Fully Homomorphic Encryption

Craig Gentry
IBM Watson

MIT Guest Lecture April 2010

The Goal

I want to delegate processing of my data, without giving away access to it.

Application: Private Google Search

I want to delegate processing of my data, without giving away access to it.
\square Private search

- Do a Google search
> But encrypt my query, so that Google cannot "see" it
- I still want to get the same results
\Rightarrow Results would be encrypted too

Application: Cloud Computing

I want to delegate processing of my data, without giving away access to it.
\square Storing my files on the cloud

- Encrypt them to protect my information
- Later, I want to retrieve the files containing "cloud" within 5 words of "computing".
$>$ Cloud should return only these (encrypted) files, without knowing the key
\square Privacy combo: Encrypted query on encrypted data

Outline

\square Why is it possible even in principle?

- A physical analogy for what we want
- What we want: fully homomorphic encryption (FHE)
- Rivest, Adleman, and Dertouzos defined FHE in 1978, but constructing FHE was open for 30 years
\square Our FHE construction

Can we separate processing from access?

Actually, separating processing from access even makes sense in the physical world...

An Analogy: Alice's Jewelry Store

\square Workers assemble raw materials into jewelry
\square But Alice is worried about theft How can the workers process the raw materials without having access to them?

An Analogy: Alice's Jewelry Store

\square Alice puts materials in locked glovebox

- For which only she has the key
\square Workers assemble jewelry in the box
\square Alice unlocks box to get "results"

An Encryption Glovebox?

\square Alice delegated processing without giving away access.
\square But does this work for encryption?

- Can we create an "encryption glovebox" that would allow the cloud to process data while it remains encrypted?

Public-key Encryption

\square Three procedures: KeyGen, Enc, Dec

- (sk,pk) $\leftarrow \operatorname{KeyGen}(\lambda)$
\Rightarrow Generate random public/secret key-pair
- c $\leftarrow E n c(p k, m)$
$>$ Encrypt a message with the public key
- m $\leftarrow \operatorname{Dec}(s k, c)$
$>$ Decrypt a ciphertext with the secret key

Homomorphic Public-key Encryption

\square Another procedure: Eval (for Evaluate)
$\square c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$

Encryption of $f\left(m_{1}, \ldots, m_{t}\right)$.
I.e., $\operatorname{Dec}(s k, c)=f\left(m_{1}, \ldots m_{t}\right)$

- No info about $m_{1}, \ldots, m_{t}, f\left(m_{1}, \ldots m_{t}\right)$ is leaked
- $f\left(m_{1}, \ldots m_{t}\right)$ is the "ring" made from raw materials m_{1}, \ldots, m_{t} inside the encryption box

Fully Homomorphic Public-key Encryption

\square Another procedure: Eval (for Evaluate)
$\square c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$

```
Encryption of f(m
I.e., }\operatorname{Dec}(sk,c)=f(\mp@subsup{m}{1}{},\ldotsmt
```

- FHE scheme should:
> Work for any well-defined function f
> Be efficient

\square Private Google search

- Encrypt bits of my query: $c_{i} \leftarrow \operatorname{Enc}\left(p k, m_{i}\right)$
- Send pk and the c_{i} 's to Google
- Google expresses its search algorithm as a boolean function f of a user query
- Google sends $c \leftarrow \operatorname{Eval}\left(\mathrm{pk}, \mathrm{f}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)$
- I decrypt to obtain my result $f\left(m_{1}, \ldots, m_{t}\right)$

Back to Our Applications $\begin{aligned} & \left.\begin{array}{c}c \in E v a l\left(c k, c_{1}, f_{c}, \ldots, \ldots, c_{1}\right), \\ \text { Dec(sk, }, c)=f\left(m_{1}, \ldots, m_{t}\right)\end{array}\right)\end{aligned}$

\square Cloud Computing with Privacy

- Encrypt bits of my files $c_{i} \leftarrow E n c\left(p k, m_{i}\right)$
- Store pk and the c_{i} 's on the cloud
- Later, I send query :"cloud" within 5 words of "computing"
- Let f be the boolean function representing the cloud's response if data was unencrypted
- Cloud sends $c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$
- I decrypt to obtain my result $f\left(m_{1}, \ldots, m_{t}\right)$

Previous Schemes $c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$, $\operatorname{Dec}(s k, c)=f\left(m_{1}, \ldots, m_{t}\right)$

Only "somewhat homomorphic"

- Can only handle some functions f
\square RSA works for MULT function (mod N) $c=c_{1} \times \ldots \times c_{t}=\left(m_{1} \times \ldots \times m_{t}\right)^{e}(\bmod N)$

"Somewhat Homomorphic" Schemes

\square RSA works for MULT gates (mod N)
\square Paillier, GM, work for ADD, XOR
\square BGN05 works for quadratic formulas
\square MGH08 works for low-degree polynomials

- size of $c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$ grows exponentially with degree of polynomial f.
\square No FHE scheme
- Rivest, Adleman and Dertouzos proposed the idea in 1978.

