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In this paper A will denote a semiring (A, -+-, ") as defined, for exam-
ple, in [2], that is, two semigroups (A, +) and (A, ") such that addition dis-

tributes over multiplication. Moreover, we shall always assume that
(A, +)is commutative and (A, +, ")has an absorbing zero 0, that is,
a+ 0-- 0 +a aand0"a-" a’0 0 hold for allaA. The notions of
left, right, and two-sided ideals, as well as sums and products of such ideals

are defined as usual. The word ideal will always mean a two-sided ideal. An
ideal P of A is called prime (irreducible; strongly irreducible) if IJ - P I - P
or J-P(IJ=PI=P or J=P;ICJ_PI_P or J-P)
holds for all ideals I, J of A. Thus any prime ideal is strongly irreducible
and any strongly irreducible ideal is irreducible. A semiring A is called fully
idempotent if each (two-sided) ideal of A is idempotent (an ideal I is idempo-

tent if I /). A semiring A is called (yon Neumann) regular if x xAx, for
all x A (cf. [8,10]). Regular semirings and simple semirings (i. e. having no

non-zero proper ideals) form proper subclasses of fully idempotent semi-

rings. Below we characterize fully idempotent semirings by the property that
each ideal is the intersection of those prime ideals which contain it. We also
obtain a similar characterization of semisimple semigroups, that is, semi-

groups all of whose ideals are idempotent.
We begin with the following result which is due to Courter [4]. Courter,

in fact, proved this result for rings instead of semirings. However, an ex-

amination of his proof shows that it works in the case of semirings.

Proposition 1. The following assertions for a semiring A are equivalent:
1. A is fully idempotent
2. for each pair of ideals I, ] ofA, I ] I];
3. for each right ideal R and two-sided ideal I, R ( I

_
IR

4. for each left ideal L and two-sided ideal I, L I - LI.
Recall that the lattice of ideals of a semiring is not, in general, distribu-

tive or even modular (cf. [7]). Below, we show that the ideal lattice of a fully
idempotent semiring is a complete Brouwerian and hence distributive lattice.

A lattice is called Brouwerian if, for any a, b , the set of all x
satisfying a A x <_ b contains a greatest element c, the pseudo-complement of
a relative to b.

Proposition 2. If A is a fully idempotent semiring, then the ideal lattice

2 ofA is a complete Brouwerian lattice.

Proof Clearly, A is a complete lattice under the sum and intersection
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of ideals. Let B and C be ideals of A. By Zorn’s lemma, there is an ideal M
of A which is maximal in the family of ideals [ satisfying B fq I

_
C. Thus

if I is any such ideal then BI_ C, and moreover, an easy calculation shows
B(I-t- M)

___
C. Hence B (I+M) --- C, by the above proposition. By the

maximality of M we get l + M M, and therefore l __. M, as we were to
show.

Corollary 1. A satisfies the infinite meet distributive law"
(Y. ) y. ( ).

Proof Follows from ([1], V, Thin 24).
Corollary 2. ., is distributive.

Proof. Follows from ([ 1], II. 11).
The following proposition shows that the concepts of prime ideals, irre-

ducible ideals and strongly irreducible ideals coincide for fully idempotent
semirings.

Proposition 3. Let A be a fully idempotent semiring. Then the following
assertions for an ideal P ofA are equivalent"
1. P is irreducible"
2. P is prime.

Proof. As (2)::v (1) is clear, it suffices to show that (1):::> (2). Sup-
pose IJ

_
P for ideals I, jr of A. Hence I fq jr___ p, by Prop. 1. Thus it fol-

lows that (I f)jr)_+_ p p. Since the ideal lattice of A is distributive by
Corollary 2 of the above proposition, we have P (I [q ]) -+- P (I + P)

(] + P). Since P is irreducible, so I + P P or ] + P P. This im-
plies that, I G P or jr

_
p. Hence P is a prime ideal.

Theorem 1. Let A be a semiring. Then the following assertions are equiva-
lent"
1. A is fully idempotent"
2. each proper ideal ofA is the intersection of prime ideals which contain it.

Proof (1) :::> (2). Let I be a proper ideal of A and let {P "c, A}
be a family of prime ideals of A which contain I. Clearly, I___ P. To
prove the converse, suppose a I. By Zorn’s lemma, there exists an ideal P
such that Pa is proper, I --- P, a P,, and Pa is maximal with these prop-
erties. Then P is irreducible. For, suppose on the contrary, Pa K f L,
and both K and L properly contain Pa. Then K and L both contain a. Hence
a K f L. This contradicts the assumption that P, K f L. Hence P, is
irreducible, and so it is prime by Prop. 3. This establishes the existence of a

prime ideal P such that a P and I
_

P,. Hence a fq P. As this is
true for every a I, the desired result follows. We now prove that (2)::v
(1). Let I be any ideal of A. If I A then I is certainly idempotent. If I 4:

A then I is a proper ideal of A and so it is the intersection of prime ideals
IPa of A, by our assumption Hence P,

___
P, for each c. This im-

plies that I
_
P for every c, since P is a prime ideal. Thus we have

I
___

P, I z. Hence I- Iz, and so A is fully idempotent.
Let n denote the set of proper prime ideals of A. For any ideal I of A,
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define Oz {jr )A I ; J} and z’(A) {Or: I is an ideal of A}. The set

NA may be topologized in a manner analogous to the construction of prime
spectrum of rings. More precisely, we may state the following theorem.

