
Fully Homomorphic SIMD Operations

N.P. Smart1 and F. Vercauteren2

1 Dept. Computer Science,
University of Bristol,

Merchant Venturers Building,
Woodland Road,

Bristol, BS8 1UB,
United Kingdom.

nigel@cs.bris.ac.uk
2 COSIC - Electrical Engineering,

Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,

B-3001 Heverlee,
Belgium.

fvercaut@esat.kuleuven.ac.be

Abstract. At PKC 2010 Smart and Vercauteren presented a variant of Gentry’s fully homomorphic public key
encryption scheme and mentioned that the scheme could support SIMD style operations. The slow key generation
process of the Smart–Vercauteren system was then addressed in a paper by Gentry and Halevi, but their key gen-
eration method appears to exclude the SIMD style operation alluded to by Smart and Vercauteren. In this paper,
we show how to select parameters to enable such SIMD operations, whilst still maintaining practicality of the key
generation technique of Gentry and Halevi. As such, we obtain a somewhat homomorphic scheme supporting both
SIMD operations and operations on large finite fields of characteristic two. This somewhat homomorphic scheme
can be made fully homomorphic in a naive way by recrypting all data elements seperately. However, we show that
the SIMD operations can be used to perform the recrypt procedure in parallel, resulting in a substantial speed-up.
Finally, we demonstrate how such SIMD operations can be used to perform various tasks by studying two use cases:
implementing AES homomorphically and encrypted database lookup.

1 Introduction

For many years a long standing open problem in cryptography has been the construction of a fully homomorphic
encryption (FHE) scheme. The practical realisation of such a scheme would have a number of consequences, such as
computation on encrypted data held on an untrusted server. In 2009 Gentry [8, 9] came up with the first construction
of such a scheme based on ideal lattices. Soon after Gentry’s initial paper appeared, two other variants were presented
[5, 16]; the method of van Dijk et al. [5] is a true variant of Gentry’s scheme and relies purely on the arithmetic of
the integers; on the other hand the scheme of Smart and Vercauteren [16] is a specialisation of Gentry’s scheme to a
particular set of parameters.

All schemes make use of Gentry’s idea of first producing a somewhat homomorphic encryption scheme and then
applying a bootstrapping process to obtain a complete FHE scheme. This bootstrapping process requires a “dirty”
ciphertext to be publicly reencrypted into a “cleaner” ciphertext. This requires that the somewhat homomorphic scheme
can homomorphically implement its own decryption circuit, and so must be able to execute a circuit of a given depth.

Recently, Gentry and Halevi [10] presented an optimized version of the Smart–Vercauteren variant. In particular,
the optimized version has an efficient key generation procedure based on the Fast Fourier Transform and a simpler
decryption circuit. These two major optimizations, along with some other minor ones, allow Gentry and Halevi to
actually implement a “toy” FHE scheme, including the ciphertext cleaning operation.

Smart and Vercauteren mentioned in [16] that their scheme can be adapted to support SIMD (Single-Instruction
Multiple-Data) style operations on non-trivial finite fields of characteristic two, as opposed to operations on single
bits, as long as the parameters are chosen appropriately. However, the parameters proposed in both [10] and [16]
do not allow such SIMD operations, nor direct operation on elements of finite fields of characteristic two of degree
greater than one. In particular, the efficient key generation method of [10] precludes the use of parameters which
would support SIMD style operations. Using fully homomorphic SIMD operations would be an advantage in any

practical system since FHE schemes usually embed relatively small plaintexts within large ciphertexts. Allowing each
ciphertext to represent a number of independent plaintexts would therefore enable more efficient use of both space and
computational resources.

In this paper we investigate the use of SIMD operations in FHE systems in more depth. In particular we show how
by adapting the parameter settings of [10, 16] one can obtain the benefits of SIMD operations, whilst still maintaining
many of the important efficiency improvements obtained by Gentry and Halevi. We thus obtain a somewhat homomor-
phic scheme supporting SIMD operations, and operations on large finite fields of characteristic two. We then discuss
how one can use the SIMD operations to perform the recrypt procedure in parallel. In addition we explain how such
SIMD operations could be utilized to perform a number of interesting higher level operations, such as performing AES
encryption homomorphically and searching an encrypted database on a remote server.

The paper is structured as follows. Section 2 presents some basic facts about finite fields and algebras defined as
quotients of polynomial rings. Section 3 explains how these algebras allow us to create a somewhat homomorphic
encryption scheme whose message space consists of multiple parallel copies of a given finite field of characteristic
two. Section 4 describes a recryption procedure for the somewhat homomorphic scheme that preserves the underlying
message space structure. Section 5 contains our main contribution, namely, a recryption procedure that makes use of
the SIMD operations. This new procedure significantly reduces the cost of recryption. To justify our claims, Section 6
presents implementation timings for a toy example. Finally, Section 7 gives possible applications of the SIMD structure
of our FHE scheme, including bit-sliced implementations of algorithms, such as performing AES encryption using an
encrypted key, and database search.

Notations We end this introduction by presenting the notations that will be used throughout this paper. Assignment
to variables will be denoted by x ← y. If A is a set then x ← A implies that x is selected from A using the uniform
distribution. If A is an algorithm then x← A implies that x is obtained from running A, with the resulting probability
distribution being induced by the random coins of A. For integers x, d, we denote [x]d the reduction of x modulo d
into the interval [−d/2, d/2). If y is a vector then we let yi denote the i’th element of y.

Polynomials over an indeterminate X will (usually) be denoted by uppercase roman letters, e.g. F (X). We make
an exception for the cyclotomic polynomials which are as usual denoted by Φm(X). Elements of finite fields and
number fields defined by a polynomial F (X), i.e. elements of F2[X]/F (X) and Q[X]/F (X), can also be represented
as polynomials in some fixed root of F (X) in the algebraic closure of the base field. We shall denote such polynomials
by lower case greek letters, with the fixed root (being an element of the field) also being denoted by a lower case greek
letter; for instance γ(θ) where F (θ) = 0. When the underlying root of F (X) is clear we shall simply write γ.

For a polynomial F (X) ∈ Q[X] we let ‖F (X)‖∞ denote the∞-norm of the coefficient vector, i.e. the maximum
coefficient in absolute value. Similarly, for an element γ ∈ Q[X]/F (X) we write ‖γ‖∞ for ‖γ(X)‖∞ where γ(X)
is the corresponding unique polynomial of degree < deg(F). If F (X) ∈ Q[X] then we let dF (X)c denote the
polynomial in Z[X] obtained by rounding the coefficients of F (X) to the nearest integer. Similary, for an element
γ ∈ Q[X]/F (X) we write dγc for dγ(X)c.

2 Fields and Homomorphisms

To present the SIMD operations in full generality and to understand how they can be utilized we first set up a number
of finite fields and homomorphisms between them. We let F (X) ∈ F2[X] denote a monic polynomial of degree N
that we assume to split into exactly r distinct irreducible factors of degree d = N/r

F (X) :=

r∏
i=1

Fi(X).

In practice F (X) will be the reduction modulo two of a specially chosen monic irreducible polynomial over Z. This
polynomial F (X) defines a number field K = Q(θ) = Q[X]/(F), where θ is some fixed root in the algebraic closure
of Q.

Let A denote the algebra A := F2[X]/(F), then by the Chinese Remainder Theorem we have the natural isomor-
phisms

A ∼= F2[X]/(F1)⊗ · · · ⊗ F2[X]/(Fr),
∼= F2d ⊗ · · · ⊗ F2d ,

i.e. A is isomorphic to r copies of the finite field F2d . Arithmetic in A will be defined by polynomial arithmetic in the
indeterminate X modulo the polynomial F (X). Our goal in this section is to relate arithmetic in A explicitly with the
elements in subfields of the F2d .

We let θi denote a fixed root of Fi(X) in the algebraic closure of F2. To aid notation we define Li := F2[X]/(Fi)
and note that all the Li are isomorphic as fields, where the isomorphisms are explicitly given by

Λi,j :

{
Li −→ Lj
α(θi) 7−→ α(ρi,j(θj)) ,

with ρi,j(θj) a fixed root of Fi in Lj , i.e. we have Fi(ρi,j(X)) ≡ 0 (mod Fj(X)).
For each divisor n of d, the finite field Kn := F2n is contained in F2d . We assume a fixed canonical representation

for Kn as F2[X]/Kn(X) for some irreducible polynomial Kn(X) ∈ F2[X] of degree n, which is often fixed by the
application. We let ψ denote a fixed root of Kn(X) in the algebraic closure of F2. Since Kn is contained in each of Li
defined above, we have explicit homomorphic embeddings given by

Ψn,i :

{
Kn −→ Li
α(ψ) 7−→ α(σn,i(θi)) ,

with σn,i(θi) a fixed root ofKn(X) in Li, i.e.Kn(σn,i(X)) ≡ 0 (mod Fi(X)). Note that the above mapping is linear
in the coefficients of α(ψ).