FHE: What does "Efficient" Mean?

\square Here is a trivial (inefficient) FHE scheme:
■ $\left(f, c_{1}, \ldots, c_{n}\right)=c^{*} \leqslant \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{n}\right)$

- Dec(sk, $\left.c^{*}\right)$ decrypts individual $c_{i}^{\prime} s$, applies f to $m_{i}^{\prime} s$
(The worker does nothing. Alice assembles the jewelry by herself.)
\square But the point is to delegate processing!
\square What we want:
- c^{*} is a "normal" compact ciphertext
- Time to decrypt c^{*} is independent of f .

Efficiency of FHE

\square KeyGen, Enc, and Dec all run in time polynomial in the security param λ.

- In particular, the time needed to decrypt $c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$ is independent of f.
$\square \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$ runs in time $g(\lambda) \cdot S_{f}$, where g is a poly and S_{f} is the size of the boolean circuit (\# of gates) to compute f. - $S_{f}=O\left(T_{f} \cdot \log T_{f}\right), T_{f}$ is Turing complexity of f

Outline

\square Why is it possible even in principle?

- A physical analogy for what we want
- What we want: fully homomorphic encryption (FHE)
- Rivest, Adleman, and Dertouzos defined FHE in 1978, but constructing FHE was open for 30 years

\square Our FHE construction

Not my original STOC09 scheme. Rather, a simpler scheme by

Smart and Vercauteren recently proposed an
Marten van Dijk, me, Shai Halevi, and Vinod Vaikuntanathan

Step 1: Construct a Useful "Somewhat Homomorphic" Scheme

Why a somewhat homomorphic scheme?

\square Can't we construct a FHE scheme directly?

- If I knew how, I would tell you.
- Later: somewhat homomorphic \rightarrow FHE
> If somewhat homomorphic scheme has a certain property (bootstrappability)

A homomorphic symmetric encryption

\square Shared secret key: odd number p
\square To encrypt a bit m in $\{0,1\}$:

- Choose at random small r, large q
- Output $\mathrm{c}=\mathrm{The}$ "noise" $+2 r+\mathrm{pq} \quad \begin{gathered}\text { Noise much } \\ \text { smaller than } \mathrm{p}\end{gathered}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$
$>\mathrm{m}=\mathrm{c}-\mathrm{p} \cdot[\mathrm{c} / \mathrm{p}] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

A homomorphic symmetric encryption

\square Shared secret key: odd number 101
\square To encrypt a bit m in $\{0,1\}$:

- Choose at random small r, large q
- Output $\mathrm{c}=\mathrm{The}$ "noise" $+2 r+\mathrm{pq} \quad \begin{gathered}\text { Noise much } \\ \text { smaller than } \mathrm{p}\end{gathered}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$
$>\mathrm{m}=\mathrm{c}-\mathrm{p} \cdot[\mathrm{c} / \mathrm{p}] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

A homomorphic symmetric encryption

\square Shared secret key: odd number 101
\square To encrypt a bit m in $\{0,1\}$: (say, $m=1$)

- Choose at random small r, large q
- Output $\mathrm{c}=\mathrm{m}+2 \mathrm{~T}+\mathrm{n}+\mathrm{pq} \quad \begin{gathered}\text { Noise much } \\ \text { smaller than } \mathrm{p}\end{gathered}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$
$>m=c-p \cdot[c / p] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

A homomorphic symmetric encryption

\square Shared secret key: odd number 101
\square To encrypt a bit m in $\{0,1\}$: (say, $m=1$)

- Choose at random small $r(=5)$, large $q(=9)$
- Output $\mathrm{c}=\mathrm{m}+2 \mathrm{Th}+\mathrm{pq}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$
$>\mathrm{m}=\mathrm{c}-\mathrm{p} \cdot[\mathrm{c} / \mathrm{p}] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

A homomorphic symmetric encryption

\square Shared secret key: odd number 101
\square To encrypt a bit m in $\{0,1\}$: (say, $m=1$)

- Choose at random small $r(=5)$, large $q(=9)$

■ Output $\mathrm{c}=\mathrm{The}$ "noise" $+2 r+\mathrm{pq}=11+909=920$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:

- Output $m=(c \bmod p) \bmod 2$
$>m=c-p \cdot[c / p] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

