
AIAA 94–0056
Fully-Implicit Time-Marching
Aeroelastic Solutions
Juan J. Alonso and Antony Jameson
Princeton University, Princeton, NJ 08544

32nd AIAA Aerospace Sciences
Meeting and Exhibit

January 10–13, 1994/Reno, NV
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191–4344



AIAA 94–0056

Fully-Implicit Time-Marching Aeroelastic
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Juan J. Alonso∗ and Antony Jameson†
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A new fully-implicit approach for computing transonic aeroelastic solutions is pre-
sented. The unsteady Euler equations are coupled with a typical section swept wing
model and integrated forward in time. The implicit Euler equations are integrated in
pseudo-time using multigrid methods, and are coupled with a first-order system de-
composition of the structural modal equations. Full convergence of the simultaneous
governing equations is achieved at every time step with considerable computational sav-
ings over previous approaches. Transient responses for a NACA 64A010 are calculated in
different flow regimes, and flutter boundaries are computed and compared to pre-existing
numerical data.

Nomenclature
a non-dimensional location of the elastic axis,

positive aft of midchord

b airfoil semichord

c airfoil chord

Cl coefficient of lift

Cm coefficient of moment about the elastic axis,
positive nose up

E total energy (internal plus kinetic)

f ,g Euler flux vectors

h plunging displacement of the elastic axis, posi-
tive down

H total enthalpy

Iα section moment of inertia about the elastic axis,
Iα = mb2r2

α

J jacobian of the transformation from cartesian
to body fitted coordinates

kc reduced frequency, kc = ωc
U∞

Kh plunging spring constant

Kα pitching spring constant

L airfoil section lift (normal to free stream), pos-
itive up

m airfoil mass per unit span

Mea total moment about the elastic axis, positive
nose up

M∞ free stream Mach number

�n surface normal vector

p static pressure

Qi generalized force for ith mode

R(wij) flux residual for cell i,j

R∗ modified residual

R∗
ij modified residuals for structural equations

Sα static unbalance, positive for c.g. aft of mid-
chord, Sα = mbxα

t real time
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t∗ pseudo-time

u, v cartesian velocity components

�u cartesian velocity vector

U∞ free stream velocity

Uf flutter speed

Vij volume of i,j cell

Vf flutter speed index, Vf =
Uf

bωα
√

µ

w vector of flow variables

xt, yt mesh cartesian velocity components

xij , zij first order system decomposition intermediate
variables

α angle of attack, in radians

∆α pitching motion forcing amplitude

∆t implicit real time step

γ ratio of specific heats, γ = 1.4

ηi ith normal coordinate

µ airfoil mass ratio, µ = m
πρb2

ρ air density

ωf frequency of the forced oscillations

ωh, ωα uncoupled natural frequencies of typical section
in plunge and pitch respectively

ωi coupled natural frequency of the ith mode

Ω, ∂Ω cell element and boundary

τ non-dimensional structural time, τ = ωαt

ζi modal damping of the ith mode

{F} forcing vector

[K] stiffness matrix

[M ] mass matrix

[Pi] transformation matrix for the ith modal equa-
tion decomposition

[φ] mass normalized eigenvector matrix

{q} displacement vector

Introduction

TRANSONIC aeroelasticity is a topic of current
research interest because of the essential role it

plays in aircraft design. Modern aircraft tend to pos-
sess a high level of flexibility in order to satisfy low
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weight and maneuverability requirements. As a re-
sult, there is the possibility that several aeroelastic
phenomena occur which severely limit the flight enve-
lope and performance. Well known examples are the
initial flight tests of the B-1 wing and the wind tunnel
testing of the HiMAT canard model.1

The transonic regime presents additional difficulties
to the solution of the aeroelastic problem. In the sub-
sonic and supersonic flow regimes, it is normal practice
to linearize the fluid flow equations such that the forces
and moments acting on the aerodynamic configura-
tion depend only linearly on the motion of the airfoil.
These aerodynamic models can be coupled with the
linearized structural equations of motion to produce
reasonably accurate results. Unfortunately, the highly
non-linear nature of the transonic regime results in
large variations of the forces and moments with small
changes of the aerodynamic configuration. This non-
linearity prohibits the decoupling of the structural and
flow equations. Thus, numerical solution of the full set
of non-linear equations must be used in order to obtain
meaningful results.
In the past, aeroelastic predictions from the super-