Combining the above homomorphic embedding with the Chinese Remainder Theorem, we obtain a homomorphic
embedding of l ≤ r copies of Kn into the algebra A via

Γn,l :

{
Kln −→ A

(κ1(ψ), . . . , κl(ψ)) 7−→
∑l
i=1 κi(σn,i(X)) ·Hi(X) ·Gi(X),

.

The polynomials Hi(X) and Gi(X) are given by the Chinese Remainder Theorem and are defined as

Hi(X)← F (X)/Fi(X) and Gi(X)← 1/Hi(X) (mod Fi(X)).

We shall denote component wise addition and multiplication of elements in Kln by k1 + k2 and k1 × k2. As such
we have constructed two equivalent methods of computing with elements in Kln: the first method simply computes
component wise on vectors of l elements in Kn, whereas the second method first maps all inputs to the algebraA using
Γn,l, performs computations in A and finally maps back to Kln via Γ−1n,l . Note that by construction Kln and Γn,l(Kln)
are isomorphic, so that Γ−1n,l is always well defined on the result of the computation.

The goal of this paper is to produce a fully homomorphic encryption scheme that allows us to work via SIMD
operations on l copies of Kn at a time, for all n dividing d, by computing in the algebra A. In particular, this enables
us to support SIMD operations both in F2 and F2d . To make things concrete the reader should consider the example of
F (X) being the 3485-th cyclotomic polynomial. In this situation the polynomial F (X) has degree N = ϕ(3485) =
2560, and modulo two it factors into 64 polynomials each of degree 40. This polynomial therefore allows us to compute
in parallel with up to 64 elements of any subfield of F240 . For instance, by selecting n = 1 and l = 64 we perform 64
operations in F2 in parallel; selecting n = 40 and l = 1 we perform operations in a single copy of the finite field F240 ;
whereas selecting n = 8 and l = 16 we perform SIMD operations on what is essentially the AES state matrix, namely
16 elements of F28 .

3 Somewhat Homomorphic Scheme Supporting SIMD Operations in Kn

In this section, we recall the Smart–Vercauteren variant of Gentry’s somewhat homomorphic scheme and show that it
can support SIMD operations in r copies of the finite field Kn by modifying key generation. Note that the recent FHE
schemes based on ring-LWE [2] also support such style operations, and may be preferable in practice due to their im-
proved key generation procedures, we leave it to the reader to extend our work to these new schemes. However, whilst
our SIMD style operations extend to the ring-LWE based somewhat homomorphic schemes, our parallel recryption
step does not carry over. We will return to this point later on.

3.1 Smart-Vercauteren somewhat homomorphic scheme

Let F ∈ Z[X] be a monic irreducible polynomial of degree N and let K = Q(θ) = Q[X]/(F) denote the number
field defined by F . Gentry’s original scheme uses two co-prime ideals I and J in the number ring Z[θ]. The ideal I
is chosen to have small norm N (I) =](Z[θ]/I) and determines the plaintext space, namely Z[θ]/I . For this reason,
I = (2) is chosen in practice. Note that in the case of a general F the quotient ring Z[θ]/(2) is an algebra of a
somewhat more general type than discussed in Section 2. We shall choose F later on such that one obtains precisely
the type of algebra considered in Section 2. The ideal J determines the private/public key pair: the private key consists
of a “good” representation of J , whereas the public key consists of a “bad” representation of J .

To clarify the notions of “good” and “bad”, we first describe the Smart–Vercauteren instantiation. The ideal J
is chosen to be principal, i.e. generated by one element γ ∈ Z[θ], and has the following additional property: let
d = N (J) =](Z[θ]/J) = |NK/Q(γ)|, where NK/Q(·) denotes the number field norm of K to Q, then there must exist
a unique α ∈ Zd such that

J = (γ) = (d, θ − α) .

The “good” representation of J (i.e. the private key) corresponds to the small generator γ, whereas the “bad”
representation (i.e. public key) is (d, θ − α). The additional property of J is equivalent with the requirement that the
Hermite Normal Form representation of J has the following specific form

d 0 0 . . . 0
−α 1 0 0
−α2 0 1 0

...
. . .

−αN−1 0 0 1

 ,

where the entries below d in the first column are taken modulo d. Another characterisation of this property is that the
ideal J simply contains an element of the form θ−α. This is clearly necessary since J can be generated by (d, θ−α),
but it is also sufficient. Indeed, since γ ∈ J , this implies that d ∈ J , so (d, θ − α) ⊂ J and since both ideals have the
same norm, we must have J = (d, θ − α). As such, there exists an element ν ∈ Z[θ] with ν · γ = θ − α. To derive an
easy verifiable condition on γ, we define the algebraic number ζ ∈ Z[θ] such that

ζ · γ = d . (1)

Multiplying ν · γ = θ − α on both sides with ζ gives the condition d · ν = θ · ζ − α · ζ. Write ζ =
∑N−1
i=0 ζi · θi and

F (X) =
∑N
i=0 Fi ·Xi, then computing the product θ · ζ explicitly and reducing modulo d finally leads to:

α · ζi = ζi−1 − ζN−1Fi mod d , (2)

for all i = 0, . . . , N − 1 where ζ−1 = 0.
Note that the two element representation (d, θ − α) defines an easily computable homomorphism

H : Z[θ]→ Zd : η =

N−1∑
i=0

ηi · θi 7→ H(η) =

N−1∑
i=0

ηi · αi mod d . (3)

The homomorphism H also makes it very easy to test if an element η ∈ Z[θ] is contained in the ideal J , namely η ∈ J
if and only if H(η) = 0. Furthermore, given the “good” representation γ, it is possible to invert H on a small subset
of Z[θ] as shown by the following lemma.

Lemma 1. Let J = (γ) = (d, θ−α) and ζ · γ = d and let H be defined as in (3). Let η ∈ Z[θ] with ‖η‖∞ < U , then
we have

η = H(η)−
⌈
H(η) · ζ

d

⌋
· γ for U =

d

2 · δ∞ · ‖ζ‖∞
,

where δ∞ = sup
{
‖µ·ν‖∞
‖µ‖∞·‖ν‖∞ : µ, ν ∈ Z[θ]

}
. Furthermore, for ‖η‖∞ < U we have

[H(η) · ζ]d = [η · ζ]d = η · ζ . (4)

Proof. It is easy to see thatH(η)−η is contained in the principal ideal generated by γ. As such, there exists a β ∈ Z[θ]
such that H(η)− η = β · γ. Using ζ = d/γ, we can write

β =
H(η) · ζ

d
− η · ζ

d
. (5)

Since β has integer coefficients, we can recover it by rounding the coefficients of the first term if the coefficients of the
second term are strictly bounded by 1/2. This shows that η can be recovered fromH(η) for ‖η‖∞ < d/(2·δ∞ ·‖ζ‖∞).
Furthermore, equation (5) shows that [H(η) · ζ]d = [η · ζ]d and since ‖η‖∞ < U , we have [η · ζ]d = η · ζ.

Corollary 1. Using the notation of Lemma 1, assume that ‖η‖∞ < U/L, then for i = 0, . . . , N − 1 we have

− 1

2L
<
H(η) · ζi

d
−
⌈
H(η) · ζi

d

⌋
<

1

2L
,

i.e. H(η) · ζi/d is within distance 1/2L of an integer.

Proof. Follows directly from equation (5) and the assumption on η.

The above lemma shows that we can recover an element η from its image under H , when its norm is not too large.
As such we obtain a trapdoor one way function that can be used as the basis for encryption. Using these preliminaries
we are now ready to define key generation, encryption and decryption.
KEY GENERATION: Input parameters: N , t
Generate a monic irreducible polynomial F ∈ Z[X] of degree N with small coefficients, defining the number field
K = Q(θ) = Q[X]/(F). Choose an element γ ∈ Z[θ] with γ = 1 mod 2 such that the coefficients of γ are smaller in
absolute value than 2t (at least one coefficient should be a t-bit integer). Compute the norm d = |NK/Q(γ)| as well as
the element ζ ∈ Z[θ] with ζ · γ = d. If d is even, choose a new γ. If d is odd, compute α = −ζN−1 · F0/ζ0 and verify
whether (2) holds for all i = 1, . . . , N − 1. If not, generate a new γ. Otherwise, the public key is the pair pk := (d, α)
whereas the private key is the element sk := ζ.