A homomorphic symmetric encryption

\square Shared secret key: odd number 101
\square To encrypt a bit m in $\{0,1\}$: (say, $m=1$)

- Choose at random small $r(=5)$, large $q(=9)$

■ Output $\mathrm{c}=\mathrm{The}$ "noise" $+2 r+\mathrm{pq}=11+909=920$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:

- Output $m=(c \bmod p) \bmod 2=11 \bmod 2=1$
$>m=c-p \cdot[c / p] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

Homomorphic Public-Key Encryption

\square Secret key is an odd p as before
\square Public key is many "encryptions of 0 "

- $x_{i}=\left[q_{i} p+2 r_{i}\right]_{x 0}$ for $i=1,2, \ldots, n$
$\square E \operatorname{Enc}_{p k}(\mathrm{~m})=\left[\text { subset-sum }\left(x_{i}^{\prime} s\right)+m+2 r\right]_{x 0}$
$\square \operatorname{Dec}_{s k}(c)=(c \bmod p) \bmod 2$
\square Eval as before

Security of E

\square Approximate GCD (approx-gcd) Problem:

- Given many $x_{i}=s_{i}+q_{i} p$, output p
- Example params: $\mathrm{s}_{\mathrm{i}} \sim 2^{\lambda}, \mathrm{p} \sim 2^{\wedge \wedge 2}, \mathrm{q}_{\mathrm{i}} \sim 2^{\lambda \wedge 5}$, where λ is security parameter
$>$ Best known attacks (lattices) require 2^{λ} time
\square Reduction:
- if approx-gcd is hard, E is semantically secure

Why is E homomorphic?

\square Basically because:

- If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is E homomorphic?

$\square c_{1}=m_{1}+2 r_{1}+q_{1} p, \quad c_{2}=m_{2}+2 r_{2}+q_{2} p$
$\square c_{1}+c_{2}=\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)+\left(q_{1}+q_{2}\right) p$ - $\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)$ still much smaller than p $\rightarrow c_{1}+c_{2} \bmod p=\left(m_{1}+m_{2}\right)+2\left(r_{1}+r_{2}\right)$
$\square c_{1} \times c_{2}=\left(m_{1}+2 r_{1}\right)\left(m_{2}+2 r_{2}\right)$

$$
+\left(c_{1} q_{2}+q_{1} c_{2}-q_{1} q_{2}\right) p
$$

- $\left(m_{1}+2 r_{1}\right)\left(m_{2}+2 r_{2}\right)$ still much smaller than p
$\rightarrow c_{1} \times c_{2} \bmod p=\left(m_{1}+2 r_{1}\right)\left(m_{2}+2 r_{2}\right)$
$\rightarrow\left(c_{1} \times c_{2} \bmod p\right) \bmod 2=m_{1} x m_{2} \bmod 2$

Why is E homomorphic?

$c_{1}=m_{1}+2 r_{1}+q_{1} p, \ldots, c_{t}=m_{t}+2 r_{t}+q_{t} p$
\square Let f be a multivariate poly with integer coefficients (sequence of + 's and x 's)
\square Let $c=\operatorname{Eval}_{\mathrm{E}}\left(\mathrm{pk}, \mathrm{f}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)=\mathrm{f}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)$
Suppose this noise is much smaller than p

- $f\left(c_{1}, \ldots, c_{t}\right)=f\left(m_{1}+2 r_{1}, \ldots, m_{t}+2 r_{t}\right)+q p$
- Then $(c \bmod p) \bmod 2=f\left(m_{1}, \ldots, m_{t}\right) \bmod 2$

That's what we want!

Why is E somewhat homomorphic?

\square What if $\left|f\left(m_{1}+2 r_{1}, \ldots, m_{t}+2 r_{t}\right)\right|>p / 2$?

- $c=f\left(c_{1}, \ldots, c_{t}\right)=f\left(m_{1}+2 r_{1}, \ldots, m_{t}+2 r_{t}\right)+q p$
$>$ Nearest p-multiple to c is $q^{\prime} p$ for $q^{\prime} \neq q$
- $(c \bmod p)=f\left(m_{1}+2 r_{1}, \ldots, m_{t}+2 r_{t}\right)+\left(q-q^{\prime}\right) p$
- $(c \bmod p) \bmod 2$

$$
\begin{aligned}
& =f\left(m_{1}, \ldots, m_{t}\right)+\left(q-q^{\prime}\right) \bmod 2 \\
& =? ? ?
\end{aligned}
$$

\square We say E can handle f if:

- $\left|f\left(x_{1}, \ldots, x_{t}\right)\right|<p / 4$
- whenever all $\left|x_{i}\right|<B$, where B is a bound on the noise of a fresh ciphertext output by $E n C_{E}$

