
Fully Homomorphic Encryption over

the Integers

Marten van Dijk1, Craig Gentry2, Shai Halevi2, and Vinod Vaikuntanathan2

1 MIT CSAIL
2 IBM Research

Abstract. We construct a simple fully homomorphic encryption scheme,
using only elementary modular arithmetic. We use Gentry’s technique to
construct a fully homomorphic scheme from a “bootstrappable” some-
what homomorphic scheme. However, instead of using ideal lattices over a
polynomial ring, our bootstrappable encryption scheme merely uses addi-
tion and multiplication over the integers. The main appeal of our scheme
is the conceptual simplicity.

We reduce the security of our scheme to finding an approximate inte-
ger gcd – i.e., given a list of integers that are near-multiples of a hidden
integer, output that hidden integer. We investigate the hardness of this
task, building on earlier work of Howgrave-Graham.

1 Introduction

What is the simplest encryption scheme for which one can hope to achieve secu-
rity? The Caesar cipher is simple, but not secure. We believe that conventional
public-key encryption schemes with modular exponentiations are secure, but
modular exponentiation is not a very simple operation. If we were to forget our
current schemes and start from scratch, perhaps something like the following
scheme would be a good candidate for a simple symmetric encryption scheme:

KeyGen: The key is an odd integer, chosen from some interval p ∈ [2η−1, 2η).
Encrypt(p, m): To encrypt a bit m ∈ {0, 1}, set the ciphertext as an integer

whose residue mod p has the same parity as the plaintext. Namely, set c =
pq + 2r + m, where the integers q, r are chosen at random in some other
prescribed intervals, such that 2r is smaller than p/2 in absolute value.

Decrypt(p, c): Output (c mod p) mod 2.

It is easy to see that when the noise r is sufficiently smaller than the secret
key p, this simple scheme is both additively and multiplicatively homomorphic
for shallow arithmetic circuits. Moreover, one can use Gentry’s techniques [6]
(i.e., “bootstrapping” and “squashing the decryption circuit”) to morph this
scheme into a fully homomorphic encryption scheme [20]. Amazingly, it seems
that with judicious choice of parameters (say r ≈ 2

√
η and q ≈ 2η3

), this simple
scheme may even be secure!!

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 24–43, 2010.
c© International Association for Cryptologic Research 2010

Fully Homomorphic Encryption over the Integers 25

So far we only described a symmetric scheme, but turning it into a public key
scheme is easy: The public key consists of many “encryptions of zero”, namely
integers xi = qi ·p+2ri where qi, ri are chosen from the same prescribed intervals
as above. Then to encrypt a bit m, the ciphertext is essentially set as m plus a
subset sum of the xi’s.

We reduce the security of this scheme to approximate integer gcd – roughly,
that it is hard to recover p from the xi’s. This problem, for the case of two xi’s,
was analyzed by Howgrave-Graham [9]. Our parameters – in particular, the large
size of the qi’s – are designed to avoid a generalized version of his attack (as well
as other attack avenues, such as solving the associated simultaneous Diophantine
approximation problem).

We comment that our scheme is similar to Regev’s first encryption scheme
[19]. In fact, a slight variation of Regev’s scheme can be described by exactly
the same formula as ours, Enc(m, p) = qp+2r+m. The main difference between
the schemes is that in order to get the homomorphic properties, our choice of
parameters is much more aggressive than his. Another difference is that the
secret key p in our scheme is an integer, whereas in Regev’s scheme the secret
key is chosen as an integral fraction of the domain size (i.e., p = N/h for some
integer h). Unfortunately, Regev’s worst-to-average-case security reductions from
[19] do not seem to apply to our scheme.

2 Preliminaries

Below we usually denote parameters by Greek letters (e.g., η, γ, τ , etc.), with λ
always denoting the security parameter. Real numbers and integers are denoted
by lowercase English letters (p, q, x, y, etc.). All logarithms in the text are base-2
unless stated otherwise.

For a real number z, we denote by �z�, �z�, �z� the rounding of a up, down,
or to the nearest integer. Namely, these are the unique integers in the half open
intervals [z, z + 1), (z − 1, z], and (z − 1

2 , z + 1
2], respectively.

For a real number z and an integer p, we use qp(z) and rp(z) to denote

the quotient and remainder of z with respect to p, namely qp(z) def= �z/p� and

rp(z) def= z − qp(z) · p. (Note that rp(z) ∈ (−p/2, p/2].) We also denote the
remainder by [z]p or (z mod p), we use these three notations interchangeably
throughout the paper.

A family H of hash functions from X to Y , both finite sets, is said to be
2-universal if for all distinct x, x′ ∈ X , Pr

h
R←H[h(x) = h(x′)] = 1/|Y |. A distri-

bution D is ε-uniform if its statistical distance from the uniform distribution is
at most ε, where the statistical difference between two distributions D1, D2 over
a finite domain X is 1

2

∑
x∈X |D1(x)−D2(x)|.

Lemma 1 (Simplified Leftover Hash Lemma [8]). Let H be a family of
2-universal hash functions from X to Y . Suppose that h

R← H and x
R← X are

chosen uniformly and independently. Then, (h, h(x)) is 1
2

√|Y |/|X |-uniform over
H× Y .

26 M. van Dijk et al.

2.1 Homomorphic Encryption

Our definitions are adapted from Gentry [6]. Below we only consider encryption
schemes that are homomorphic with respect to boolean circuits consisting of gates
for addition and multiplication mod 2. (Considering only bit operations alsomeans
that the plaintext space of the encryption schemes that we consider is limited to
{0, 1}.) See the works of Ishai and Paskin [10] for a more general definitional treat-
ment of homomorphic encryption with respect to other forms of “programs.”

A homomorphic public key encryption scheme E has four algorithms: the usual
KeyGen, Encrypt, and Decrypt, and an additional algorithm Evaluate. The algo-
rithm Evaluate takes as input a public key pk, a circuit C, a tuple of ciphertexts
c = 〈c1, . . . , ct〉 (one for every input bit of C), and outputs another ciphertext c.

Definition 1 (Correct Homomorphic Decryption). The scheme E =
(KeyGen, Encrypt, Decrypt, Evaluate) is correct for a given t-input circuit C if, for
any key-pair (sk, pk) output by KeyGen(λ), any t plaintext bits m1, . . . , mt, and any
ciphertexts c = 〈c1, . . . , ct〉 with ci ← EncryptE(pk, mi), it is the case that:

Decrypt (sk, Evaluate(pk, C, c)) = C(m1, . . . , mt)

Definition 2 (Homomorphic Encryption). The schemeE=(KeyGen, Encrypt,
Decrypt, Evaluate) is homomorphic for a class C of circuits1 if it is correct for all
circuits C ∈ C. E is fully homomorphic if it is correct for all boolean circuits.

The semantic security of a homomorphic encryption scheme is defined in the
usual way [7], without reference to the Evaluate algorithm. (Indeed Evaluate is a
public algorithm with no secrets.)