In practice, N will be of the order a few thousand and t a few hundred. The size of d can be approximated roughly
by NN · 2Nt; this therefore results in a d of several million bits.
ENCRYPTION: Input parameters: µ, pk := (d, α), message M ∈ A := F2[X]/(F (X))
The plaintext space consists of (a subalgebra of) the algebra A := F2[X]/(F (X)). Represent the message M as a
polynomial M(X) ∈ Z[X] with coefficients in {0, 1}. Generate a “noise” polynomial R(X) ∈ Z[X] of degree < N
with ‖R(X)‖∞ ≤ µ and compute the ciphertext as

c← [M(α) + 2 ·R(α)]d .

Note that the ciphertext is an element in Zd and that encryption simply corresponds to applying the homomorphism
H to the algebraic integer C(θ) :=M(θ)+ 2 ·R(θ). Furthermore, it should be clear that if we can recover C(θ), then
we can decrypt simply by computing C(X) mod 2. The encryption function is denoted as c← Encrypt(M(X), pk).
If M(X) ∈ A then we say M

∣∣
α
=M(α) (mod d) is a “trivial” encryption of M(X), i.e. it is an encryption with no

randomness.
DECRYPTION: Input parameters: ciphertext c ∈ Zd, sk := ζ
Given the ciphertext c ∈ Zd, compute the element C(θ) as

C(θ) = c−
⌈
c · ζ
d

⌋
,

and then set M(X) = C(X) mod 2. Note that here we used the fact that γ ≡ 1 mod 2. We can obtain a simpler
decryption procedure using the last statement in Lemma 1. Indeed, if c is a decryptable ciphertext, we know that
‖C(θ)‖∞ < U and thus that

[c · ζ]d = C(θ) · ζ .

Since γ ≡ 1 mod 2 and d is odd with d = γ · ζ, we see that also ζ ≡ 1 mod 2. Furthermore, C(θ) =M(θ) + 2R(θ),
so we obtain

[c · ζ]d mod 2 =M(θ) mod 2 =M(X) .

This shows that for ζ =
∑N−1
i=0 ζiθ

i we can recover the coefficients of M(X) = m0 +m1 ·X + · · ·+mN−1 ·XN−1

one by one, by computing
mi = [c · ζi]d (mod 2) .

We write M(X) ← Decrypt(c, sk). Note that to save space for key storage, it suffices to store ζ0, since the other ζi
follow from equation (2). In particular, we obtain the closed expression ζi = wi · ζ0 with

wi = −
1

F0

 N∑
j=i+1

Fj · αj−i
 (mod d) . (6)

Since the wi can be publicly computed, we can decrypt mi = [c · wi · ζ0]d (mod 2). We pause to note that it is this
linear relationship between the distinct decryption keys ζi which enables the parallel recryption procedure we describe
later. For ring-LWE based somewhat homomorphic schemes supporting SIMD operations, where such a simple linear
relation does not hold, it seems much harder to produce a parallel recryption procedure using the squashing paradigm
of Gentry.
HOMOMORPHIC OPERATIONS: It is easy to see that the scheme is somewhat homomorphic, where the operations
being performed are addition and multiplication of ciphertexts modulo d. Indeed, let ci = H(Ci(θ)) = H(Mi(θ) +
2R1(θ)) for i = 1, 2, then we have that

c1 + c2 = H(M1(θ) +M2(θ) + 2(R1(θ) +R2(θ)))

c1 · c2 = H(M1(θ) ·M2(θ) + 2(M1(θ)R2(θ) +M2(θ)R1(θ) + 2R1(θ)R2(θ))) .

This shows that operations on the ciphertext space induce corresponding operations on the plaintext space, i.e. the
algebra A. Thus it is clear that the somewhat homomorphic scheme supports SIMD operations and operations on ele-
ments in possibly large degree (i.e. degree n) finite fields. To make a distinction when we are performing homomorphic
operations we will use the notation ⊕ and � to denote the homomorphic addition and multiplication of ciphertexts.

3.2 Efficient key generation and SIMD operations

Whilst the FHE scheme works for any polynomial F with small coefficients, the common case, as in [10] and [16], is
to use the polynomial F (X) := X2n +1. As pointed out by Gentry and Halevi [10] this leads to a major improvement
in the key generation procedure over that proposed by Smart and Vercauteren [16]. If we let ηi denote the roots of
the polynomial F over the complex numbers, or over a sufficiently large finite field, then we can compute ζ and d as
follows:

– Compute ωi ← γ(ηi) ∈ C for all i.
– Compute d←

∏
ωi.

– Compute ω∗i ← 1/ωi.
– Interpolate the polynomial ζ/d from the data values ω∗i .

The key observation is that since F (X) is of the form X2n + 1, the ηi are 2n+1-th roots of unity and so to perform
the polynomial evaluation and interpolation above we can apply the Fast Fourier Transform (FFT). Indeed, Gentry and
Halevi present an even more optimized scheme to compute d and ζ which requires only polynomial arithmetic, but
this makes significant use of the fact that the trace of 2-power roots of unity is always zero.

The problem with selecting F (X) = X2n + 1 is that it has only one irreducible factor modulo two. In particular
if we select F (X) = X2n + 1 then the underlying plaintext algebra is given by

A := F2[X]/(F) ∼= F2[X]/(X − 1)2
n

.

In other words, F does not split into a set of distinct irreducible factors modulo two as we required to enable SIMD
operations.

We now present a possible replacement for F (X). The key observation is that we need an F (X) which enables
fast key generation via FFT like algorithms, which has small coefficients, and which splits into distinct irreducible
factors modulo two of the same degree. In addition we need a relatively large supply of such polynomials to cope with
increasing security levels (i.e. N), different numbers of parallel operations (i.e. l) and different degree two finite fields

in which operations occur (i.e. n). In particular need to pick an F (X) which generates a Galois extension of degree n.
In addition we need to select a polynomial F (X) such that 2 is neither ramified, nor an index divisor, in the associated
number field generated by a root of F (X). These conditions ensure that the algebra mod two splits into distinct finite
fields of the same degree.

One is then led to consider other cyclotomic polynomials as follows. We select an odd integer m and recall that
the m-th cyclotomic polynomial is defined by

Φm(X) :=
∏
η

(X − η)

where η ranges over allm-th primitive roots of unity. We have deg(Φm(X)) = φ(m), and thatΦm(X) is an irreducible
polynomial with integer coefficients. In the practical range for m, the coefficients of Φm are very small, e.g. for all
m ≤ 40000 the coefficients are bounded by 59 and are in most cases much smaller than this upper bound.

The field Q(θ) is a Galois extension and hence each prime ideal splits in Q(θ) into a product of prime ideals of the
same degree and ramification index. If m is odd then the prime two does not ramify in the field Q(θ), nor is it an index
divisor. In particular, by Dedekind’s criterion, this means that the polynomial Φm(X), of degree N = φ(m), factors
modulo two into a product of r = N/d distinct irreducible polynomials of degree equal to the unique degree d of the
prime ideals lying above the ideal (2). This degree d is the smallest integer such that 2d ≡ 1 (mod m).

Hence, by selecting F (X) := Φm(X) in our construction of the algebraA over F2, we find thatA is isomorphic to
a product of r finite fields of degree d = N/r. The only issue is whether one can perform the key generation efficiently.
To do this we use Fourier Transforms with respect to them-th roots of unity. In particular given the polynomial γ in the
key generation procedure we compute the evaluation at the m-th roots of unity via a Fourier Transform, and produce
the norm d by selecting the N required values to multiply together (consisting of the evaluations of the primitive roots
of unity). One can then compute 1/γ by inverting the Fourier coefficients and then interpolating via the inverse Fourier
Transform.

In other words the same optimization as mentioned earlier can be applied: Instead of taking the standard Cooley-
Tukey [6] FFT method for powers of two, we apply the Good-Thomas method [11, 18] for when m is a product of two
coprime integers, or Cooley-Tukey when m is a prime power. Either method reduces the problem to computing FFTs
for prime power values ofm, for which we can use the Rader FFT algorithm [15]. This in itself reduces the problem to
computing a convolution of two sequences, which is then performed by extension of the sequences to length a power
of two followed by the application of the Cooley-Tukey algorithm to the extended sequence. Overall the FFT then
takes O(m · logm) operations on elements of size O(log2 d) bits. In practice m ≈ 2 · N and so this gives the same
complexity for key generation as using F (X) = X2n + 1, however the implied constants are slightly greater. This
means we can achieve almost the same complexity for key generation as in the 2-power root of unity case.

4 Fully Homomorphic Scheme and Naive Recryption Method

To turn the somewhat homomorphic scheme of the previous section into a fully homomorphic scheme, we follow Gen-
try’s bootstrapping approach, i.e. we squash the decryption circuit so much that it can be evaluated by the somewhat
homomorphic scheme. In particular, we use the optimized procedure described by Gentry and Halevi in [10].