Example of a Function that E Handle

\square Elementary symmetric poly of degree d:

$$
f\left(x_{1}, \ldots, x_{t}\right)=x_{1} \cdot x_{2} \cdot x_{d}+\ldots+x_{t-d+1} \cdot x_{t-d+2} \cdot x_{t}
$$

\square If $\left|x_{i}\right|<B$, then, $\left|f\left(x_{1}, \ldots, x_{t}\right)\right|<t^{d} \cdot B^{d}$
$\square E$ can handle f if:
$t^{d} \cdot B^{d}<p / 4 \rightarrow$ basically if: $d<(\log p) /(\log t B)$
\square Example params: $B \sim 2^{\lambda}, p \sim 2^{\lambda \wedge 2}$

- Eval ${ }_{E}$ can handle an elem symm poly of degree approximately λ.

Step 2: Somewhat Homomorphic \rightarrow FHE

(if somewhat homomorphic scheme has a certain property: bootstrappability)

Back to Alice's Jewelry Store

\square Suppose Alice's boxes are defective.

- After the worker works on the jewel for 1 minute, the gloves stiffen!
\square Some complicated pieces take 10 minutes to make.
- Can Alice still use her boxes?
\square Hint: you can put one box inside another.

Back to Alice's Jewelry Store

- Yes! Alice gives worker more boxes with a copy of her key
\square Worker assembles jewel inside box \#1 for 1 minute.
- Then, worker puts box \#1 inside box \#2!
- With box \#2's gloves, worker opens box \#1 with key, takes jewel out, and continues assembling till box \#2's gloves stiffen.
- And so on...

Back to Alice's Cown-1 gloveboxes to get my workers to assemble arbitrarily complicated pieces, if there is enough time (before the gloves stiffen) to unlock a box and do a little work on the piece!

\square Yes! Alice gives worker a boxes with a copy of her key

- Worker assembles jewel inside box \#1 for 1
- Then, worker puts box \#1 inside box \#2!
- With box \#2's gloves, worker opens box \#1 with key, takes jewel out, and continues assembling till box \#2's gloves stiffen.

Back to Alice's Jewelry Store

\square Yes! Alice gives worker a boxes with a copy of her key

- Worker assembles jewel inside box \#1 for 1
- Then, worker puts box \#1 inside box \#2!
- With box \#2's gloves, worker opens box \#1 with key, takes jewel out, and continues assembling till box \#2's gloves stiffen.

Back to Alice's Jewelry Store

\square Yes! Alice gives worker a boxes with a copy of her key

- Worker assembles jewel inside box \#1 for 1
- Then, worker puts box \#1 inside box \#2!
- With box \#2's gloves, worker opens box \#1 with key, takes jewel out, and continues assembling till box \#2's gloves stiffen.

How is it Analogous?

\square Alice's jewelry store: Worker can assemble any piece if gloves can "handle" unlocking a box (plus a bit) before they stiffen
\square Encryption:

- If E can handle Dec_{E} (plus a bit), then we can use E to construct a FHE scheme EFHE

Warm-up: Applying Eval to Dec $_{E}$

Blue means box \#2.
 It also means encrypted under key PK_{2}.

Red means box \#1. It also means encrypted under key PK_{1}.

Warm-up: Applying Eval to $\operatorname{Dec}_{\mathrm{E}}$

\square Suppose $c=\operatorname{Enc}(p k, m)$
$\square \operatorname{Dec}_{E}\left(\mathrm{sk}_{1}{ }^{(1)}, \ldots, \mathrm{sk}_{1}{ }^{(\mathrm{t})}, \mathrm{c}_{1}{ }^{(1)}, \ldots, \mathrm{C}_{1}{ }^{(\mathrm{u})}\right)=\mathrm{m}$, where I have split sk and c into bits
\square Let $\mathrm{sk}_{1}{ }^{(1)}$ and $\mathrm{c}_{1}{ }^{(1)}$, be ciphertexts that encrypt $\mathrm{sk}_{1}{ }^{(1)}$ and $\mathrm{c}_{1}{ }^{(1)}$, and so on, under pk_{2}.
\square Then,
$\operatorname{Eval}\left(\mathrm{pk}_{2}, \operatorname{Dec}_{E}, \mathrm{sk}_{1}{ }^{(1)}, \ldots, \mathrm{sk}_{1}{ }^{(t)}, \mathrm{c}_{1}{ }^{(1)}, \ldots, \mathrm{c}_{1}{ }^{(1)}\right)=m$
i.e., a ciphertext that encrypts m under pk_{2}.

Applying Eval to $\left(\operatorname{Dec}_{E}\right.$ then Add $\left._{E}\right)$

Blue means box \#2.
It also means encrypted under key PK_{2}.