It is clear that as defined above, fully homomorphic encryption can be trivially
realized from any secure encryption scheme, by an algorithm Evaluate that simply
attaches a description of the circuit C to the ciphertext tuple, and a Decrypt
procedure that first decrypts all the ciphertexts and then evaluates C on the
corresponding plaintext bits. Two properties of homomorphic encryption that
rule out this trivial solution are circuit-privacy and compactness.

Circuit privacy roughly means that the ciphertext generated by Evaluate does
not reveal anything about the circuit that it evaluates beyond the output value
of that circuit, even for someone who knows the secret key. We discuss circuit pri-
vacy in the full version [21]. It is folklore that circuit-private fully-homomorphic
encryption can be realized using Yao’s “garbled circuits” [22,15] and a two-flow
oblivious transfer protocol. (This construction is similar to the trivial solution
from above, essentially it replaces the plaintext circuit with a garbled circuit.)
Hence the “real challenge” in constructing fully homomorphic encryption comes
from the compactness property, which essentially means that the size of the
ciphertext that Evaluate generates does not depend on the size of the circuit C.

Definition 3 (Compact Homomorphic Encryption). The scheme E =
(KeyGen, Encrypt, Decrypt, Evaluate) is compact if there exists a fixed polynomial
1 Formally, C is an ensemble, parametrized by the security parameter.

Fully Homomorphic Encryption over the Integers 27

bound b(λ) so that for any key-pair (sk, pk) output by KeyGen(λ), any circuit C
and any sequence of ciphertext c = 〈c1, . . . , ct〉 that was generated with respect
to pk, the size of the ciphertext Evaluate(pk, C, c) is not more than b(λ) bits
(independently of the size of C).

2.2 Bootstrappable Encryption

Following Gentry [6], we construct homomorphic encryption for circuits of any
depth from one that is capable of evaluating just a little more than its own
decryption circuit.

Definition 4 (Augmented Decryption Circuits). Let E=(KeyGen, Encrypt,
Decrypt, Evaluate) be an encryption scheme, where decryption is implemented by a
circuit that depends only on the security parameter.2

For a given value of the security parameter λ, the set of augmented decryption
circuits consists of two circuits, both take as input a secret key and two cipher-
texts: One circuit decrypts both ciphertexts and adds the resulting plaintext bits
mod 2, the other decrypts both ciphertexts and multiplies the resulting plaintext
bits mod 2. We denote this set by DE(λ).

Definition 5 (Bootstrappable Encryption). Let E = (KeyGen, Encrypt,
Decrypt, Evaluate) be a homomorphic encryption scheme, and for every value
of the security parameter λ let CE(λ) be a set of circuits with respect to which E
is correct. We say that E is bootstrappable if DE(λ) ⊆ CE(λ) holds for every λ.

Theorem 1 ([6]). There is an (efficient, explicit) transformation that given a
description of a bootstrappable scheme E and a parameter d = d(λ), outputs a
description of another encryption scheme E(d) such that:

1. E(d) is compact (in particular the Decrypt circuit in E(d) is identical to that
in E), and

2. E(d) is homomorphic for all circuits of depth up to d.

Moreover, E(d) is semantically secure if E is: Any attack with advantage ε against
E(d) can be converted into an attack with similar complexity against E with ad-
vantage at least ε/�d , where � is the length of the secret key in E.
We also note that if the bootstrappable scheme E is “circular secure” then it
can be converted into a single compact fully-homomorphic encryption scheme
E ′. See [6] for details.

3 A Somewhat Homomorphic Encryption Scheme

Parameters. The construction below has many parameters, controlling the num-
ber of integers in the public key and the bit-length of the various integers.

2 This in particular means that for a fixed value of the security parameter, the size
of the secret key is always the same, and similarly all the ciphertexts that can be
decrypted have the same size.

28 M. van Dijk et al.

Specifically, we use the following four parameters (all polynomial in the security
parameter λ):

γ is the bit-length of the integers in the public key,
η is the bit-length of the secret key (which is the hidden approximate-gcd of

all the public-key integers),
ρ is the bit-length of the noise (i.e., the distance between the public key ele-

ments and the nearest multiples of the secret key), and
τ is the number of integers in the public key.

These parameters must be set under the following constraints:

– ρ = ω(log λ), to protect against brute-force attacks on the noise;
– η ≥ ρ ·Θ(λ log2 λ), in order to support homomorphism for deep enough cir-

cuits to evaluate the “squashed decryption circuit” (cf. Sections 3.2 and 6.2);
– γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying

approximate-gcd problem (cf. Section 5);
– τ ≥ γ + ω(log λ), in order to use the leftover hash lemma in the reduction

to approximate gcd.

We also use a secondary noise parameter ρ′ = ρ+ω(log λ). A convenient param-
eter set to keep in mind is ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ.
(This setting results in a scheme with complexity Õ(λ10).)

For a specific (η-bit) odd positive integer p, we use the following distribution
over γ-bit integers:

Dγ,ρ(p) =
{
choose q

$← Z ∩ [0, 2γ/p), r
$← Z ∩ (−2ρ, 2ρ) : output x = pq + r

}

This distribution is clearly efficiently sampleable.

3.1 The Construction

KeyGen(λ). The secret key is an odd η-bit integer: p
$← (2Z + 1) ∩ [2η−1, 2η).

For the public key, sample xi
$← Dγ,ρ(p) for i = 0, . . . , τ . Relabel so that x0

is the largest. Restart unless x0 is odd and rp(x0) is even. The public key is
pk = 〈x0, x1, . . . , xτ 〉.

Encrypt(pk, m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a ran-
dom integer r in (−2ρ′

, 2ρ′
), and output c← [

m + 2r + 2
∑

i∈S xi

]
x0

.
Evaluate(pk, C, c1, . . . , ct). Given the (binary) circuit CE with t inputs, and t

ciphertexts ci, apply the (integer) addition and multiplication gates of CE to
the ciphertexts, performing all the operations over the integers, and return
the resulting integer.

Decrypt(sk, c). Output m′ ← (c mod p) mod 2.

Remark 1. Recall that (c mod p) = c− p · �c/p�, and as p is odd we can instead
decrypt using the formula m′ ← [c− �c/p�]2 = (c mod 2)⊕ (�c/p� mod 2).

Remark 2. Originally, we described encryption as adding m to a random subset
sum of “encryptions of zero”. Indeed, the scheme can viewed this way. Let wi =
[2xi]x0 for i = 1, . . . , τ . Each wi, and also x0, is essentially an encryption of zero;
its noise is even. Moreover, c = m + 2r +

∑
i∈S wi − k · x0 for some integer k.