sonic and subsonic regions have been extrapolated to
the transonic regime. Isogai2, 3 showed the existence
of a sharp decrease in the flutter speed of a swept
wing in transonic flight (M∞ ≈ 0.7 − 0.9) . This
“transonic dip” phenomenon can only be predicted
by including the flow equation non-linearities in the
model. When subsonic linear theories are extended
into the transonic regime, the flutter point is severely
overpredicted, leading to very dangerous design con-
clusions.
The first attempts to obtain time-marching so-

lutions of two-dimensional aeroelastic configurations
used the transonic small disturbance (TSD) equation
to model the unsteady behavior of the flow. The
LTRAN2S computer program4 was used to investi-
gate the response of a NACA 64A010 airfoil in the
low reduced frequency range (kc ≈ 0.075 − 0.1). The
XTRAN3S computer code5 used a similar approach
and modeled the behavior of three-dimensional wings.
Edwards et al.6 used a monotone differencing method
in order to eliminate expansion shocks in the neigh-
borhood of the leading edge of the airfoil and extended
the validity of the solution into the higher reduced fre-
quency range (kc ≈ 0.3 − 0.4). These methods give
a reasonable prediction of the flutter boundary for a
given airfoil.
The “transonic dip” phenomenon has been traced

back to the large negative value of the out-of-phase
component of the load distribution caused by the
phase lag of the shock wave motion.7 Further-
more, Farmer and Hanson8 obtained experimental
data which showed the marked influence of the thick-
ness distribution of the airfoil on the unsteady char-
acteristics of the aerodynamic loading. Therefore, we

need a flow model that can both accurately predict
the phase lag in the motion of the shock waves on
the upper and lower surfaces of the airfoil and impose
the correct boundary conditions in order to account
for thickness effects adequately. The TSD equation is
unable to meet these two requirements properly and
therefore, a more refined aerodynamic model is neces-
sary.

The large improvement in computing resources in
the last decade, tied with advances in computational
methods, has motivated the appearance of aeroelastic
codes that employ the Euler equations as a fluid flow
model. Bendiksen and Kousen9, 10 first used an explicit
aerodynamic code coupled with a structural integrator
based on the convolution integral to obtain the flutter
boundary for a NACA 64A010 airfoil. In the process
they discovered the existence of large amplitude limit
cycles in the motion of the system.11 Guruswamy12, 13

has reported some very encouraging results with Eu-
ler and Navier-Stokes equations for two- and three-
dimensional configurations including vortical flows.

In spite of the recent advances, aeroelastic calcu-
lations using these refined aerodynamic models re-
main very computationally expensive. In addition to
this problem, the two sets of equations (fluid flow
and structural model) are treated separately and inte-
grated in a “leap-frog” fashion with the result that we
never have a fully converged system at any one time
step.

Jameson14 has developed a very efficient multigrid-
driven implicit approach to the solution of the un-
steady Euler equations. Using central differences in
space and an implicit multistep discretization in time,
a large set of simultaneous non-linear equations is
formed and marched to steady-state in pseudo-time
through a multigrid algorithm within each real time
step. This approach has been recently applied to the
solution of the unsteady Navier-Stokes equations with
great promise.17, 18

This paper describes the full coupling of the Euler
equations with the typical section wing model used in
the code UFLO82S (a derivative of Jameson’s UFLO82
code14). The flow equations are implicitly solved using
Jameson’s algorithm and each of the modal equations
of motion of the structure is decomposed into a set
of first-order ordinary differential equations. This set
of equations is then marched in time with an implicit
linear multistep method. The system (fluid flow and
structural model) is fully coupled and a fully converged
solution is achieved at every time step of the calcula-
tion with very substantial computational savings. The
code is used to produce flutter boundaries for a NACA
64A010 airfoil using the Isogai swept wing model struc-
tural parameters.
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Governing Aerodynamic Equations
The governing equations of the flow are the Eu-

ler equations. Let p, ρ, u, v, H , and E denote the
pressure, density, cartesian velocity components, to-
tal enthalpy, and total energy respectively. Consider
a control volume Ω with boundary ∂Ω which moves
with cartesian velocity components xt and yt. The
equations of motion of the fluid can then be written in
integral form as

d

dt

∫∫
Ω

w dx dy +
∮
∂Ω

(f dy − g dx) = 0, (1)

where w is the vector of flow variables

w =




ρ
ρu
ρv
ρE


 ,

and f , g are the Euler flux vectors

f =




ρ(u− xt)
ρu(u− xt) + p
ρv(u− xt)

ρE(u− xt) + pu


 , g =




ρ(v − yt)
ρu(v − yt)

ρv(v − yt) + p
ρE(v − yt) + pv


 .