Applying Eval to ($\mathrm{Dec}_{\mathrm{E}}$ then Mult ${ }_{\mathrm{E}}$)

Blue means box \#2.
It also means encrypted under key PK_{2}.

If E can evaluate $\left(\operatorname{Dec}_{E}\right.$ then Add $\left._{E}\right)$ and (Dec_{E} then Mult ${ }_{E}$), then we call E "bootstrappable" (a selfreferential property).

And now the recursion...

And so on...

Arbitrary Functions

\square Suppose E is bootstrappable - i.e., it can handle Dec_{E} augmented by Add $_{E}$ and Mult ${ }_{E}$ efficiently.
\square Then, there is a scheme E_{d} that evaluates arbitrary functions with d "levels".
\square Ciphertexts: Same size in E_{d} as in E.

- Public key:
- Consists of ($\mathrm{d}+1$) E pub keys: $\mathrm{pk}_{0}, \ldots, \mathrm{pk}_{\mathrm{d}}$
- and encrypted secret keys: $\left\{\mathrm{Enc}^{\left.\left(p k_{i,}, \mathrm{sk}_{(i-1)}\right)\right\}}\right.$
- Size: linear in d. Constant in d, if you assume encryption is "circular secure."
> The question of circular security is like whether it is "safe" to put a key for box i inside box i.

Step 2b: Bootstrappable Yet?
 Is our Somewhat Homomorphic Scheme Already Bootstrappable?

Can Eval E handle Dec_{E} ?

\square The boolean function $\operatorname{Dec}_{\mathrm{E}}(\mathrm{p}, \mathrm{c})$ sets:

$$
m=\operatorname{LSB}(c) \text { XOR } \operatorname{LSB}([c / p])
$$

\square Can E handle (i.e., Evaluate) Dec_{E} followed by Add $_{E}$ or Mult ${ }_{E}$?

- If so, then E is bootstrappable, and we can use E to construct an FHE scheme $\mathrm{E}^{\text {FHE }}$.
\square Most complicated part:

$$
f\left(c, p^{-1}\right)=\operatorname{LSB}\left(\left[c \times p^{-1}\right]\right)
$$

- The numbers c and p^{-1} are in binary rep.

Multiplying Numbers $\quad f\left(c, p^{-1}\right)=\operatorname{LsB}([\mathrm{Cxp-1}])$

\square Let's multiply a and b, rep'd in binary:

$$
\left(a_{t}, \ldots, a_{0}\right) \times\left(b_{t}, \ldots, b_{0}\right)
$$

\square It involves adding the $t+1$ numbers:
$\left.\begin{array}{ccccccc} & & a_{0} b_{t} & a_{0} b_{t-1} & \ldots & a_{0} b_{1} & a_{0} b_{0} \\ & a_{1} b_{t} & a_{1} b_{t-1} & a_{1} b_{t-2} & \ldots & a_{1} b_{1} & 0 \\ a_{t} b_{t} & \cdots & a_{t} b_{1} & a_{t} b_{0} & 0 & \ldots & 0\end{array}\right]$

Adding Two Numbers $\mathrm{f}\left(\mathrm{c}, \mathrm{p}^{-1}\right)=\operatorname{LsB}([\mathrm{Cxp-1}])$

$\begin{array}{rlll}\text { Carries: } & \begin{array}{lll}x_{1} y_{1}+x_{1} x_{0} y_{0}+ & x_{0} y_{0} & \\ & y_{1} x_{0} y_{0} & \\ x_{2} & x_{1} & x_{0} \\ & y_{2} & y_{1}\end{array} & y_{0} \\ \text { Sum: } & x_{2}+y_{2}+x_{1} y_{1}+ & x_{1}+y_{1}+x_{0} y_{0} & x_{0}+y_{0} \\ x_{1} x_{0} y_{0}+y_{1} x_{0} y_{0} & & \end{array}$
\square Adding two t-bit numbers:

- Bit of the sum = up to t-degree poly of input bits

Adding Many Numbers $\left.{ }_{f\left(c, p^{-1}\right)}\right)=\operatorname{LsB}\left(\left[\mathrm{Cxp} \mathrm{p}^{-1}\right]\right)$

- 3-for-2 trick:
- 3 numbers $\rightarrow 2$ numbers with same sum
- Output bits are up to degree-2 in input bits

	x_{2}	x_{1}	x_{0}
	y_{2}	y_{1}	y_{0}
	z_{2}	z_{1}	z_{0}
	$x_{2}+y_{2}+z_{2}$	$x_{1}+y_{1}+z_{1}$	$x_{0}+y_{0}+z_{0}$
$x_{2} y_{2}+x_{2} z_{2}$	$x_{1} y_{1}+x_{1} z_{1}$	$x_{0} y_{0}+x_{0} z_{0}$	
$+y_{2} z_{2}$	$+y_{1} z_{1}$	$+y_{0} z_{0}$	