Fully Homomorphic Encryption over the Integers 29

3.2 Correctness

Permitted Circuits and Polynomials. For a mod-2 arithmetic circuit (composed
of mod-2 Add and Mult gates), we consider its generalization to the integers, i.e.,
the same circuits with the Add and Mult gates applied to integers rather than
to bits. Similar to Gentry [6], we define a permitted circuit as one where for any
α ≥ 1 and any set of integer inputs all less than 2α(ρ′+2) in absolute value, it
holds that the generalized circuit’s output has absolute value at most 2α(η−4).
Let CE denote the set of permitted circuits. Clearly, we have:

Lemma 2. The scheme from above is correct for CE . ��

Remark 3. Since “fresh” ciphertexts output by Encrypt have noise at most 2ρ′+2,
the ciphertext output by Evaluate applied to a permitted circuit has noise at most
2η−4 < p/8. The bound 2η−2 < p/2 would suffice for correct decryption. But we
will later use the fact that the noise remains below p/8 in Section 6 to perform
the decryption operation using a very shallow arithmetic circuit.

The definition of the set CE from above is rather indirect. In particular this
definition does not give a good picture of what CE “looks like”. By the triangle
inequality, a k-fan-in Add gate clearly increases the magnitude of the integers by
at most a factor of k. However, a 2-fan-in Mult gate may square the magnitude of
the integers – i.e., double their bit-lengths. So, clearly, the main bottleneck is the
multiplicative depth of the circuit, or the degree of the multivariate polynomial
computed by the circuit. We have the following lemma.

Lemma 3. Let C be a boolean circuit with t inputs, and let C† be the associated
integer circuit (where boolean gates are replaced with integer operations). Let
f(x1, . . . , xt) be the multivariate polynomial computed by C†; let d be its degree.
If |f | · (2ρ′+2)d ≤ 2η−4 (where |f | is the l1 norm of the coefficient vector of f)
then C ∈ CE . ��

In particular, E can handle f as long as

d ≤ η − 4− log |f |
ρ′ + 2

(1)

Below we refer to polynomials that satisfy Equation (1) as permitted polynomials
and we denote by PE the set of permitted polynomials and by C(PE) the set of
circuits that compute them. The discussion above implies that C(PE) ⊆ CE .

Remark 4. For our purposes, we consider settings where log |f | is small in rela-
tion to η, ρ′ = ω(log λ) and t, τ ≤ λβ , and we need to support polynomials of
degree up to αλ log2 λ (for some constants α, β). Plugging these expressions in
Equation (1), it is sufficient to set η = ρ′ ·Θ(λ log2 λ).

30 M. van Dijk et al.

3.3 Optimizations

Modular-reduction during Evaluate. Note that while Encrypt reduces the
ciphertext modulo the public key element x0, we cannot do the same in Evaluate.
The reason is that after just one multiplication the ciphertext becomes much
larger than x0, so modular reduction will include a large multiple of x0 hence
introducing intolerable error.

To reduce the ciphertext size during Evaluate, we can add to the public key
more elements of the form x′i = q′ip+2r′i where the r′i’s are chosen as usual from
the interval (−2ρ, 2ρ) but the qi’s are chosen much larger than for the other
public key elements. Specifically, for i = 0, . . . γ, we set:

q′i
$← Z ∩ [2γ+i−1/p, 2γ+i/p), r′i

$← Z ∩ (−2ρ, 2ρ), x′i ← 2(q′i · p + r′i),

thus getting x′i ∈ [2γ+i, 2γ+i+1]. During Evaluate, every time we have a cipher-
text that grows beyond 2γ , we reduce it first modulo x′γ , then modulo x′γ−1,
and so on all the way down to x′0, at which point we again have a ciphertext of
bit-length no more than γ.

Recall that a single operation at most doubles the bit-length of the ciphertext.
Hence after any one operation the ciphertext cannot be larger than 2x′γ , and
therefore the sequence of modular reductions involves only small multiples of the
x′i’s, which means that it only adds a small amount of noise. (We note that in
addition to smaller ciphertexts, this optimization also reduces the public key size
when we use the “decryption squashing” technique as described in Section 6.1.)

It is not clear to what extent adding these larger integers to the public
key influences the security of the scheme. It does change the specifics of the
approximate-GCD assumption that we need to make, but the same decision-to-
search reduction from Section 4 still goes through.3 Also, we note that having
integers with these very large quotients does not seem to help in any of the
attacks on approximate-GCD that we considered.

Remark 5. Note that when using the original scheme without the optimization,
homomorphic evaluation of different circuits that compute the same polynomial
would result in the exact same output ciphertext (i.e., the polynomial applied to
the input ciphertexts over the integers). This is no longer true when using the
size-reduction optimization, because of the additional modular reduction steps.
For example, evaluating the circuit “x1(x2 + x3)” is likely to yield a different
ciphertext than the circuit “x1x2 + x1x3.”

In principle, it is plausible that evaluating one circuit would yield a ciphertext
with small enough noise to be decrypted, while evaluating another circuit for the
same polynomial will produce a ciphertext with too much noise. Adapting the
“bootstrappability analysis” from Section 6.2 to the optimized scheme, one would
have to take into account not only the degree of the polynomial implementing
the decryption process but also the particular circuit that implements this poly-
nomial. It should not be hard to argue that the circuit in Section 6.2 does not
introduce too much noise, but the analysis is quite tedious and is omitted here.
3 Allowing this reduction to go through is the reason that the x′

i’s are set as even
integers.

Fully Homomorphic Encryption over the Integers 31

Ciphertext compression. Even though the optimization from above keeps
evaluated ciphertexts at the same length as original ciphertexts, the size of these
ciphertexts is still very large – θ̃(λ5) bits under our suggested parameters. We
next show how to “compress”, or post-process the ciphertexts, down to (asymp-
totically) the size of an RSA modulus, reducing the communication complexity
of our scheme dramatically.

The price of this optimization, however, is that we cannot evaluate anything
on these compressed ciphertexts. Hence we can only use this compression tech-
nique on the final output ciphertexts, after all applications of the Evaluate al-
gorithm have been completed. (This technique also introduces another hardness
assumption, similar to the φ-hiding assumption of Cachin et al. [3].)

Roughly, we supplement the public key with the description of a group G and
an element g ∈ G whose order is a multiple of the secret key p. Then, given
the ciphertext c from our scheme, the compressed ciphertext is simply c∗ ← gc.
Note that DLg(c∗) = c (mod p), so decrypting is done by first computing
y ← DLg(c∗) mod p, and then m ← y mod 2. Correctness follows immediately
from the correctness of the original scheme.

To implement this idea, we need to choose the secret key p as a smooth number
so that we can compute (DLg(c∗) mod p) on decryption. It seems sufficient to
choose the secret key as a product of random distinct λ2/ log λ small primes (say,
all smaller than λ3). Also, we need to ensure that publishing G, g does not violate
the security of the scheme. This can be accomplished by publishing an RSA
modulus N such that p|φ(N) (and log N sufficiently larger than 4 log p),4 along
with a random element g ∈R Z∗N , relying on a variant of the φ-hiding assumption
[3]. Namely, we assume that given two smooth numbers p1, p2 as above and given
N such that one of the pi’s divides φ(N), it is hard to determine which of the
two pi’s divides φ(N). In the full version we describe this optimization in more
details, and provide a proof of security for it under this φ-hiding variant.

