_1 + z_1$	$x_0 + y_0 + z_0$
$x_2y_2 + x_2z_2$	$x_1y_1 + x_1z_1$	$x_0y_0 + x_0z_0$	
$+y_2z_2$	$+y_1z_1$	$+y_0z_0$	

- t numbers \rightarrow 2 numbers with same sum
- Output bits are degree $2^{\log_{3/2} t} = t^{\log_{3/2} 2} = t^{1.71}$

Back to Multiplying $f(c,p^{-1}) = LSB([c \times p^{-1}])$ Multiplying two t-bit numbers: Add t t-bit numbers of degree 2 3-for-2 trick \rightarrow two t-bit numbers, deg. 2t^{1.71}. Adding final two numbers \rightarrow deg. t(2t^{1.71}) = 2t^{2.71}. $\Box Consider f(c,p^{-1}) = LSB([c \times p^{-1}])$ p^{-1} must have log c > log p bits of precision to ensure the rounding is correct So, f has degree at least $2(\log p)^{2.71}$. Can our scheme E handle a polynomial f of such high degree?

Unfortunately, no.

Why Isn't E Bootstrappable? $f(c,p^{-1}) = LSB([c \times p^{-1}])$

Recall: E can <u>handle</u> f if:

- $|f(x_1, ..., x_t)| < p/4$
- whenever all |x_i| < B, where B is a bound on the noise of a fresh ciphertext output by Enc_E
- If f has degree > log p, then |f(x₁, ..., x_t)| could definitely be bigger than p

• E is (apparently) not bootstrappable...

Step 3 (Final Step): Modify our Somewhat Homomorphic Scheme to Make it Bootstrappable

- Crazy idea: Put <u>hint</u> about sk in E* public key! Hint lets anyone <u>post-process</u> the ciphertext, leaving less work for Dec_{E*} to do.
- This idea is used in server-aided cryptography.

How E* works
 Enc_{E*}, Eval_{E*} output ψ_i=c x r_i mod 2, i=1,,n Together with c itself The ψ_i have about log n bits of precision New secret key is bit-vector s₁,,s_n
■ $s_i=1$ if i∈S, $s_i=0$ otherwise □ $Dec_{F*}(s,c)=LSB(c)$ XOR $LSB([\Sigma_i s_i \psi_i])$ mod 2
 E* can handle any function E can: c/p = c Σ_i s_ir_i = Σ_i s_iψ_i, mod 2, up to precision Precision errors do not changing the rounding Precision errors from ψ_i imprecision < 1/8 c/p is with 1/4 of an integer

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR } \text{LSB}([\Sigma_i \ s_i \psi_i]) \text{ mod } 2$

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR } \text{LSB}([\Sigma_i \ s_i \psi_i]) \text{ mod } 2$

a _{1,0}	a _{1,-1}		a _{1,-log n}
a _{2,0}	a _{2,-1}		a _{2,-log n}
a _{3,0}	a _{3,-1}		a _{3,-log n}
a _{4,0}	a _{4,-1}		a _{4,-log n}
a _{5,0}	a _{5,-1}		a _{5,-log n}
a _{n,0}	a _{n,-1}	•••	a _{n,-log n}

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR } \text{LSB}([\Sigma_i \ s_i \psi_i]) \text{ mod } 2$

(Let b _{-log n}	be	a _{1,0}	a _{1,-1}		āl _{1,-log n}
	the bina		a _{2,0}	a _{2,-1}		a _{2,-log n}
	rep of		a _{3,0}	a _{3,-1}		a _{3,-log n}
Hamming weight		-	a _{4,0}	a _{4,-1}		a _{4,-log n}
			a _{5,0}	a _{5,-1}		a _{5,-log n}
						\·· /
			a _{n,0}	a _{n,-1}		a _{n,-log r}
),log n		b _{0,1}	b _{0,0}			
	b _{-1,log n}		b _{-1,1}	b _{-1,0}		
			b _{-log n,log n}		b _{-log n,1}	b _{-log n,0}

b

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR } \text{LSB}([\Sigma_i \ s_i \psi_i]) \text{ mod } 2$