- t numbers $\rightarrow 2$ numbers with same sum
- Output bits are degree $2^{\log _{3 / 2} t}=t^{\log _{3 / 2} 2}=t^{1.71}$

Back to Multiplying $f(c, p-1)$ Multiplying two t-bit numbers:

- Add t t-bit numbers of degree 2
- 3-for-2 trick \rightarrow two t-bit numbers, deg. $2 t^{1.71}$.
- Adding final two numbers \rightarrow deg. $t\left(2 t^{1.71}\right)=2 t^{2.71}$.
\square Consider $\mathrm{f}\left(\mathrm{c}, \mathrm{p}^{-1}\right)=\operatorname{LSB}\left(\left[\mathrm{c} \times \mathrm{p}^{-1}\right]\right)$
- p^{-1} must have $\log c>\log p$ bits of precision to ensure the rounding is correct
- So, f has degree at least $2(\log p)^{2.71}$.
\square Can our scheme E handle a polynomial f of such high degree?
- Unfortunately, no.

$$
f\left(c, p^{-1}\right)=\operatorname{LSB}\left(\left[c \times p^{-1}\right]\right)
$$

Why Isn't E Bootstrappable?

\square Recall: E can handle f if:

- $\left|f\left(x_{1}, \ldots, x_{t}\right)\right|<p / 4$
- whenever all $\left|x_{i}\right|<B$, where B is a bound on the noise of a fresh ciphertext output by $\mathrm{Enc}_{\mathrm{E}}$
\square If f has degree $>\log p$, then $\left|f\left(x_{1}, \ldots, x_{t}\right)\right|$ could definitely be bigger than p
- E is (apparently) not bootstrappable...

Step 3 (Final Step): Modify our

 Somewhat Homomorphic Scheme to Make it Bootstrappable
The Goal

\square Modify $\mathrm{E} \rightarrow$ get E^{*} that is bootstrappable.
\square Properties of E^{*}

- E* can handle any function that E can
- $\operatorname{Dec}_{E^{*}}$ is a lower-degree poly than Dec_{E}, so that E^{*} can handle it

How do we "simplify" decryption?

- Crazy idea: Put hint about sk in E* public key! Hint lets anyone post-process the ciphertext, leaving less work for $\operatorname{Dec}_{E_{*}}$ to do.
\square This idea is used in server-aided cryptography.

How do we "simplify" decryption?

Hint in pub key lets anyone post-process the ciphertext, leaving less work for $\operatorname{Dec}_{\mathrm{E} *}$ to do.

How do we "simplify" decryption?

How do we "simplify" decryption?

E^{*} is semantically secure if E is, if $h(s k, r)$ is computationally indistinguishable from $h\left(0, r^{\prime}\right)$ given sk, but not sk*.

Concretely, what is hint about p ?

\square E*'s pub key includes real numbers

- $r_{1}, r_{2}, \ldots, r_{n} \in[0,2]$
- \exists sparse set S for which $\Sigma_{i \in S} r_{i}=1 / p$
\square Security: Sparse Subset Sum Prob (SSSP)
- Given integers x_{1}, \ldots, x_{n} with a subset S with $\Sigma_{i \in S} X_{i}=0$, output S.
> Studied w.r.t. server-aided cryptosystems
> Potentially hard when $\mathrm{n}>\log \max \left\{\left|\mathrm{x}_{\mathrm{i}}\right|\right\}$.
- Then, there are exponentially many subsets T (not necessarily sparse) such that $\Sigma_{i \in S} x_{i}=0$
> Params: $n \sim \lambda^{5}$ and $|S| \sim \lambda$.
- Reduction:
$>$ If SSSP is hard, our hint is indist. from $h(0, r)$

How E* works...