4 Security of the Somewhat Homomorphic Scheme

We reduce the security of the scheme from Section 3 to the hardness of the
approximate-gcd problem. Namely, given a set of integers x0, x1, . . . , xτ , all ran-
domly chosen close to multiples of a large integer p, find this “common near
divisor” p.

On a high level, our reduction resembles classical hard-core-bit proofs in
factoring-based cryptography (e.g., Alexi et al. [1]): Fixing a randomly-chosen
public key, we roughly show that an adversary who can predict the encrypted
bit in a random ciphertext under this public key can be used to find the secret
key (for this fixed public key). As in [1], we describe a random-self-reduction and
accuracy-amplification step that uses the promised adversary to get a reliable
oracle for the least-significant bit, and then a binary-GCD algorithm that uses
that reliable oracle to find p.
4 The condition log N > 4 log p is needed, since otherwise we can use Coppersmith’s

method [4] to break the corresponding φ-hiding assumption.

32 M. van Dijk et al.

The technical details, of course, are very different than in factoring-based
cryptography. Perhaps the main difference is that our random self-reduction
entails a loss in parameters. Specifically, we show that a noticeable advantage
in guessing the encrypted bit in a random “high noise ciphertext” – where the
noise is ρ′ bits – can be converted into the ability to predict reliably the parity
bit of the quotient in an arbitrary “low noise integer” – where the noise is ρ bits.
(Roughly, the reason for this is that we need to add extra noise to “wipe out the
traces” of the non-random noise in the arbitrary input integer.)

The implication is that we can only reduce the security of our cryptosystem
in the “high-noise regime” to the hardness of approximate-gcd in the “low-noise
regime.” Note that the difference between “high noise” and “low noise” is rather
small: only ω(log λ) bits.

4.1 Reduction to Approximate-GCD

The approximate-gcd problem is defined as follows:

Definition 6 (Approximate GCD). The (ρ, η, γ)-approximate-gcd problem
is: given polynomially many samples from Dγ,ρ(p) for a randomly chosen η-bit
odd integer p, output p.

Theorem 2. Fix the parameters (ρ, ρ′, η, γ, τ) as in the Somewhat Homomor-
phic Scheme from Section 3 (all polynomial in the security parameter λ).

Any attack A with advantage ε on the encryption scheme can be converted
into an algorithm B for solving (ρ, η, γ)-approximate-gcd with success probability
at least ε/2. The running time of B is polynomial in the running time of A, and
in λ and 1/ε.

Proof. Recall that we use qp(z) and rp(z) to denote the quotient and remainder
of z with respect to p, hence z = qp(z) · p + rp(z). Let A be an attacker against
the scheme. Namely, A takes as input a public key and a ciphertext (as produced
by KeyGen and Encrypt of our scheme), and outputs the correct plaintext bit with
probability 1

2+ε for somenoticeable ε. (The probability is overKeyGenandEncrypt,
as well as the choice of the plaintext bit and the internal randomness of A.)

We use A to construct a solver B for approximate-gcd with parameters ρ, η, γ.
For a randomly chosen η-bit odd integer p, the solver B has access to as many
samples from Dγ,ρ(p) as it needs, and the goal is to find p.

Step 1: Creating a public key. The solver B begins by constructing a public
key for the scheme. B draws τ + 1 samples x0, . . . , xτ

$← Dγ,ρ(p). It relabels so
that x0 is the largest. It restarts unless x0 is odd. B then outputs a public key
pk = 〈x0, x1, . . . , xτ 〉. Clearly, if rp(x0) happens to be even then the distribution
induced on the public key is identical to that of the scheme.

Step 2: A subroutine for high-accuracy LSB predictor. Next, B produces a se-
quence of integers, and attempts to recover p by utilizing A to learn the least-
significant bit of the quotients of these integers with respect to p. For this, B
uses the following subroutine:

Fully Homomorphic Encryption over the Integers 33

Subroutine Learn-LSB(z, pk):
Input: z ∈ [0, 2γ) with |rp(z)| < 2ρ, a public key pk = 〈x0, x1, . . . , xτ 〉
Output: The least-significant-bit of qp(z)

1. For j = 1 to poly(λ)/ε do: // ε is the overall advantage of A
2. Choose noise rj

$← (−2ρ′
, 2ρ′

), a bit mj
$← {0, 1},

and a random subset Sj ⊆R {1, . . . , τ}
3. Set cj ←

[
z + mj + 2rj + 2

∑
k∈Sj

xk

]

x0

4. Call A to get a prediction aj ← A(pk, cj)
5. Set bj ← aj ⊕ parity(z)⊕mj // bj should be the parity of qp(z)

6. Output the majority vote among the bj’s.

In the full version [21] we show that for all but a negligible fraction of the
public keys generated by the scheme, the “ciphertext” cj in line 3 is distributed
almost identically to a valid encryption of the bit [rp(z)]2 ⊕mj . Note also that
since p is odd, we always have [qp(z)]2 = [rp(z)]2 ⊕ parity(z). It follows that
if A has a noticeable advantage in guessing the encrypted bit under pk then
Learn-LSB(z, pk) will return [qp(z)]2 with overwhelming probability.

Step 3: Binary GCD. Once we turned A into an oracle for the least-significant-
bit of qp(z), recovering p is rather straightforward. Perhaps the simplest way
of doing it is using the binary GCD algorithm [12]: Given any two integers
z1 = qp(z1) · p + rp(z1) and z2 = qp(z2) · p + rp(z2) (with rp(zi)� p), repeatedly
apply the following process to them:

1. If z2 > z1 then swap them, z1 ↔ z2.
2. Use the oracle to learn the parity bit of both qp(z1) and qp(z2), denote

bi = [qp(zi)]2.
3. If both qp(zi) are odd then replace z1 by z1 ← z1 − z2 and set b1 ← 0.
4. For each zi with bi = 0, replace zi by zi ← (zi − parity(zi))/2. (Note that

zi − parity(zi) is even, so the new zi is an integer.)

Observe that when p � rp(zi), subtracting the parity bit does not change the
quotient with respect to p, only the remainder. That is, qp(zi − parity(zi)) =
qp(zi). It follows that when we set z′i ← (zi − parity(zi))/2 in line 4 (where we
know that qp(zi) is even), we get

qp(z′i) = qp(zi)/2 and rp(z′i) =
(
rp(zi)− parity(zi)

)
/2.

We now show that the noise in z1, z2 never grows too large in this process. Clearly,
setting z′i ← (zi − parity(zi))/2 in line 4 we have |rp(z′i)| ≤ (|rp(zi)| + 1)/2 ≤
|rp(zi)|. Moreover, when we replace z1 by z′1 ← z1 − z2 in line 3 and then by
z′′1 ← (z′1 − parity(z′1))/2 in line 4, we have

|rp(z′′1)| =
(|rp(z1)− rp(z2)− parity(z′1)|

)
/2 ≤ max

{|rp(z1)|, |rp(z2)|
}

Hence the rp(zi)’s never grow beyond the largest of the initial two, so we always
have p� rp(zi).