Also, for an ideal gas, the equation of state may be
written as

p = (γ − 1) ρ
[
E − 1

2
(u2 + v2)

]
.

Applying Equation 1 independently to each cell in the
mesh we obtain a set of ordinary differential equations
of the form

d

dt
(wij Vij) +R(wij) = 0, (2)

where Vij is the volume of the i, j cell and the residual
R(wij) is obtained by evaluating the flux integral in
Equation 1. Following Jameson,14 in order to prevent
oscillations in the neighborhood of shock waves and to
provide background dissipation to suppress odd-even
modes, a blend of first- and third-order dissipative
fluxes is added. These dissipative terms provide an
upwind bias and are added in the form of dissipative
fluxes for conservation purposes.
In order to obtain a fully-implicit algorithm, approx-

imate Equation 2 as follows (drop the subscripts i, j
for clarity):

d

dt
[wn+1 V n+1] +R(wn+1) = 0, (3)

where the superscript n+1 denotes the time level (n+
1)∆t. The d

dt operator is approximated by an implicit
backwards difference formula of kth-order accuracy of
the form

d

dt
=

1
∆t

k∑
q=1

1
q

[
∆−]q

, (4)

where
∆− = wn+1 − wn.

The baseline version of the code uses a second-order
accurate operator, which casts Equation 3 in the fol-
lowing form

3
2∆t [w

n+1V n+1]− 2
∆t [w

nV n] + 1
2∆t [w

n−1V n−1]
+R(wn+1) = 0. (5)

This time discretization is A-Stable15 when applied to
the test linear differential equation

dw

dt
= αw.

The third-order accurate backwards difference (ob-
tained with k = 3 in Equation 4) has been defined as
stiffly stable by Gear.16 Its stability region is slightly
more restrictive and could, in principle, present some
difficulties for the Euler equations since the model
problems require stability along the imaginary axis.
However, as we will show in the results section, the
third-order accurate algorithm has proven to be ro-
bust for the Euler equations. Recently, Melson et al.17

have shown conditional stability for the fourth-order
accurate algorithm with a slightly different treatment
of the multigrid terms. Nevertheless, the bulk of the
results contained in this paper were obtained with the
second-order accurate time discretization.
Equation 5 represents an implicit set of coupled or-

dinary differential equations. These equations can be
solved at each time step using the same multistage
techniques for explicit steady-state calculations if we
define the modified residual R∗(w) as

R∗(w) =
3
2∆t

[w V n+1]

− 2
∆t
[wnV n] +

1
2∆t

[wn−1V n−1] +R(w),

and march to steady-state in a fictitious time, t∗, the
following ordinary differential equation

dw
dt∗

+R∗(w) = 0. (6)

Within each real time step, the set of ordinary differ-
ential Equations 6 is solved using a five-stage Runge-
Kutta scheme. In order to accelerate convergence, a
multigrid strategy is employed. In addition, residual
averaging and local time stepping are also used. No-
tice that enthalpy damping must be disabled since an
unsteady flow does not admit a constant enthalpy so-
lution. Details of these procedures are contained in14

and.19 Note that since the two-dimensional calcula-
tions in this work used an O-mesh rigidly attached to
the airfoil, the cell volumes are constant and can there-
fore be factored out. Due to this fact no regridding is
necessary; the grid is rotated and translated in a rigid
body motion fashion after each time step.
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Boundary Conditions

At the airfoil surface, the flow tangency boundary
condition needs to be imposed. This is easily achieved
by eliminating the convective fluxes across the edges
of the mesh which lie directly on the surface of the air-
foil. The fluxes for the x- and y-momentum equations
have a component due to the integral of the pressure
along the surface of the airfoil. Since the flow solver is
based on a cell centered discretization of the governing
equations, the value of the pressure at the airfoil sur-
face is not readily available and we must find a way to
calculate it from the information inside of the domain.
This estimate of the pressure can be obtained by ei-
ther extrapolating from the values of adjacent cells or
by use of a discretized form of the normal momentum
equation.
The second approach has proven to yield better re-

sults in two-dimensional steady-state solvers, and thus,
following Rizzi,20 the derivative of the pressure in the
normal direction to the solid wall is computed from
the unsteady momentum equations. Streamline differ-
entiation of the wall boundary condition, (�u · �n) = 0,
together with the unsteady momentum equation dot-
ted with the unit normal, �n, yields the following rela-
tionship