$\square E D C_{E *}$, Eval $_{E^{*}}$ output $\psi_{i}=c \times r_{i} \bmod 2, i=1, \ldots, n$ - Together with c itself

- The ψ_{i} have about $\log n$ bits of precision
\square New secret key is bit-vector s_{1}, \ldots, s_{n}
- $\mathrm{s}_{\mathrm{i}}=1$ if $\mathrm{i} \in \mathrm{S}, \mathrm{s}_{\mathrm{i}}=0$ otherwise
$\square \operatorname{Dec}_{\mathrm{E}^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{i} \mathrm{~s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$
$\square E^{*}$ can handle any function E can:
- $c / p=c \Sigma_{i} s_{i} r_{i}=\Sigma_{i} s_{i} \psi_{i}, \bmod 2$, up to precision
- Precision errors do not changing the rounding
$>$ Precision errors from ψ_{i} imprecision $<1 / 8$
$>c / p$ is with $1 / 4$ of an integer

A Different Way to Add Numbers

$\square \operatorname{Dec}_{\mathrm{E}^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \times \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

A Different Way to Add Numbers

$\square \operatorname{Dec}_{\mathrm{E}^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \times \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$a_{1,0}$	$a_{1,-1}$	\ldots	$a_{1,-\log n}$
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{2,-\log n}$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{3,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	\ldots
$a_{n, 0}$	$a_{n,-1}$	\ldots	$a_{n,-\log n}$

A Different Way to Add Numbers

$\square \operatorname{Dec}_{E^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \times \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$
Let b_{0} be
the binary
rep of
Hamming
weight

$a_{1,0}$	$a_{1,-1}$	\ldots	$a_{1,-\log n}$
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{2,-\log n}$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{3,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	\ldots
$a_{n, 0}$	$a_{n,-1}$	\ldots	$a_{n,-\log n}$

$b_{0, \log n}$

$$
b_{0,1} \quad b_{0,0}
$$

A Different Way to Add Numbers

$\square \operatorname{Dec}_{E^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$a_{1,0}$	$a_{1,-1}$	\ldots	$a_{1,-\log n}$
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{2,-\log n}$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{3,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	$a_{n,-\log n}$
$a_{n, 0}$	$a_{n,-1}$	\ldots	

$b_{0, \log n}$

$$
b_{-1, \log n}
$$

$b_{0,1}$
$b_{0,0}$
$b_{-1,1}$
$b_{-1,0}$

A Different Way to Add Numbers

$\square \operatorname{Dec}_{E^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$a_{1,0}$	$a_{1,-1}$
$a_{2,0}$	$a_{2,-1}$
$a_{3,0}$	$a_{3,-1}$
$a_{4,0}$	$a_{4,-1}$
$a_{5,0}$	$a_{5,-1}$
\ldots	\ldots
$a_{n, 0}$	$a_{n,-1}$

$a_{1,-\log n}$
$a_{2,-\log n}$
$a_{3,-\log n}$
$a_{4,-\log n}$
$a_{5,-\log n}$
\cdots
$a_{n,-\log n}$

$b_{0, \log n}$	\ldots	$b_{0,1}$	$b_{0,0}$			
	$b_{-1, \log n}$	\ldots	$b_{-1,1}$	$b_{-1,0}$		
		\ldots	\ldots	\ldots	\ldots	
		$b_{-\log n, \log n}$	\cdots	$b_{-\log n, 1}$	$b_{-\log n, 0}$	

A Different Way to Add Numbers

$\square \operatorname{Dec}_{E^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{i} \mathrm{~s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$a_{1,0}$	$a_{1,-1}$	\ldots	$a_{1,-\log n}$
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{2,-l} n$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{3,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	\ldots
$a_{n, 0}$	$a_{n,-1}$	\ldots	$a_{n,-\log n}$

| $b_{0, \log n}$ | \ldots | $b_{0,1}$ | $b_{0,0}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $b_{-1, \log n}$ | \ldots | $b_{-1,1}$ | $b_{-1,0}$ | | |
| | | \ldots | \cdots | \cdots | \cdots | |
| | | | $b_{-\log n, \log n}$ | \cdots | $b_{-\log n, 1}$ | $b_{-\log n, 0}$ |

Computing Sparse Hamming Wgt.

$\square \operatorname{Dec}_{\mathrm{E}^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \times \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{i} \mathrm{~s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$a_{1,0}$	$a_{1,-1}$	\ldots	$a_{1,-\log n}$
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{2,-\log n}$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{3,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	\ldots
$a_{n, 0}$	$a_{n,-1}$	\ldots	$a_{n,-\log n}$

Computing Sparse Hamming Wgt.

$\square \operatorname{Dec}_{\mathrm{E}^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \times \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \mathrm{s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$

$\left(\begin{array}{llll}a_{1,0} & a_{1,-1} & \ldots & a_{1,-\log n} \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ a_{4,0} & a_{4,-1} & \ldots & a_{4,-\log n} \\ 0 & 0 & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ a_{n, 0} & a_{n,-1} & \ldots & a_{n,-\log n}\end{array}\right.$

Computing Sparse Hamming Wgt.