34 M. van Dijk et al.

This implies that the operations above correspond to the usual operations of
the binary GCD algorithm, applied to the qp(zi)’s. Hence after O(γ) iterations
we will finally get two integers z′1, z′2 with z′2 = 0 and qp(z′1) being the odd part
of GCD(qp(z1), qp(z2)) (for the two initial integers).

Step 4: Recovering p. To recover p, the solver B draws a pair of elements z∗1 , z∗2
$←

Dγ,ρ(p) and applies the binary-GCD algorithm to them. With probability at least
π2/6 ≈ 0.6, the odd part of GCD(qp(z∗1), qp(z∗2)) is one, which means that the
procedure will output an element z̃ = 1 · p + r with |r| ≤ 2ρ. (If this does not
happen then B draws two new integers and tries again.)

Lastly B repeats the binary-GCD procedure from above using z1 = z∗1 and
z2 = z̃, and the sequence of parity bits of the qp(z1)’s in all the iterations spell
out the binary representation of qp(z∗1). Now B recovers p = �z∗1/qp(z∗1)�.
Summary. We have shown that B can recover p given access to a reliable oracle
for computing [qp(z)]2 (for z’s with noise much smaller than p). It is left to
analyze the probability (over B’s choice of public key) with which the procedure
Learn-LSB(z, pk) from above is indeed such a reliable oracle.

The Success Probability of B. In the full version we prove a simple tech-
nical lemma about the distribution of ciphertexts in our scheme. Recall that
conditioned on some probability-1

2 event in our reduction (i.e., qp(x0) is odd),
the distribution of the public key that B generates is identical to the correct dis-
tribution from the scheme. Let us denote this probability-1

2 “good event” by G.
In the full version we prove that for every secret key p and for all but a negli-
gible fraction of the public keys (as generated by KeyGen for the secret key p),
the procedure that B uses to generate ciphertexts in line 3 of the subroutine
Learn-LSB produces a distribution which is statistically close to the ciphertext
distribution of the scheme. This lets us analyze the success probability of B, as
follows: Let P be the set of odd integers in [2η−1, 2η) for which A has more than
ε/2 advantage

P def=
{
p ∈ [2η−1, 2η) : advantage(A) conditioned on sk = p is at least ε/2

}

A counting argument shows that the fraction of odd integers from [2η−1, 2η) that
are in P is at least ε/2. For a given p ∈ P , we similarly denote by PKp the set
of public keys for which A has advantage at least ε/4:

PKp
def= {pk for p : advantage(A) conditioned on pk is at least ε/4}

Again, for every p ∈ P , the KeyGen algorithm (when using the secret key sk = p)
must output pk ∈ PKp with probability at least ε/4.

Consider now a single run of B when it is given access to Dγ,ρ(p) for some
p ∈ P . With probability 1/2 the “good event” G happens, in which case the
public key that B produces is negligibly close to the right distribution. Hence
conditioned on G, B generates some pk ∈ PKp with probability ε′ ≥ ε/4 −
negl. Moreover, with probability ε′ − negl not only is the public key in PKp,
but also the ciphertext-generation that B uses in line 3 of Learn-LSB “works” for

Fully Homomorphic Encryption over the Integers 35

this public key (meaning that the ciphertexts that it generates are chosen from
almost the right distribution). If that happens then A returns the right answer
in line 4 of Learn-LSB with probability ε/4 − negl. As that subroutine calls A
for poly(λ)/ε times and takes majority vote, it will return the right answer with
overwhelming probability, and B will recover the approximate-gcd p.

Thus, when the hidden secret is p ∈ P then B has probability at least 1/2 ·
(ε/4−negl) of recovering it in a single run. Repeating the algorithm B for (8/ε) ·
ω(log λ) times will therefore recover such p’s with overwhelming probability.
Hence we have a solver of complexity poly(λ, 1/ε) that works with overwhelming
probability for every p ∈ P , so the overall success probability of this solver is
at least the density of P , which is at least ε/2. This completes the proof of
Theorem 2. ��

5 Known Attacks

Consider the approximate-gcd instance {x0, . . . , xt} where xi = pqi + ri. In this
section, we first review known attacks on the approximate-gcd problem for two
numbers (i.e., when t = 1) – including brute-forcing the remainders, contin-
ued fractions, and Howgrave-Graham’s approximate gcd algorithm [9]. Later,
we consider attacks for arbitrarily large values of t – including lattice-based al-
gorithms for simultaneous Diophantine approximation [13], Nguyen and Stern’s
orthogonal lattice [17], and extensions of Coppersmith’s method to multivariate
polynomials [4].

5.1 The Approximate GCD of Two Numbers

A simple brute-force attack is to try to guess r1 and r2, and verify the guess
with a gcd computation. Specifically, for r′1, r

′
2 ∈ (−2ρ, 2ρ), set

x′1 ← x1 − r′1 , x′2 ← x2 − r′2 , p′ ← gcd(x′1, x
′
2)

If p′ has η bits, output p′ as a possible solution. The solution p will definitely be
found by this technique, and for our parameter choices, where ρ is much smaller
than η, the solution is likely to be unique. The running time of the attack is
approximately 22ρ.

A variant of the brute-force attack is to set x′1 as above, factor x′1, and, if there
is an η-bit factor p′, see whether p′ is an approximate divisor of x′2. Since in our
parameters γ is substantially greater than η, the attack should use a factoring
algorithm whose performance depends primarily on the size of the target factor
rather than the size of the entire number being factored. For example, Lenstra’s
elliptic curve factoring algorithm [14] runs in time roughly exp(O(

√
η)) (with

only polynomial dependence on γ), thus resulting in overall attack complexity
≈ 2ρ+

√
η. The attack time is less if the approximate gcd is known to be smooth,

but still exponential in ρ.
Continued fractions seem like a natural way to recover p from x1 and x2. Using

continued fractions, one obtains a sequence of integer pairs (ai, bi) such that

36 M. van Dijk et al.

|x1/x2−ai/bi| < 1/b2
i . Moreover, every pair (s, t) such that |x1/x2−s/t| < 1/2t2

is in the sequence. Since q1/q2 is a good approximation of x1/x2, one may hope
that it occurs as a pair in the sequence; if so, one recovers p = �x1/q1�. However,
in our scheme, |x1/x2−q1/q2| is not small enough to be recovered using continued
fractions. Specifically, we have

∣
∣
∣
∣
x1

x2
− q1

q2

∣
∣
∣
∣ =

∣
∣
∣
∣
q2r1 − q1r2

q2(pq2 + r2)

∣
∣
∣
∣ ≈

∣
∣
∣
∣
q2r1 − q1r2

p

∣
∣
∣
∣ ·

1
q2
2

where (q2r1 − q1r2)/p in the final term is likely to be much larger than 1. To de-
scribe the failure of continued fractions another way, the mere fact that an ap-
proximant ai/bi is close to x1/x2 does not mean that there exist r′1, r

′
2 � p such

that x1 = pai + r′1 and x2 = pbi + r′2 – i.e., the continued fractions method is not
constrained to output the kind of approximants that we need. See [9] for a more
detailed exposition of the continued fractions approach to approximate-gcd.