4.1 Recryption Method

Recall that each message bitmi can be recovered asmi = [c·wi ·ζ0]d (mod 2) with thewi being publicly computable
constants defined in (6). Since [c · wi]d can be computed without knowledge of ζ0 it suffices to show how [c · ζ0]d
(mod 2) can be computed with a low complexity circuit.

The idea is to write the private key ζ0 as the solution to a sparse-subset-sum problem. In particular, we will
define s sets of S elements as follows (a discussion on the sizes of s and S will be given later): choose s elements
xi ∈ [0, . . . , d), a random integer R ∈ [1, . . . , d) and define the i-th set Bi = {xi ·Rj (mod d) | j ∈ [0, . . . , S)} such
that the private key ζ0 can be written as the sum

ζ0 =

s∑
i=1

S−1∑
j=0

bi,j · xi ·Rj (mod d) ,

where for each i only one bi,j = 1 and all other bi,j are zero. The index j for which bi,j = 1 will be denoted by ei and
so we can write ζ0 =

∑s
i=1 xi · Rei (mod d). The result is that we have written ζ0 as the sum of s elements, where

one element is taken from each Bi. To enable recryption or ciphertext cleaning, we will augment the public key with
additional information: compute the ciphertexts ci,j ← Encrypt(bi,j , pk) for 1 ≤ i ≤ s, 0 ≤ j < S, then the public
key now consists of the data (

d, α, s, S,R,
{
xi, {ci,j}S−1j=0

}s
i=1

)
.

Denote yi,j = c ·xi ·Rj (mod d) for i = 1, . . . , s and j = 0, . . . , S−1 such that 0 ≤ yi,j < d, then the decryption
function [c · ζ0]d (mod 2) can be rewritten as

[c · ζ0]d (mod 2) =

 s∑
i=1

S−1∑
j=0

bi,j · yi,j


d

(mod 2)

=

 s∑
i=1

S−1∑
j=0

bi,j · yi,j

− d ·


s∑
i=1

S−1∑
j=0

bi,j ·
yi,j
d

 (mod 2)

=

s⊕
i=1

S−1⊕
j=0

bi,j · yi,j (mod 2)⊕


s∑
i=1

S−1∑
j=0

bi,j ·
yi,j
d

 (mod 2) .

Note that the latter double sum T =
∑s
i=1

∑S−1
j=0 bi,j ·

yi,j
d is equal to c · ζ0/d and if we assume that c is the image of

C(θ) under H , where ‖C(θ)‖∞ < U/(s+1), then we know by Corollary 1 that T is within distance 1/2(s+1) of an
integer. If we now replace each yi,j

d with an approximation zi,j up to p bits after the binary point, i.e. |zi,j − yi,j/d| <
2−(p+1), then since there are only s non-zero terms, we have that |T −

∑s
i=1

∑S−1
j=0 bi,j ·zi,j | < s ·2−(p+1). Rounding

the double sum over the zi,j will thus give the same result as rounding T as long as

1

2(s+ 1)
+ s · 2−(p+1) < 1/2 ,

which implies that p ≥ dlog2(s + 1)e. Furthermore, in the inner sum we are adding S numbers of which only one
is non-zero. As such, we can compute the k-th bit of this sum by simply XOR-ing the k-th bits of the bi,j · zi,j for
j = 1, . . . , S. We are then left with an addition of s numbers, each which consists of p bits after the binary point.

We are now ready to formulate the recrypt algorithm by mapping these equations into the encrypted domain. To
this end, we require two helper functions. The first function b← compute bits(y) takes as input an integer 0 ≤ y < d
and outputs the vector of bits b = (b0, b1, . . . , bp) such that∣∣∣∣yd − (b0 +

b1
2

+
b2
22

+ · · ·+ bp
2p

)

∣∣∣∣ < 1

2p+1
.

This is easily computed by determining u← d(2p · y)/dc, and then reading the bits from the (small) integer u.
The second function school book add(A) takes as input an s × (p + 1) array A of ciphertexts, where each row

contains the encryptions of the (p+ 1) bits of an integer. The result of the function is a (p+ 1) vector containing the
encryptions of the (p + 1) bits of the sum of these s integers modulo 2p+1. The school book method is discussed in
more detail in [10] where it is shown that it requires

Tschool book add :=

(
s · 2p−1 +

p−1∑
k=1

(s+ k) · 2p−k
)
· Tmod,d

where Tmod,d denotes the cost of one multiplication modulo d.
In Algorithm 1 we present the algorithm for recrypting the first bit of the message underlying a ciphertext c, i.e. the

algorithm computes [c · ζ0]d (mod 2) in the encrypted domain using the augmented public key. This is essentially the
recryption algorithm used by Gentry and Halevi, where the message space is one bit only. To obtain the recyption of
the i-th coefficient we simly input [c ·wi]d instead of c, since decrypting the i-th bit is given by [c ·wi · ζ0]d (mod 2).

Algorithm 1: BitRecrypt(c, pk): Recrypting the First Bit of the Plaintext Associated With Ciphertext c
A← 0, where A ∈Ms×(p+1)(Zd).
sum← 0.
for i from 1 upto s do

y ← c · xi (mod d).
for j from 0 upto S − 1 do

if y is odd then
sum← sum⊕ ci,j .

b← compute bits(y).
for u from 0 upto p do

Ai,u ← Ai,u ⊕ (bu · ci,j).
y ← y ·R (mod d).

a← school book add(A).
c← sum⊕ a0.
return (c).

We denote the cost of executing this algorithm for a one bit ciphertext as Tbits. Ignoring the modular additions, we see
that Tbits =

(
(S + 1) · s ·+s · 2p−1 +

∑p−1
k=1(s+ k) · 2p−k

)
· Tmod,d.

To recrypt a whole ciphertext c, we first form ciphertexts ci = BitRecrypt([c · wi]d, pk) for i = 0, . . . , N − 1,
which are recryptions of the coefficients of the underlying polynomial M(X) by submitting [c · wi]d to Algorithm 1.
Then given ci we form the ciphertext

c←
N−1∑
i=0

ci � αi

which will be a recryption of the original ciphertext. Note, to control the noise this last sum is computed naively, and not
via Horner’s rule, i.e. we multiply each coefficient ciphertext ci by αi (mod d) and then sum. The resulting algorithm
is summarized in Algorithm 2. Assuming the αi (mod d) and wi are precomputed, the total cost of recrypting a

Algorithm 2: Recrypting Ciphertext c version 1
c← 0.
for i from 0 upto N − 1 do

ci ← BitRecrypt([c · wi]d, pk).
c← c⊕ ci � αi.

return (c).

ciphertext corresponding to an arbitrary element in A (using our naive method) is essentially N ·Tbits +2 ·N ·Tmod,d.
If SIMD style operations, and operations on larger datatypes, are to be supported we therefore need a more efficient
method to perform recryption.

4.2 Security Analysis and Parameters

The analysis of Gentry of the above scheme and bootstrapping operation applies in our situation. The security of the
underlying somewhat homomorphic scheme is based on the hardness of a variant of the bounded distance decoding
(BDDP) problem; whereas the security of the bootstrapping procedure is based on the sparse subset sum problem
(SSSP). Indeed the minor modifications we make in future sections to the public key result in exactly the same security
reductions. Thus an adversary against the scheme can either be turned into an algorithm to solve a decision variant of
the BDDP, or a SSSP.

When selecting key sizes for cryptographic schemes, in practice one almost always selects key sizes based on the
best known attacks and not on the hard problems to which a security problem reduces. We have various parameters we
need to select s, S, N , t and µ. The sizes of N , t and µ determine whether one can break the scheme by distinguishing
ciphertexts, or (more seriously) by message or key recovery. Parameter selection is here based on the hardness of

solving explicit closest vector problems (CVPs), in lattices of dimension N , involving basis matrices with coefficients
bounded by d (a function of t and N), and for close vectors whose distance to the lattice is related to the size of µ. An
algorithm to solve the CVP/BDDP can be directly used to recover plaintexts as explained in [16]. The larger the ratio
of t to µ the easier it is to recover plaintexts, but the ratio of t to µ also determines how complicated a circuit the basic
somewhat homomorphic scheme can evaluate. Indeed the smaller the ratio of t to µ the less expressive our somewhat
homomorphic scheme is. In selecting N , t and µ one needs to make a careful analysis of the current state of the art in
lattice basis reduction; a topic which is beyond the scope of this paper.