$\square \operatorname{Dec}_{E^{*}}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{i} \mathrm{~s}_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right) \bmod 2$
\square Binary rep of Hamming wgt of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in $\{0,1\}^{n}$ given by: 0
$e_{2 \wedge[\log n]}(\mathbf{x}) \bmod 2, \ldots, e_{2}(\mathbf{x}) \bmod 2, e_{1}(\mathbf{x}) \bmod 2$ where e_{k} is the elem symm poly of deg k
\square Since we know a priori that Hamming wgt is $|S|$, we only need $e_{2 \wedge[\log |S|]}(\mathbf{x}) \bmod 2, \ldots, e_{2}(\mathbf{x}) \bmod 2, e_{1}(\mathbf{x}) \bmod 2$ up to deg < \mid S \mid
\square Set $|S|<\lambda$, then E^{*} is bootstrappable.

Yay! We have a FHE scheme!

Performance

Well, a little slow...

- In E, a ciphertext is c_{i} is about λ^{5} bits.
- $\operatorname{Dec}_{\mathrm{E} *}$ works in time quasi-linear in λ^{5}.
- Applying Eval ${ }_{E^{*}}$ to Dec $_{E^{*}}$ takes quasi- λ^{10}.
$>$ To bootstrap E* to E*FHE, and to compute $\mathrm{Eval}_{\mathrm{E}^{* F H E}}\left(\mathrm{pk}, \mathrm{f}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right.$), we apply Eval $\mathrm{E}_{\mathrm{E} *}$ to $\mathrm{Dec}_{\mathrm{E} *}$ once for each Add and Mult gate of f.
$>$ Total time: quasi- $\lambda^{10} \cdot S_{f}$, where S_{f} is the circuit complexity of f.

Performance

- STOC09 lattice-based scheme performs better:
- Applying Eval to Dec takes $\tilde{O}\left(\lambda^{6}\right)$ computation if you want 2^{λ} security against known attacks.
- Comparison: RSA also takes Õ(λ^{6}); also, in ElGamal (using finite fields).
- More optimizations on the way!

Thank You! Questions?

Hardness of Approximate-GCD

\square Several lattice-based approaches for solving approximate-GCD

- Related to Simultaneous Diophantine Approximation (SDA)
- Studied in [Hawgrave-Graham01]
$>$ We considered some extensions of his attacks
\square All run out of steam when $\left|q_{i}\right|>|p|^{2}$
- In our case $|p| \sim n^{2},\left|q_{i}\right| \sim n^{5} \gg|p|^{2}$

Relation to SDA

$\square x_{i}=q_{i} p+r_{i}\left(r_{i}<p<q_{i}\right), i=0,1,2, \ldots$

- $y_{i}=x_{i} / x_{0}=\left(q_{i}+s_{i}\right) / q_{0}, s_{i} \sim r_{i} / p<1$
- y_{1}, y_{2}, \ldots is an instance of SDA
$>\mathrm{q}_{0}$ is a denominator that approximates all y_{i}^{\prime} 's
\square Use Lagarias's algorithm:
- Consider the rows of this matrix:
- Find a short vector in the lattice that they span
- $<q_{0}, q_{1}, \ldots, q_{t}>\cdot L$ is short
- Hopefully we will find it

$$
L=\left(\begin{array}{cccc}
R & x_{1} & x_{2} & \ldots \\
-x_{t} & \\
-x_{0} & & \\
& -x_{0} & \\
& & \ldots & \\
& & & -x_{0}
\end{array}\right)
$$

Relation to SDA (cont.)

\square When will Lagarias' algorithm succeed?

- $<\mathrm{q}_{0}, \mathrm{q}_{1}, \ldots, \mathrm{q}_{t}>\cdot \mathrm{L}$ should be shortest in lattice
$>$ In particular shorter than $\sim \operatorname{det}(\mathrm{L})^{1 / t+1}$
- This only holds for $t>\log Q / \log P \quad$ Minkowski
- The dimension of the lattice is $t+1$
- Quality of lattice-reduction deteriorates exponentially with t
- When $\log Q>(\log P)^{2}($ so $t>\log P)$, LLL-type reduction isn't good enough anymore

Relation to SDA (cont.)

\square When will Lagarias' algorithm succeed?

- $<q_{0}, q_{1}, \ldots, q_{t}>\cdot L$ should be shortest in lattice
$>$ In particular shorter than $\sim \operatorname{det}(\mathrm{L})^{1 / t+1}$
- This only holds for $t>\log Q / \log P \quad$ Minkowski
- The dimension of the lattice is $t+1$
- Rule of thumb: takes $2^{t / k}$ time to get 2^{k} approximation of SVP/CVP in lattice of dim t.
$>2^{(\log \mathrm{Q}) /(\log \mathrm{P})^{\wedge 2}}=2^{\lambda}$ time to get $2^{(\log \mathrm{P})}=\mathrm{P}$ approx.