Howgrave-Graham [9] also gives a lattice attack on the two-element
approximate-gcd problem that is related to Coppersmith’s celebrated algorithm
for finding small solutions to univariate and bivariate modular equations [4]. For
the case where x1 is exactly divisible by p, where his algorithm performs slightly
better, the attack recovers p when ρ/γ is smaller than (η/γ)2. The algorithm
does not degrade gracefully for ρ, η, γ that do not satisfy the constraint. Rather,
in this case, the relevant lattice may contain exponentially vectors unrelated to
the approximate-gcd solution, so that lattice reduction yields nothing useful.

5.2 The Approximate GCD of Many Numbers

Now, let us consider attacks – specifically, lattice attacks – for arbitrary t. First,
note that the rational numbers yi = xi/x0 are an instance of the simultaneous
Diophantine approximation (SDA) problem: indeed for all i it holds that xi

x0
=

qi+si

q0
, where |si| ≈ 2ρ−η. We can therefore try to use Lagarias’ algorithm for

SDA [13], namely apply LLL to the (t+1)-dimensional lattice L spanned by the
rows of the following matrix:

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2ρ x1 x2 . . . xt

−x0

−x0

. . .
−x0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Our target solution corresponds to a vector of length roughly 2γ+ρ−η
√

t + 1 –
specifically,

v = 〈q0, q1, . . . , qt〉 ·M = 〈q02ρ, q0x1 − q1x0, . . . , q0xt − qtx0〉
=

〈

q02ρ, x0q0(
x1

x0
− q1

q0
), . . . , x0q0(

xt

x0
− qt

q0
)
〉

,

Fully Homomorphic Encryption over the Integers 37

where the first entry in v satisfies |q02ρ| < 2γ−η+ρ and all the other entries
satisfy |x0q0(xi

x0
− qi

q0
)| = |x0si| ≈ 2γ+ρ−η.

However, the target solution is not necessarily the shortest nonzero vector
in the lattice, and therefore is not necessarily discovered by lattice reduction.
In particular, Minkowski tells us that L has a nonzero vector of length at
most det(L)1/(t+1)

√
t + 1 < 2(ρ+tγ)/(t+1)

√
t + 1 = 2γ+(ρ−γ)/(t+1)

√
t + 1. This

is shorter than our target solution when t+1 < γ/η. In fact, heuristically, L will
tend to have exponentially (in t) many vectors of length poly(t) det(L)1/(t+1),
which obscure our target solution.5

On the other hand, when t is large, v likely is the shortest vector in L, but
known lattice reductions algorithms will not be able to find it efficiently. Specif-
ically, as a rule of thumb, they require time roughly 2t/k to output a 2k approx-
imation of the shortest vector. Since clearly there are exponentially (in t) many
vectors in L of length at most ‖x0‖

√
t + 1 < 2γ

√
t + 1, which is about 2η−ρ

times longer than v, we need better than a 2η−ρ approximation. For t ≥ γ/η,
the time needed to guarantee a 2η approximation (which is not even good enough
to recover v) is roughly 2γ/η2

. Thus setting γ/η2 = ω(log λ) foils this attack.
Other known attacks are described in the full version. These attacks do not

perform any better than the ones above, and our choice of parameters achieves
at least 2λ security against all of them.

6 Making the Scheme Fully Homomorphic

We follow Gentry’s approach [6] for constructing a fully homomorphic encryp-
tion scheme from a somewhat homomorphic scheme E that is bootstrappable as
per Definition 5. For reasons similar to those in Gentry’s construction from [6],
computing the decryption equation m′ ← [c− �c/p�]2 seems to require boolean
circuits that are deeper (by a constant factor) than what our somewhat homo-
morphic scheme can handle. Hence we use Gentry’s transformation to “squash
the decryption circuit.” In this transformation, we add to the public key some
extra information about the secret key, and use this extra information to “post
process” the ciphertext. The post-processed ciphertext can be decrypted more
efficiently than the original ciphertext, thus making the scheme bootstrappable.
We pay for this saving by having a larger ciphertext, and also by introducing
another hardness assumption (basically assuming that the extra information in
the public key does not help an attacker break the scheme).

6.1 Squashing the Decryption Circuit

Let κ, θ, Θ be three more parameters, which are functions of λ. Concretely, below
we use κ = γη/ρ′, θ = λ, and Θ = ω(κ · log λ).6 For a secret key sk∗ = p and
5 When t is very small – e.g., t = 1 – the information that one obtains from the

two dimensional lattice is related to what one obtains from the continued fractions
approach.

6 When using the size-reduction optimization from Section 3.3 it is sufficient to use
κ = γ + 2, which would also make Θ smaller.

38 M. van Dijk et al.

public key pk∗ from the original somewhat homomorphic scheme E∗, we add to
the public key a set y = {y1, . . . , yΘ} of rational numbers in [0, 2) with κ bits
of precision, such that there is a sparse subset S ⊂ {1, . . . , Θ} of size θ with∑

i∈S yi ≈ 1/p (mod 2). We also replace the secret key by the indicator vector
of the subset S. In more details, we modify the encryption scheme from Section 3
as follows:

KeyGen. Generate sk∗ = p and pk∗ as before. Set xp ← �2κ/p�, choose at
random a Θ-bit vector with Hamming weight θ, s = 〈s1, . . . , sΘ〉, and let
S = {i : si = 1}.

Choose at random integers ui ∈ Z ∩ [0, 2κ+1), i = 1, . . . , Θ, subject to
the condition that

∑
i∈S ui = xp (mod 2κ+1). Set yi = ui/2κ and y =

{y1, . . . , yΘ}. Hence each yi is a positive number smaller than two, with κ
bits of precision after the binary point. Also, [

∑
i∈S yi]2 = (1/p) − Δp for

some |Δp| < 2−κ.
Output the secret key sk = s and public key pk = (pk∗, y).

Encrypt and Evaluate. Generate a ciphertext c∗ as before (i.e., an integer). Then
for i ∈ {1, . . . , Θ}, set zi ← [c∗ · yi]2, keeping only n = �log θ� + 3 bits
of precision after the binary point for each zi. Output both c∗ and z =
〈z1, . . . , zΘ〉.

Decrypt. Output m′ ← [
c∗ − �∑i sizi�

]
2

.

Recall our definition of permitted polynomials from Section 3.2. We proved that
our somewhat homomorphic scheme was correct for the set C(PE) of circuit that
compute permitted polynomials, and we now show that this is true also of the
modified scheme.

Lemma 4. The modified scheme from above is correct for C(PE). Moreover, for
every ciphertext (c∗, z) that is generated by evaluating a permitted polynomial,
it holds that

∑
sizi is within 1/4 of an integer.