On the other hand, it is not the case that an algorithm to solve the sparse subset sum problem can be used to break
the scheme. The security proof in [9] uses the FHE adversary to solve the following SSSP

ζ0 =

s∑
i=1

S−1∑
j=0

bi,j · (xi ·Rj) (mod d).

The simulator (solving SSSP) is given ζ0 and the weights xi·Rj (mod d), and uses random ciphertexts ci,j to represent
the encryption of the bi,j . Since the proof has already shown that ciphertexts of specific values are indistinguishable
from encryptions of random values, the adversary does not know it is in a simulation. The proof in [9] shows how the
simulator can then solve the SSSP. Whilst this easily establishes the fact that the recrypt procedure does not reduce the
security of the scheme, assuming of course the scheme is KDM secure and the SSSP is hard, it actually tells us very
little in practice. In particular it says: “If the adversary knows the secret key, then recovering another representation of
the secret key is equivalent to solving the SSSP”.

Thus the parameters s and S determine (in practice) a hidden sparse subset sum problem rather than a standard
SSSP. Namely, the adversary needs to solve the above subset sum problem where he is not given access to the value
ζ0. Taking the pragmatic view of parameter selection based on the best known attack, it is clear that neither the lattice
attacks on the SSSP nor the time-memory trade off methods to solve the SSSP apply in the hidden case. This has
important direct implications for parameter size selection. If a time-memory trade off is possible then we need to
select S and s such that Sbs/2c > 2λ, where we do not believe the adversary can perform 2λ operations.

A more pragmatic view of parameter selection would imply that, since the time-memory trade off against the
hidden SSSP appears impossible, that we select Ss > 2λ. This has a number of direct consequences: Firstly we can
select S to be much smaller than Gentry–Halevi do, secondly this means we do not need to complicate the recryption
procedure with the index encoding method they use to save space, since S is now small enough to not require it.
Thirdly this halves the degree of the resulting recryption circuit which makes the scheme more efficient, and fourthly
it saves on the computational cost of recryption, since we need to do less work.

In summary: in practice one should select N , t and µ according to best practice from lattice basis reduction. For
real systems this means that parameters need to be chosen that are significantly larger than the toy examples presented
in Gentry–Halevi. However, when selecting s and S one can be less conservative than Gentry–Halevi.

In Section 5 we detail a parallel recryption procedure which has the same multiplicative depth as the one above; but
which requires more addition operations, where the number of extra additions depends on the level of SIMD operations
required. Thus the value of t may need to be larger than that required in non SIMD based schemes. Asymptotically the
constant increase will make no difference, but for “practical” parameters one may have a noticeable difference. Thus
in Section 5 we present experimental results for “toy” security levels. This is done purely to show that our algorithms
make a difference even for choices of N,µ and t corresponding to low security levels.

5 Parallel Recryption

Whilst Algorithm 1 will recrypt a ciphertext that encodes an element of the algebra A, it can be made significantly
more efficient. Firstly, the procedure recrypts a general element in A, yet in practice we will only have that c contains
l · n ≤ N encrypted bits. Secondly, since the recrypt procedure is a binary circuit we can run it on the r embedded
copies of F2, i.e. we can use the SIMD style operations to recrypt r bits in parallel.

The first optimization is easy to obtain: recall that Γn,l maps a vector of l binary polynomials (κ1(ψ), . . . , κl(ψ))
each of of degree less than n, into a polynomial a(X) of degree less thanN . The map Γn,l thus defines an isomorphism
between Kln and Γn,l(Kln) so Γ−1n,l is well defined on the result of the computation. We can represent Γ−1n,l explicitly

by an (n · l)×N binary matrix B over F2 which is defined as follows:

coeff(κi, j) =
N−1∑
k=0

Bj+i·n+1,k+1 · coeff(a(X), k).

Using B we can therefore first obtain encryptions of all the coefficients of the κi, recrypt these using Algorithm 1 and
then reconstruct the recrypted ciphertext using Γn,l. In particular, denote with ci1,i2 a recryption of the i1th coefficient
of the i2th component in Kln, then we can obtain a full recryption of an element in Kln by computing

c←
n−1∑
i1=0

l∑
i2=1

ci1,i2 �
((
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
) ∣∣
α

)
,

where (0, . . . , 0, ψi1 , 0, . . . , 0) ∈ Kln is the element whose i2th component is equal to ψi1 , and M(X)
∣∣
α

is the trivial
encryption of the element M(X) in the algebra A.

Recall that given a ciphertext c, the value [c ·wi]d is an encryption of the ith coefficient of a(X). Since the scheme
is homomorphic and using the matrix B we conclude that

ci1,i2 =

[
N−1∑
k=0

Bi1+i2·n+1,k+1[c · wk]d

]
d

=

[
c ·

(
N−1∑
k=0

Bi1+i2·n+1,k+1 · wk

)]
d

is a valid encryption of coeff(κi2 , i1). Note that these quantities are obtained as the sum of maximum N ciphertexts,
which implies that the original c has to be an encryption of C(θ) with ‖C(θ)‖∞ < U/((s + 1) ·N) for Algorithm 1
to recrypt correctly. The second algorithm thus first computes the n · l constants (the wi are no longer required)

vi1,i2 =

N−1∑
k=0

Bi1+i2·n+1,k+1 · wk (mod d) ,

and then computes the recryptions ci1,i2 = BitRecrypt([c · vi1,i2]d, pk). Notice how we have reduced the number of
calls to recrypt from N down to n · l and that we require only n · l constants vi1,i2 instead of the N constants wi. The
result is summarized in Algorithm 3. Assuming the

(
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
) ∣∣
α

and vi1,i2 are precomputed, the
total cost of recrypting a ciphertext is essentially n · l · Tbits + 2 · n · l · Tmod,d.

Algorithm 3: Recrypting Ciphertext c version 2
c← 0.
for i1 from 0 upto n− 1 do

for i2 from 0 upto l − 1 do
ci1,i2 ← BitRecrypt([c · vi1,i2]d, pk).
c← c⊕ ci1,i2 �

(
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
) ∣∣
α

.
return (c).

So far we have not exploited the SIMD capabilities of the somewhat homomorphic scheme. Therefore our next
goal is to produce the recryptions ci1,i2 in parallel for i2 = 1, . . . , l. Thus we aim to compute a ciphertext ĉi1 from c
such that ĉi1 represents a recryption of the message

(coeff(κ1, i1), . . . , coeff(κl, i1)) ,

where c represents an encryption of (κ1, . . . , κl). We use the notation ĉi to distinguish it from the recryption ci above.
The key observation is that the recrypt procedure is the evaluation of a binary circuit, and that this binary circuit is

identical (bar the constants) no matter which component we are recrypting. In addition the algebra splits into (at least)
l finite fields of characteristic two, thus we can embed the binary circuit into each of these l components and perform
the associated recryption in parallel. For a fixed i1 we therefore want to execute the computation of the vector

([c · vi1,1 · ζ0]d (mod 2), . . . , [c · vi1,l · ζ0]d (mod 2))

in the encrypted domain in parallel. Recall that each component of this vector is computed as

[c · vi1,k · ζ0]d (mod 2) =

s⊕
i=1

S−1⊕
j=0

bi,j · y(k)i,j (mod 2)⊕


s∑
i=1

S−1∑
j=0

bi,j · z(k)i,j

 (mod 2) ,

where y(k)i,j = c · vi1,k · xi · Rj and z(k)i,j an approximation of y(k)i,j /d up to p bits after the binary point. Recall that

to obtain the bit Bk =
⌈∑s

i=1

∑S−1
j=0 bi,j · z

(k)
i,j

⌋
(mod 2) we used the function school book add(M) with input an

s× (p+1) array M where the ith row contained ⊕S−1j=0 bi,j · compute bits(y
(k)
i,j). In fact, Bk was simply the first bit in

the bit vector returned by school book add(M).
If we now want to execute the above computation in the kth component (instead of the first), we basically have

to multiply everything by Γn,l(0, . . . , 0, 1, 0, . . . , 0), where (0, . . . , 0, 1, 0, . . . , 0) is the vector of l elements of Kn
whose kth element is equal to one, with all other elements being zero. To avoid costly modular multiplications by
Γn,l(0, . . . , 0, 1, 0, . . . , 0)

∣∣
α

, we will use l different encryptions of bi,j , depending on which of the l components of
the algebra we are using. In particular, we no longer augment the public key with the data(

p, s, S,R,
{
xi, {ci,j}S−1j=0

}s
i=1

)
,

where ci,j ← Encrypt(bi,j , pk), but instead replace the ci,j components with elements ei,j,k where

ei,j,k ← Encrypt (bi,j · Γn,l(0, . . . , 0, 1, 0, . . . , 0), pk) for 1 ≤ i ≤ s, 0 ≤ j < S, 0 ≤ k < l .