Theorem 2. Let A be a fully idempotent semiring. The set v(PA) forms a

topology on the set NA and the assignment I O is an isomorphism between the
lattice 2EA of ideals ofA and the lattice of open subsets of V(A).

We now construct a class of examples of fully idempotent semirings
which are neither regular nor simple.

Example 1. Let S be a semigroup with identity e and let C denote the
bicyclic semigroup, that is, C No x No; where No is the set of
non-negative integers and the multiplication in C is defined by

(m, n)(p, q) (m + p min(n, p), n + q min(n, p)).
It is well known (see, e. g. [3], 1.12) that C is a bisimple inverse monoid with
(m, n) -1= (n, m) and identity (0, 0). Let W= C x S with the following

multiplication:
(m, n), s)(p, q), t) (m, n)(p, q), f(n, p))

where f(n, p) s, t or st according to whether n > p, n p or n p. It
can be verified that W is a simple semigroup with ((0, 0), e) as its identity
element. Furthermore, W is regular if and only if S is regular. Let W C
S, where S is any non-regular monoid (e. g. S (N, ")). Define A W U
{oo}, where {oo} is the ring with a single element. Define wl + wz oo

w + oo co + wz;w’w-" product in W and w’co oo.w.: co for

w, w W. Now adjoin an absorbing zero 0 A to A. Then (A U {0}, +, ")
is a semiring with 0 as the additive identity and multiplicative zero. This
semiring is not regular, and its only non-zero proper ideal is I = {0}
U {co}, which is idempotent. Hence (A U {0}, +,’) has the required prop-
erties.

In the rest of this paper we consider semigroups all of whose ideals are

idempotent. Such semigroups, called semisimple semigroups, admit many char-
acterizations (see, e. g. [3] vol. 1, p. 76). Below we characterize this class of
semigroups by the property that each proper ideal is the intersection of
prime ideals which contain it. The notions of idempotent, prime, irreducible
and strongly irreducible ideals are extended to semigroups in a natural way
and so are not defined explicitly. For the usual terminologies in semigroups,
we refer to [3].

Theorem 3. Let S be a semigroup. Then the following assertions are

equivalent:

2.
3.
4.

IfS
5.

S is semisimple;
each proper ideal of S is the intersection of.prime ideals which contain it;
no Rees factor semigroup of S contains a non-zero nilpotent ideal;

the ideal lattice s of S is a distributive lattice with I J IJ, for all I,
s.
is assumed commutative, then the above assertions are equivalent to:
S is (von Neumann) regular.

Proof (1)=* (2). First we show that each proper ideal of S is contained
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in a proper irreducible ideal. Let K be a proper ideal of S and let s S\K.
Let Ps be any ideal maximal with ,respect to K - Ps but s Ps. Suppose that

Ps A B, where A and B are ideals of S with A Ps and B Ps. The
maximality of P requires that s e A.and s B. But then s A B P,
which is a contradiction. Hence Ps is irreducible. Let {Ps "s S\K} be the
family of proper irreducible ideals containing K. Then K

_
3 Ps. For the

reverse inclusion, let t S such that t K. Then as argued above, there ex-

ists an irreducible ideal Pt containing K such that t S \ K and t Pt. This
implies that t f3 ss\K Ps. Hence, by contrapositivity, ss\K Ps K. Thus
K 3 ss’\ Ps. We now show that each Ps is prime. If I and ] are ideals of
S satisfying I] c_ Ps, then (I f3 f)2_ I] c_ Ps. Since S is semisimpte, so
(I])2= I ]. Thus If]_Ps. This implies that (I]) Ps=Ps.
Since (I ]) t2 Ps- (It2 P) f (] Ps), so (It2 Ps) (] P) -P.
As P is irreducible, it follows that I t2 Ps P or ] t2 P P. Thus I -P or ]

_
Ps, showing that Ps is prime.

(2) ==> (1). Let I be any ideal of S. If 12 Sthen I is clearly an idempo-
tent ideal. If I S then 12 is a proper ideal, and so by the hypothesis,
12 3 a{P "P is a prime ideal}. Since each P is a prime ideal and 12
;3 P

_
P, it follows that I

___
P, for each or. Hence I fl P 12. This

implies that I I, and hence S is semisimple.
The equivalence of (1), (3), and (4) is easily deduced from Courter’s

main theorem ([4]) by making necessary modifications. Moreover, if S is com-
mutative then it is easy to verify that (5)==> (1), and (4):= (5) (cf.[3] vol. I p.
34, [5]).
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