Proof. Fix public and secret keys, generated with respect to security parameter
λ, with {yi}Θi=1 the rational numbers in the public key and {si}Θi=1 the secret-
key bits. Recall that the yi’s were chosen so that [

∑
i siyi]2 = (1/p)−Δp with

|Δp| ≤ 2−κ.
Fix a permitted polynomial P (x1, . . . , xt) ∈ PE , an arithmetic circuit C that

computes P , and t ciphertexts {ci}ti=1 that encrypt the inputs to C, and denote
c∗ = Evaluate(pk, C, c1, . . . , ct). We need to establish that

�c∗/p� =

⌊
∑

i

sizi

⌉

(mod 2)

where the zi’s are computed as [c∗ · yi]2 with only �log θ� + 3 bits of precision
after the binary point, so [c∗ · yi]2 = zi −Δi with |Δi| ≤ 1/16θ. We have

Fully Homomorphic Encryption over the Integers 39

[
(c∗/p)−

∑
sizi

]

2
=

[
(c∗/p)−

∑
si[c∗ · yi]2 +

∑
siΔi

]

2

=
[
(c∗/p)− c∗ · [

∑
siyi

]
2
+

∑
siΔi

]

2

=
[
(c∗/p)− c∗ · (1/p−Δp) +

∑
siΔi

]

2

=
[
c∗ ·Δp +

∑
siΔi

]

2

We claim that the final quantity inside the brackets has magnitude at most 1/8.
By definition, since c∗ is a valid ciphertext output by a permitted polynomial,
the value c∗/p is within 1/8 of an integer. Together, these facts imply the lemma.

To establish the claim, observe that |∑ siΔi| ≤ θ · 1
16θ = 1/16. Regarding

c∗ ·Δp, recall that the output ciphertext c∗ is obtained by evaluating the poly-
nomial P on the input ciphertexts ci (as if P was an integer polynomial). By the
definition of a permitted polynomial, for any α ≥ 1, if P ’s inputs have magni-
tude at most 2α(ρ′+2), its output has magnitude at most 2α(η−4) when its inputs
have magnitude. In particular, when P ’s inputs are “fresh” ciphertexts, which
have magnitude at most 2γ , P ’s output ciphertext c∗ has magnitude at most
2γ(η−4)/(ρ′+2) < 2κ−4. Thus, |c∗ ·Δp| < 1/16 and the claim follows.

6.2 Bootstrapping Achieved!

Theorem 3. Let E be the scheme above, and let DE be the set of augmented
(squashed) decryption circuits. Then, DE ⊂ C(PE).
In other words, E is bootstrappable. The proof is similar to Gentry’s [5,6]. By
Theorem 1, we obtain homomorphic encryption schemes for circuits of any depth.

Proof. The goal is to express the modified decryption equation

m′ ← c∗ −
⌊∑

si · zi

⌉
mod 2

as a permitted polynomial (i.e., one satisfying Equation (1)), and show that there
is a polynomial-size circuit that computes this polynomial. Recall that c∗ is an
integer, the si’s are bits, and the zi’s are rational numbers in [0, 2), in binary
representation with n = �log θ�+3 bits of precision after the binary point. Also,
our parameter setting implies two promises – namely, that

∑
si ·zi is within 1/4

of an integer, and that only θ of the bits s1, . . . , sΘ are nonzero.
We split the computation up into three steps:

1. For i ∈ {1, . . . , Θ}, set ai ← si · zi (i.e., ai = zi when si = 1 and ai =
0 otherwise). The ai’s are still rational numbers in [0, 2), given in binary
representation with n bits of precision after the binary point.

2. From the Θ rational numbers {ai}Θi=1, generate other n+1 rational numbers
{wj}nj=0, each with less than n bits of precision, such that

∑
j wj =

∑
i ai

(mod 2).
3. Output c∗ − (

∑
j wj) mod 2.

40 M. van Dijk et al.

The first step can be performed with a 1-level sub-circuit of multiplication gates.
However, the second and third steps require more complicated sub-circuits.

The problem of using a shallow boolean circuit to compute the sum
∑k

i=1 ri

of k rational numbers in binary representation is well-studied. A well-known
technique uses the three-for-two trick (see [11]), whereby a constant-depth circuit
is used to transform three numbers of arbitrary bit-length into two numbers that
are at most 1 bit longer, such that the sum of the two output numbers is the same
as the sum of the three input numbers. (The output bits of the constant-depth
circuit are linear or quadratic expressions with 3 monomials in the input bits.)
By applying this trick at most

⌈
log3/2 k

⌉
+ 2 times, one obtains two numbers

s1 and s2 such that s1 + s2 =
∑k

i=1 ri. Hence the total depth that it takes to
reduce k numbers to two numbers is d′ ≤ 2�log3/2 k�+2 < 8k1/ log(3/2) < 8k1.71.
The depth of the circuit needed to compute the final sum of two numbers is
logarithmic in their bit-lengths, but if we are only interested in �s1 + s2� mod 2
and have the promise that s1 + s2 is within 1/4 of an integer, this value can be
computed by multivariate polynomial of degree 4 (and only nine terms). Overall,
the circuit for computing

⌊∑k
i=1 ri

⌉
mod 2 corresponds to a polynomial of degree

at most d ≤ 32k1/ log(3/2). with coefficient vector having l1-norm at most 27d.
Unfortunately, this degree (with k = Θ) is still too large for our scheme to
handle. Hence we use Gentry’s technique from [5] that takes advantage of the
fact that all but θ of the ai’s are zero.

Denote the bit representation of each number ai by ai,0•ai,−1ai,−2 . . . ai,−n.
That is, ai =

∑n
j=0 2−jai,−j . The heart of this procedure is a subroutine for

computing integers W−j , j = 0, 1, . . . , n, where W−j is the Hamming weight of
the “column” of bits (a1,−j , a2,−j, . . . , aΘ,−j) (see an illustration in Figure 1).
Since at most θ of the ai’s are nonzero, then the W−j ’s are no larger than θ, and
hence can be represented by �log(θ + 1)� < n bits. By Lemma 5 below, every

Fig. 1. The procedure for summing up the ai’s: The binary representation of the ra-
tional number ai is ai,0•ai,−1ai,−2 . . . ai,−n . The integer W−j is the Hamming weight
of the column of bits (a1,−j , a2,−j , . . . , aΘ,−j).

Fully Homomorphic Encryption over the Integers 41

bit in the binary representation of W−j can be expressed as a polynomial of
degree at most θ in the Θ variables ai,−j , i = 1, 2, . . . , Θ. Moreover all of these
polynomials can be computed simultaneously by an arithmetic circuit of size
O(θ ·Θ).

Once we have the W−j ’s, the sum of the ai’s can be obtained by
∑

i ai =∑
j 2−jW−j . For j = 0, 1, . . . , n we set wj = (2−j ·W−j) mod 2, so the wj ’s are

rational numbers with �log(θ + 1)� < n bits of precision. We can now sum-up
the wj ’s using the three-for-two trick as above, this time with k = n + 1, thus
obtaining the sum of the ai’s mod 2.