This means we need to increase the size of the augmented public key by essentially a factor of l. Once we have
computed all the ĉi1 ’s we can simply recover c by computing

c←
n−1∑
i1=0

ĉi1 �
((
Γn,l(ψ

i1 , . . . , ψi1)
) ∣∣
α

)
.

The resulting algorithm is given in Algorithm 4. Note that to compute each ĉi1 we only require one call to school book add(A)
compared to l calls in Algorithm 3.

Algorithm 4: Recrypting Ciphertext c version 3: parallel recryption of all i1th coefficients of the n elements
embedded in a ciphertext c
c← 0.
for i1 from 0 upto n− 1 do

sum← 0.
A← 0, where A ∈Ms×(p+1)(Z/dZ).
for i2 from 0 upto l − 1 do

ci1,i2 ← c · vi1,i2 (mod d).
for j from 1 upto s do

y ← ci1,i2 · xj (mod d).
for k from 0 upto S − 1 do

if y is odd then
sum← sum⊕ ej,k,i2 .

b← compute bits(y).
for u from 0 upto p do

Aj,u ← Aj,u ⊕ (bu · ej,k,i2).
y ← y ·R (mod d).

a← school book add(A).
ĉi1 ← sum⊕ a0.
c← c⊕ ĉi1 �

((
Γn,l(ψ

i1 , . . . , ψi1)
) ∣∣
α

)
.

return (c).

We let Tpar(n, l) denote the cost of performing this recryption operation on a message consisting of l field elements
from Kn held in parallel. Assuming the

(
Γn,l(ψ

i1 , . . . , ψi1)
) ∣∣
α

and the vi1,i2 are precomputed we obtain that

Tpar(n, l) = n (S · s · l + s · l + l + 1) · Tmod,d + n · Tschool book add .

The main cost advantage therefore stems from the fewer calls to the function school book add.
Naively it would appear that our parallel version of recrypt, using Algorithm 4, is more efficient than the naive

version using Algorithm 2. However, one may need larger public keys to actually implement the parallel recryption
(as it is a more complex circuit). We also need to compare whether doing operations in parallel and with large data
entries (via the algebra A) is more efficient than doing the same operations but with bits using the standard bit-wise
FHE scheme but with more complex circuits. It is to this topic we now turn by examining some “toy” examples.

6 Experimental Results

So the question arises as to whether it is simpler to perform FHE on bits, or to perform FHE via the algebra A. In this
section we concentrate on estimating the performance in terms of the run time and the sizes of the resulting ciphertexts
which need to be stored. First recall key generation; we choose N and a polynomial F (X) with small coefficients, we
then choose an element γ ∈ Z[θ] which has coefficients of order 2t. This results in a value for d of size approximately
NN · 2t·N ; thus we require roughly t ·N bits to represent a single ciphertext.

We first let T (n) denote the function which returns the number of F2 multiplications needed to perform a multi-
plication in the field Kn = F2n . Using Karatsuba multiplication (for example) we find, for n a power of two, that

T (n) :=

{
1 if n = 1,
3 · T (n/2) otherwise.

This is clearly only an estimate of the overall cost, as we are ignoring the required additions and management of the
data.

There are various different options one has for implementing operations on l′ finite fields each of size 2n
′
. In the

following discussion we concentrate on the following four options; clearly other options are available but we select
these as a way of demonstrating the different ways how our techniques could be used.
OPTION 1:: We operate on bits using the standard bit-wise FHE schemes, i.e. we take n = l = 1 in our FHE scheme.
We will then require l′ · n′ · t · N bits to store our l′ finite field elements, and the cost of performing a single SIMD
style multiplication on the l′ finite fields will cost around l′ · T (n′) · Tbits multiplications.
OPTION 2:: We operate on the l′ finite field elements where each element uses a single ciphertext, i.e. we take n = n′

and l = 1 in our FHE scheme. This option has the benefit that we can work with the finite field, but we are not forced
to operate in a SIMD manner all the time. With such an option we will require l′ · t · N bits to store our l′ finite
field elements, and performing a single SIMD style multiplication on the l′ finite fields will cost around l′ · Tpar(n′, 1)
multiplications.
OPTION 3:: We operate on all l′ finite fields in a SIMD fashion using only a single ciphertext, i.e. we take n = n′

and l = l′ in our FHE scheme. Thus we will require t ·N to store our l′ finite field elements, and performing a single
SIMD style multiplication on the l′ finite fields will cost around Tpar(n′, l′) multiplications.
OPTION 4:: Here we operate on bits, but we operate on them in a SIMD fashion by having a ciphertext represent l′

bits, i.e. we take n = 1 and l = l′ in our FHE scheme. With this option we require n′ · t ·N bits to store the l′ finite
field elements, and SIMD style multiplication will require T (n′) · Tpar(1, l′) multiplications.

We summarize the above choices, for the concrete parameters of n′ = 8 and l′ = 16, in the following table. We
select a value for N around the size of 2000, purely to enable comparison with the work of [10]. We iterate this value
is purely for illustrative purposes to show the difference between the various options; it should not be taken to indicate
the N ≈ 2000 is a secure security level. Fixing n′, l′ and N rather than leaving them variable is done as the overhead
of the SIMD operations crucially depends on the specific combination of finite field and cyclotomic field chosen, and
has no nice asymptotic meaning. We select a single parameter instance simply not to overwhelm the reader with data,
since our goal is purely to show feasibility of our algorithms even at low security levels.

Note, that for Option 1 we select N = 2048 since if we are only encrypting bits then using the polynomial
F (X) = X2n + 1 will always be more efficient than using F (X) = Φ3485(X). In addition we keep the parameter t
as an indeterminate, as we will be returning to that later.

Ciphertext Runtime
N Space (≈ bits) Approx Cost

Option 1 2048 262144 · t 432 · Tbits
Option 2 2560 40960 · t 16 · Tpar(8, 1)
Option 3 2560 2560 · t Tpar(8, 16)
Option 4 2560 20480 · t 27 · Tpar(1, 16)

Thus if one is soley interested in reducing the memory of the calculation one would select Option 3. To deter-
mine which one is most efficient one needs to actually implement the schemes, since the actual costs of each op-
eration depend on the value of t needed. So we implemented the above algorithms for the four cases (N,n, l) =
(2048, 1, 1), (2560, 8, 1), (2560, 8, 16) and (2560, 1, 16), so as to comparre the four options in the above analysis.

In all cases we found that taking t = 400 resulted in a scheme in which we were able to recrypt clean ciphertexts;
however to enable fully homomorphic encryptions we need to recrypt dirty ciphertexts, and be able to perform some
additional operations. For the first two of our four cases we found that t = 600 was sufficient, whilst for the second
two we found that t = 800 was sufficient; note, we increased t in multiples of 100, thus smaller values could have
been sufficient.

In the four cases we found the following recrypt times. We also present, assuming we wished in all cases to im-
plement operations on l′ = 16 values in F2n′ , where n′ = 8, the actual time needed to perform the recrypt on such
data and the total size of all ciphertexts needed to represent such data. In our implementation of the field algorithms
for Option 1 and Option 4 we used the Karatsuba method mentioned above, and only performed recryption when im-
plementing a multiplication using the FHE scheme; i.e. recryption was not performed upon additions. The algorithms
were implemented in C++ using the NTL library and were run on a machine with six Intel Xeon 2.4 GHz processors
and 47 GB of RAM.

Basic FHE Scheme Performing Ops For (n′, l′) = (8, 16)
Recrypt Recrypt Ciphertext

(N,n, l) t (p, S) Time (sec) Method Time (sec) Size
(2048, 1, 1) 600 (4, 32) 15 Option 1 7148 18.00MB
(2560, 8, 1) 600 (4, 32) 187 Option 2 2983 3.00MB
(2560, 8, 16) 800 (4, 32) 735 Option 3 723 0.25MB
(2560, 1, 16) 800 (4, 32) 89 Option 4 2406 2.00MB

We end by noting the following: In our toy example we see that SIMD operations and parallel recryption offer some
performance advantages. The exact benefit depends on a number of factors. Firstly the size of n′ and l′; these are
determined by an application and are often small. In turn n′ and l′ affect the choice of N , which also depends on
the desired security level. The precise values of t and µ allowed are then determined by security analysis of lattice
problems. Our toy experiments show that our ability to perform SIMD operations do not affect the size of t very much
and that the parallel recryption operation is as practical as standard recryption.

The exact choice of which Option is best however depends on an application. Just as in standard SIMD vs non-
SIMD operations on a standard processor, whether one utilizes the SIMD instructions in a program depends on the
program being run.