Only log n numbers with log n bits of precision. Easy to handle.		a _{1,0}	a _{1,-1}		a _{1,-log n}	
		a _{2,0}	a _{2,-1}		a _{2,-log n}	
		a _{3,0}	a _{3,-1}		a _{3,-log n}	
		-	a _{4,0}	a _{4,-1}		a _{4,-log n}
		a _{5,0}	a _{5,-1}		a _{5,-log n}	
		a _{n,0}	a _{n,-1}		a _{n,-log n}	
_	V					
b _{0,log n}		b _{0,1}	b _{0,0}			
	b _{-1,log n}		b _{-1,1}	b _{-1,0}		
			b _{-log n,log n}		b _{-log n,1}	b _{-log n,0}

Computing Sparse Hamming Wgt.

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR LSB}([\Sigma_i s_i \psi_i]) \text{ mod } 2$

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
\ /		
a _{n,0}	a _{n,-1}	 a _{n,-log n}
/		

Computing Sparse Hamming Wgt.

$\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR LSB}([\Sigma_i \ s_i \psi_i]) \text{ mod } 2$

a _{1,0}	a _{1,-1}	 a _{1,-log n}
0	0	 0
0	0	 0
a _{4,0}	a _{4,-1}	 a _{4,-log n}
0	0	 0
/		
a _{n,0}	a _{n,-1}	 a _{n,-log n}

Computing Sparse Hamming Wgt. $\Box \text{ Dec}_{E^*}(s,c) = \text{LSB}(c) \text{ XOR } \text{LSB}([\Sigma_i \ s_i \psi_i]) \mod 2$ Binary rep of Hamming wgt of a_1 $\mathbf{x} = (x_1, ..., x_n)$ in $\{0, 1\}^n$ given by: 0 $\mathbf{0}$ $e_{2^{[\log n]}}(\mathbf{x}) \mod 2, ..., e_2(\mathbf{x}) \mod 2, e_1(\mathbf{x}) \mod 2$ a_{4,0} where e_{k} is the elem symm poly of deg k \mathbf{O} Since we know a priori that Hamming wgt is |S|, we only need an $e_{2^{[\log |S|]}}(\mathbf{x}) \mod 2, ..., e_2(\mathbf{x}) \mod 2, e_1(\mathbf{x}) \mod 2$ up to deg < |S|

□ Set $|S| < \lambda$, then E* is bootstrappable.

Yay! We have a FHE scheme!

Performance

□ Well, a little slow...

- In E, a ciphertext is c_i is about λ^5 bits.
- **Dec**_{E*} works in time quasi-linear in λ^5 .
- Applying $Eval_{E^*}$ to Dec_{E^*} takes quasi- λ^{10} .
 - To bootstrap E* to E*FHE, and to compute Eval_{E*FHE}(pk, f, c₁, ..., c_t), we apply Eval_{E*} to Dec_{E*} once for each Add and Mult gate of f.
 - > Total time: quasi- $\lambda^{10} \cdot S_f$, where S_f is the circuit complexity of f.

Performance

STOC09 lattice-based scheme performs better:

- Applying Eval to Dec takes Õ(λ⁶) computation if you want 2^λ security against known attacks.
- Comparison: RSA also takes Õ(λ⁶); also, in ElGamal (using finite fields).

More optimizations on the way!

Hardness of Approximate-GCD Several lattice-based approaches for solving approximate-GCD Related to Simultaneous Diophantine Approximation (SDA) Studied in [Hawgrave-Graham01] We considered some extensions of his attacks \Box All run out of steam when $|q_i| > |p|^2$ In our case $|p| \sim n^2$, $|q_i| \sim n^5 \gg |p|^2$

Relation to SDA (cont.) When will Lagarias' algorithm succeed? $< q_0, q_1, ..., q_t > L$ should be shortest in lattice > In particular shorter than $\sim det(L)^{1/t+1}$ This only holds for t > log Q/log P Minkowski bound The dimension of the lattice is t+1 Quality of lattice-reduction deteriorates exponentially with t • When log Q > $(\log P)^2$ (so t>log P), LLL-type reduction isn't good enough anymore