We conclude that the degree of the polynomials in the first step is two, the
degree of polynomials in the second step is at most θ, and the degree of the
polynomial in the third step is at most

32(n + 1)1/ log(3/2) < 32 �log θ + 4�1.71 < 32 log2 θ

Therefore the total degree of the decryption circuit is bounded by 2·θ ·32 log2 θ =
64θ log2 θ, and since we are using θ = λ we have degree at most 64λ log2 λ.

It follows that the augmented decryption circuits DE (i.e., decryption fol-
lowed by a single multiplication or addition, cf. Definition 4) can be expressed
as polynomials of degree at most 128λ log2 λ in the Θ variables si. Since the
logarithm of l1-norm of this polynomial is small in relation to η, and since
Θ = ηγ

ρ · ω(log λ) < λ7 (and also τ < λ7) the argument in Remark 4 at the end
of Section 3.2 (with α = 128 and β = 7) indicates that we can get DE ⊂ C(PE),
making the scheme bootstrappable, by setting η = ρ ·Θ(λ log2 λ).

It is left to show how to compute the Wj ’s using polynomials of degree no larger
than θ.

Lemma 5. Let σ = 〈σ1, σ2, . . . , σt〉 be a binary vector, let W = W (σ) be the
Hamming weight of σ, and denote the binary representation of W by Wn . . . W1W0.
(That is, W =

∑n
i=0 2iWi and all the Wi’s are bits.)

Then for every i ≤ n, the bit Wi(σ) can be expressed as a binary polynomial of
degree exactly 2i in the variables σ1, . . . , σt. Moreover, there is an arithmetic cir-
cuit of size 2i ·t that simultaneously computes all the polynomials for W0, . . . , Wi.

Proof. It is well known that the i’th bit in the binary representation of the
Hamming weight of bit-vector σ is equal to e2i(σ) modulo 2, where ek(·) is the
k’th elementary symmetric polynomial, see Lemma 4 of [2]. That is,

Wi(σ) = e2i(σ) mod 2 =

⎛

⎝
∑

|S|=2i

∏

j∈S

σj

⎞

⎠ mod 2

Clearly, the degree of e2i is exactly 2i.
As for the “Moreover” part, we can compute the elementary symmetric poly-

nomials in the σi’s as the coefficients of the polynomial Pσ(z) =
∏t

i=1(z−σi) in
the auxiliary formal variable z, with ek(σ) being the coefficient of zt−k. Conve-
niently, to compute only the first few bits W0, W1, . . . , Wi, we can simply discard

42 M. van Dijk et al.

the lower-order terms in Pσ(z) – i.e., we do not need the coefficients of zj for
j < t− 2i.

For example, one “dynamic programming” procedure for computing W0, W1,
. . ., Wi (which can be trivially made into a circuit) would go as follows:

Input: bits σ1, . . . , σt

0. Initialization: Set P0,0 ← 1 and Pj,0 ← 0 for j = 1, 2, 3, . . . , 2i

// Pj,k is the j’th symmetric polynomial in σ1 . . . σk

1. For k = 1, 2, . . . , t // incorporate σk

2. For j = 2i down to 1, set Pj,k ← σk × Pj−1,k−1 + Pj,k−1

3. Output P1,t, P2,t, P4,t, . . . , P2i,t

We can do a little better by using fast Fourier transform multiplication of poly-
nomials. Using this technique, we can compute the entire polynomial Pσ(z) with
complexity t · polylog(t).

Remark 6. Note that our first circuit implementation of the procedure from
above is not “shallow”. Nonetheless, since it computes only “low degree polyno-
mials” (i.e., up to degree 2i), then by Lemma 3 it is a permitted circuit.

6.3 Security of the Squashed Scheme

Putting the hint y in the public key induces another computational assumption,
related to the sparse subset sum problem (SSSP) used by Gentry [5], and studied
previously (sometimes under the name “low-weight” knapsack) in the context
of server-aided cryptography [16] and in connection to the Chor-Rivest cryp-
tosystem [18]. We can easily avoid known attacks on the problem by choosing θ
large enough to avoid brute-force attacks (and improvements using time-space
trade-offs) and choosing Θ to be larger than ω(log λ) times the bit-length of the
rational numbers in the public key (which have length κ).7

7 Conclusion and Open Problems

We described a fully homomorphic encryption scheme that uses only simple
integer arithmetic. The primary open problem is to improve the efficiency of the
scheme, to the extent that it is possible while preserving the hardness of the
approximate-gcd problem.

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: Rsa and rabin functions: Certain
parts are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

2. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean
functions over the basis (∧,⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000)

7 Note that the SSSP instance and the approximate-GCD instance share the same
integer p, but this is not a problem since SSSP is considered hard even if the attacker
knows p.

Fully Homomorphic Encryption over the Integers 43

3. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

5. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity (2009), http://crypto.stanford.edu/craig

6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM, New York (2009)

7. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

8. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

9. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

10. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

11. Karp, R.M., Ramachandran, V.: A Survey of Parallel Algorithms for Shared-
Memory Machines. Technical Report CSD-88-408, UC Berkeley (1988)

12. Knuth, D.E.: Seminumerical Algorithms, 3rd edn. The Art of Computer Program-
ming, vol. 2. Addison-Wesley, Reading (1997)

13. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. SIAM J. Comput. 14(1), 196–209 (1985)

14. Lenstra, A.K.: Factoring multivariate polynomials over algebraic number fields.
SIAM J. Comput. 16(3), 591–598 (1987)

15. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptology 22(2) (2009)

16. Nguyen, P.Q., Shparlinski, I.: On the insecurity of a server-aided RSA protocol.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 21–35. Springer, Hei-
delberg (2001)

17. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

18. Nguyen, P.Q., Stern, J.: Adapting density attacks to low-weight knapsacks. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 41–58. Springer, Heidelberg
(2005)

19. Regev, O.: New lattice-based cryptographic constructions. JACM 51(6), 899–942
(2004)

20. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

21. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. Cryptology ePrint Archive, Report 2009/616 (2009),
http://eprint.iacr.org/2009/616

22. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on
Foundations of Computer Science – FOCS 1982, pp. 160–164. IEEE, Los Alamitos
(1982)

http://crypto.stanford.edu/craig
http://eprint.iacr.org/2009/616

	Fully Homomorphic Encryption overthe Integers
	Introduction
	Preliminaries
	Homomorphic Encryption
	Bootstrappable Encryption

	A Somewhat Homomorphic Encryption Scheme
	The Construction
	Correctness
	Optimizations

	Security of the Somewhat Homomorphic Scheme
	Reduction to Approximate-GCD

	Known Attacks
	The Approximate GCD of Two Numbers
	The Approximate GCD of Many Numbers

	Making the Scheme Fully Homomorphic
	Squashing the Decryption Circuit
	Bootstrapping Achieved!
	Security of the Squashed Scheme

	Conclusion and Open Problems