7 Possible Applications

Before discussing two possible applications we note that one issue with SIMD operations on data is that sometimes
we wish to move data between various elements in the l values on which we are operating. This is often a problem,
since the hardware/mathematics/software which supports the SIMD operations precludes such operations. However,
in our FHE scheme such operations can be performed at no additional cost.

Indeed given a SIMD word consisting of l elements in a finite field F2n one can produce a new SIMD word which
consists of any linear function of the bits creating the original SIMD word. To see this we notice that it simply requires
multiplying the matrix B used in the parallel recrypt procedure by the matrix defining the linear map. Thus, we can
perform this linear function as part of the recryption performed for the previous operation.

In particular this means we can shuffle the elements in our SIMD word, or extract specific elements, or extract
specific bits, etc. Indeed extracting specific bits in parallel was the core of our parallel recrypt procedure explained
above.

We now turn to our two examples: The first example, namely homomorphic evaluation of AES under some ho-
momorphic key, is used to demonstrate how SIMD operations in high level (F28) algebraic structures, allow us to
evaluate complex operations relatively easily. Evaluation of AES circuits using FHE operations has been mentioned as
a possible usage scenario in [13]. The second example, one of database lookup, provides an example of how data can
be searched using SIMD style operations more efficiently than using the bit-wise homomorphic operations envisaged
in [9].

In this section we assume that all operations are performed with post-processing by the recryption operation. Thus
we are no longer interested in the size of the circuit which implements a functionality but simply the cost of the
operations involved. As explained above we have essentially three key operations; the two algebraic operations Mult
and Add, plus the linear operations on bits mentioned above. We shall denote the cost of these three operations by
CM , CA and CL, and we note that CL essentially comes for free as part of recryption. For example, if an operation
requires two multiplications, one addition and three linear operations we shall denote this cost (for simplicity) by
2 · CM + CA + 3 · CL.

7.1 Bit-Slicing

Any algorithm which is run on a circuit using bit operations can be run multiple times at once, by executing the
algorithm on a set of parameters which supports operations on multiple bits in parallel. Such a technique is often
called bit-slicing when applied to a single algorithm; however the technique is essentially also a bit-wise form of SIMD
operation. Hence, any application performed using an FHE algorithm which supports the parallel recrypt procedure
in this paper could be potentially sped-up by at least an order of magnitude by operating on multiple versions of the
same algorithm in parallel.

7.2 Application to AES

As an example of the benefits of using FH-SIMD over the bitwise FHE we examine the case of how one would
implement an AES functionality using FHE. Namely, we want a server to encrypt a message using a key which is only
available via an FHE encryption. Using AES as a relatively complex example application of secure computation has
also been recently suggested for a number of other related technologies; namely two and multi-party MPC [7, 14]. It
is also particularly well suited to SIMD execution due to its overall design.

The method we propose is to encode the entire AES state matrix in a single ciphertext. Recall that the state matrix
is a 4-by-4 matrix of elements in F28 . We therefore first need to select an m so that the ideal (2) splits into at least 16
prime ideals of degree divisible by eight in the field defined by Φm(X). There are a large number of such examples,
including the example we have used in this paper of takingm = 3485. Note that since φ(m) is equal to 4×16 we could
also perform 4 AES computations in parallel as well, although we will restrict ourselves to one for ease of exposition.
In terms of our previous section we let K8 = F28 denote the standard representation of F28 , i.e.

K8 := F2[X]/(X8 +X4 +X3 +X + 1),

and we let A denote the algebra consisting of 64 copies of F240 , each with the representation induced by the given
factor of Φm(X) (mod 2).

We assume the AES state matrix is given by
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 ,

which we encode as an element ofK16
8 as (s0,0, s0,1, . . . , s3,3). Using the map Γ8,16 we obtain an element ofA, which

can then be evaluated at α modulo p to obtain a trivial encryption of the message state (before the first round).
To implement AES we assume that the round keys ki have been presented in encrypted form, using the above

embedding via Γ8,16. Computing the round keys from a given key can be done using the same operations needed
to execute the rounds. Thus if we can implement the rounds using efficient FH-SIMD operations, then we can also
compute the encryptions of the round keys given the initial key.

The round structure of AES is made up of four basic operations, which we now discuss in turn.

AddRoundKey This is the simplest operation and is clearly performed for all sixteen bytes in parallel by doing a
single ⊕ operation of the FHE scheme. This step can be done at the cost of CA.

ShiftRows In this operation row i is shifted left by i − 1 positions. This is clearly an example of a linear operation
from earlier, in that we map the ciphertext corresponding to

(s0,0, s0,1, s0,2, s0,3, s1,0, s1,1, s1,2, s1,3, s2,0, s2,1, s2,2, s2,3, s3,0, s3,1, s3,2, s3,3)

into a ciphertext corresponding to

(s0,0, s0,1, s0,2, s0,3, s1,1, s1,2, s1,3, s1,0, s2,2, s2,3, s2,0, s2,1, s3,3, s3,0, s3,1, s3,2).

Since this is a reordering the cost is given by CL.

MixColumns In this step we perform a matrix multiplication on the left of the state matrix by a fixed matrix given by
X X + 1 1 1
1 X X + 1 1
1 1 X X + 1

X + 1 1 1 X

 .

This is accomplished in four stages

1. Compute the trivial encryption c1 of Γ8,16((X,X, . . . ,X)), clearly this can be precomputed.
2. Compute c2 ← c⊗ c1.
3. By application of three linear operations we can create ciphertexts c3, c4, c5 and c6 corresponding to c2 shifted up

by one row, c shifted up by one row, c shifted up by two rows, and c shifted up by four rows (where shift rows is
performed with rotation).

4. Compute c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ c6 and output the result.

Notice that our FH-SIMD scheme allows us to perform the 16 multiplications in parallel in the second step. The cost
of the MixColumns operation is then CM + 4 · CA + 4 · CL.

SubBytes This is the most complex of all the AES operations, however there is much existing literature on straight
line (i.e. no branching) executions of the AES S-Boxes at byte level. For example the approach in [3] transforms the
polynomial bases into a “nice” normal basis and then decomposes the arithmetic for inversion into F24 and then F22

operations. At which point all the arithmetic is just logical operations, and hence amenable to FH-SIMD operations.
However, this approach is more suited to real hardware, or to FH-SIMD operations where the basic data type is a bit
(e.g. when using say (n, l) = (1, 16) in our main scheme).

As we are restricted to operations which can be performed efficiently in our FH-SIMD scheme a more naive
approach is probably to be preferred. Recall that the AES S-Box consists of inverting each state byte in K8 (where we
define 0−1 = 0), followed by an F2-linear operation. Also recall that x−1 = x254 in the field K8. We can therefore
apply the S-Box operation to our encrypted state using the following method:

– t← c.
– For i = 1 to 6 do
• t← t⊗ t.
• t← t⊗ c.

– t← t⊗ t.
– Extract eight ciphertexts t0, . . . , t7 such that ti is the (parallel) encryption of the i-th bit of all 16 values in t.
– Perform the linear operation on t0, . . . , t7 in parallel to produce ciphertexts s0, . . . , s7.
– Map these ciphertexts back to an encryption of an element in A.

The first step, that of producing an encryption t of x254 where c is an encryption of x, requires at most 13 fully homo-
morphic multiplications. The second step of extracting the ciphertexts t0, . . . , t7 is essentially a single linear operation.
The third step of adding the elements t0, . . . , t7 together to produce s0, . . . , s7, requires 4 · 8 = 32 homomorphic ad-
ditions, due to the nature of the linear operation in AES. The final step of obtaining a single ciphertext from s0, . . . , s7
is also an application of a linear operation. Thus the total cost of SubBytes is given by 13 · CM + 32 · CA + 2 · CL.

We note that our SIMD evaluation of the AES round function not only benefits in our system from being able to
execute 16 operations in parallel. We also have the benefit of being able to deal directly with F28 arithmetic operations,
as well as decompose into bits where necessary in the linear transformation in the S-Box operation. The total cost of
a round function being given by

14 · CM + 37 · CA + 7 · CL,

although by interleaving operations a lower cost could probably be obtained.

7.3 Data Base Lookup

We end by examining a more realistic application scenario, namely one of searching an encrypted database on a
remote server. Suppose a user has previously encrypted a database and stored it on a cloud service provider, and
now she wishes to retrieve some of the data. We first note that the usual atomic database operation of search actually
consists of two operations. The first operation is one of search, whereas the second is one of retrieval. The following
method performs the search using FHE and the retrieval using Private Information Retrieval (PIR).

We assume the database is such that one can determine beforehand which fields will be searched on. In some
sense this is akin to the basic premise of public key encryption with keyword search [1], however we have a more
complicated data retrieval operation to perform. To simplify the discussion we assume that there is only one database
field which is searchable, and another field which contains the information. Each database entry (in the clear) is then
given by a tuple (i, s, d), where s is the search term, d is the data and i is some index which is going to enable retrieval.
The number of such items we denote by r. We assume that i and s are n bits in length, and thus can be encoded as an
element of the finite field Kn = F2n .

To encrypt the database the user picks a public/private key pair (pk, sk) for our FH-SIMD scheme, as well as
a symmetric key K for a symmetric encryption scheme (EK , DK). Let us assume that the encryption scheme can
support l operations in F2n in parallel. When placing the database on the cloud service provider the user divides
the database into dr/le blocks of l items. Then to actually send the server the jth encrypted data block, for j =
0, 1, 2, . . . , dr/le − 1 we send

(ij , cj ,Ej) =
(
il·j+1, . . . , il·(j+1),

Encrypt(Γn,l(sl·j+1, . . . , sl·(j+1)), pk),

EK(dl·j+1), . . . , EK(dl·(j+1))
)
.

We now discuss how the user retrieves all data items which correspond to the search term s. We first recover an
encryption of an encoding of the index terms which contain this search term. This is done by sending the server one
ciphertext, and receiving one in return. The sent “query” ciphertext is equal to

q = Encrypt(Γn,l(s, . . . , s), pk),

i.e. an encryption of l copies of the query term s.
The server then takes each data block (ij , cj ,Ej) and computes c(1)j = q ⊕pk cj . The value c(1)j is then homomor-

phically raised to the power 2n − 1, by performing 2n applications of Mult. This results in a ciphertext c(2)j which
is an encryption of a vector of zero and ones, with a one only occurring in position k when s is not equal to the kth
component of the vector underlying the ciphertext cj .

The server then computes c(3)j = (c
(2)
j ⊕pk Encrypt(Γn,l(1, 1, . . . , 1), pk)) ⊗pk Encrypt(Γn,l(ij), pk), and the set

of ciphertexts c(3)j are then added together using Add to obtain a final ciphertext c′, which is returned to the user. Note,
that this “search” query has a cost of (2 · n+ 1) · CM + 2 · CA per data block.

The plaintext underlying the returned ciphertext c′ consists of l components, where the kth component is given by⊕
s=sl·j+k

il·j+k.

If there is only one match per component then we have recovered the matching indices and hence can recover the
actual data by engaging in a PIR protocol [4, 12]. The problem arises when we have the possibility of more than one
match per component per query. In this situation we need an encoding algorithm to enable us to recover the exact PIR
inputs we need to recover the data.

In the extreme case we have a possibility of every component containing dr/le matches, i.e. the search term s
matches with every item in the database. In which case we obtain, via a trivial encoding, that we must have dr/le ≤ n.
This essentially implies that the length of the database is bounded by the number of bits we can encrypt, i.e. r < l · n.

However, if we can ensure that a maximum of t matches can occur per SIMD component then we can produce a
more effective encoding as follows: Firstly we assume the encoding used for data retrieval in the PIR is such that we
recover the data item corresponding to an index/component position pair. This simplifies our discussion as we only
have to concentrate on decoding a single component.

We set m = dr/le, and to each of the m blocks we associate an n-bit index i. We want to therefore be able, given
an xor of the indices z = ij1 ⊕ . . . ⊕ ijs , with s ≤ t, to recover the set {ij1 , . . . , ijs}. To construct the encoding we
take the parity matrix of an [N,K,D] linear code over F2 of length N , rank K and minimum distance D, which we
assume is greater 2 · t. This is a matrix of dimension (N −K) ×N . We then take as our indices the columns of this
matrix, which implies that these indices must fit in n bits, hence N −K ≤ n. Given an xor of at most t indices we can
recover which indices were xor-ed together by decoding the [N,K,D] linear code. To see this notice that the sum of
indices z is a syndrome of a codeword in the linear code. Thus by recovering the error positions in the code from the
syndrome we know which indices, i.e. which columns of the parity check matrix, were xor-ed together. Thus the total
number of distinct indices we can cope with is bounded by the column size of the parity check matrix, i.e. N . Hence,
we obtain m = dr/le ≤ N .

As an example of a possible encoding scheme we take a primitive BCH code which exists for any pair of values
of (s, t) such that s ≥ 3 and t < 2s−1. The primitive BCH code over F2 then has parameters given by N = 2s − 1,
N − K ≤ s · t and D ≥ 2 · t + 1. If we take our FHE scheme of the previous section using the mth cyclotomic
polynomial with m = 3485, then we have l = 64, n ≤ d = 40 and φ(m) = 2560. Given the bounds

dr/le ≤ N = 2s − 1 and s · t ≤ n,

and supposing we take t = 3, so we can recover at most three collisions on search terms within each component,
then by setting n = d = 40 and (s, t) = (13, 3) we obtain a valid encoding. This implies that the total number
of items within the database is bounded by l · N = 524224. Clearly using more optimal codes, or different cyclo-
tomic polynomials one can obtain larger values of the whole database, or one can deal with more collisions within a
component.

The above methodology using our FH-SIMD scheme to search on l components at once in an efficient manner,
results in a linear speed up in the search of the encrypted database. However, there is another advantage of our splitting
the database into l components; we can deal with (albeit having a probability of invalid indices being returned) having
more collisions between the search terms. In the above example we could deal with up to three collisions in each
component, this meant that our method would be guaranteed to be correct if there were at most three items in the
database corresponding to each search item. However, if we assume that the search items are randomly distributed
between the l components, then in practice we can deal with more collisions, since our results will be correct as long
as there are at most t collisions per component. The generalised birthday bound [17] says that we can have

(t!)1/t · l(t−1)/t

collisions before the probability of obtaining more than t collisions in one of the l components is greater than 1/2. In
our above numerical example, with t = 3 and l = 64, this equates to just over 29 matches in our database.

8 Acknowledgements

This material is based on research sponsored by the European Commission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT II. The first author was also supported by the Defense Advanced Research Projects

Agency (DARPA) and Air Force Research Laboratory (AFRL) under agreement number FA8750-11-2-0079, by the
Royal Society via a Royal Society Wolfson Merit Award, by the ERC via an Advanced Grant, and the EPSRC via grant
EP/I03126X. The second author was supported by a Postdoctoral Fellowship of the Research Foundation - Flanders
(FWO).

References

1. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. Advances in Cryptol-
ogy – Eurocrypt 2004, Lecture Notes in Comput. Sci. 3027, 506–522, 2004.

2. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key dependent messages.
To appear Advances in Cryptology – Crypto 2011, Lecture Notes in Comput. Sci. XXXX, XXXX–XXXX, 2011.

3. D. Canright. A very compact S-Box for AES. Cryptographic Hardware and Embedded Systems – CHES 2005, Lecture Notes
in Comput. Sci. 3659, 441–455, 2005.

4. B. Chor, E. Kushilevitz, O. Goldreich and M. Sudan. Private information retrieval. J. ACM, 45, 965–981, 1998.
5. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. Advances in

Cryptology – Eurocrypt 2010, Lecture Notes in Comput. Sci. 6110, 24–43, 2010.
6. J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19, 297–301,

1965.
7. I. Damgård and M. Keller. Secure multiparty AES. Financial Cryptography – FC 2010, Lecture Notes in Comput. Sci. 6052,

367–374, 2010.
8. C. Gentry. Fully homomorphic encryption using ideal lattices. Symposium on Theory of Computing – STOC 2009, ACM,

169–178, 2009.
9. C. Gentry. A fully homomorphic encryption scheme. Manuscript, 2009.

10. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. Advances in Cryptology – Eurocrypt
2011, Lecture Notes in Comput. Sci. 6632, 129–148, 2011.

11. I.J. Good. The interaction algorithm and practical Fourier analysis. J.R. Stat. Soc., 20, 361–372, 1958.
12. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information retrieval.

Foundations of Computer Science – FoCS ’97, 364–373, 1997.
13. K. Lauter, M. Naehrig, V. Vaikuntanathan. Can homomorphic encryption be practical. Preprint, 2011.
14. B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams. Secure two-party computation is practical. Advances in Cryptology –

Asiacrypt 2009, Lecture Notes in Comput. Sci. 5912, 250-267, 2009.
15. C.M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56, 1107–1108, 1968.
16. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. Public Key

Cryptography – PKC 2010, Lecture Notes in Comput. Sci. 6056, 420–443, 2010.
17. K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota. Birthday paradox for multi-collisions. Information Security and Cryptology

– ICISC 2006, Lecture Notes in Comput. Sci. 4296, 29–40, 2006.
18. L.H. Thomas. Using a computer to solve problems in physics. Application of Digital Computers, 1963.