ρ�u ·
(
∂

∂t
+ �u · ∇

)
�n = �n · ∇p (7)

We now construct a transformation from cartesian
coordinates (x, y; t) to body conforming coordinates
(X,Y ; τ), where X is along the surface of the airfoil
and Y is normal to it. This transformation is de-
fined by its jacobian J = ∂(x,y,t)

∂(X,Y,τ) . Substitution of
the normal vector �n by its components (yX

|�n| ,
−xX

|�n| ) into
Equation 7 yields the following expression for the nor-
mal pressure gradient, pY , at the airfoil surface:

(x2
X + y2X) pY = (xX xY + yX yY )pX

+ρ(yY u− xY v − Jxt)(v xXX − u yXX)
+ρ J yt(u yXY − v xXY )− ρ J (u yXτ − v xXτ )

where the time derivatives of the metrics are computed
using the backwards difference operator of Equation 4.
In the far field, non-reflecting boundary conditions

are applied based on the work of Venkatakrishnan,21

although a more refined far field model is under study.

Aeroelastic Model
The typical section wing model22, 23 is by now a

well established two-dimensional analog of a three-
dimensional wing. This model (see Figure 1) features
two degrees of freedom, which we shall refer to as
pitching and plunging degrees of freedom. The gov-
erning equations of motion can be shown to be

mḧ+ Sαα̈+Khh = −L
Sαḧ+ Iαα̈+Kαα = Mea,

where L and Mea are the lift (positive up) and mo-
ment about the elastic axis (positive nose up), Kh and
Kα are bending and torsional spring stiffnesses, and h
and α are the plunging coordinate (positive down) and
the angle of attack (in radians). Non-dimensionalizing
time by the uncoupled natural frequency of the tor-
sional spring, τ = ωαt, we can rewrite the equations
of motion in the more familiar form

[M ]{q̈}+ [K]{q} = {F}, (8)

where

[M ] =
[
1 xα

xα r2α

]
, [K] =

[ (
ωh

ωα

)2

0
0 r2α

]

are the non-dimensional mass and stiffness matrices,
and

[F ] =
4

πµk2
c

[ −Cl

2Cm

]
, {q} =

{
h
b
α

}
,

are the load and displacement vectors. Cl and Cm

are the coefficient of lift and the coefficient of moment
about the elastic axis. In order to solve Equation 8,
a Rayleigh-Ritz modal approach is used. The mode
shapes and frequencies are obtained by solving the
generalized eigenproblem24 associated with the free
vibration problem and, in general, only the first N
modes are considered. With these first N modes we
have an approximate description of the displacement
vector of the system given by

{q} =
N∑

r=1

ηr{φ}r,

where {φ}r is the rth eigenvector of the generalized
eigenproblem, and ηr is the corresponding normal co-
ordinate. This truncated representation yields a valid
model if the modal frequencies of the ignored mode
shapes are much higher than the values of the aerody-
namic frequencies involved in the problem. In our case,
for a two degree-of-freedom problem, we have only
two eigenfrequencies corresponding to the two eigen-
modes (symmetric and antisymmetric) which span the
whole space. Therefore, no truncation is needed. On
the other hand, in the three-dimensional version of
the code, only the N lower frequency modes are kept
yielding a truncated model in which the displacement
vector is restricted to lie in the subspace spanned by
these N eigenmodes. The displacement vector can
then be decomposed as

{q} = [φ]{η}.
Since the eigenvectors are orthogonal with respect to
both the mass and stiffness matrices, premultiplying
Equation 8 by [φ]T (normalized such that the eigenvec-
tors are orthonormal with respect to the mass matrix)

4 of 12

American Institute of Aeronautics and Astronautics Paper 94–0056



yields a set of equations in generalized coordinates of
the form

η̈i + 2ζiωiη̇i + ω2
i ηi = Qi, i = 1, 2 (9)

where

Qi = {φ}T
i {F}

ω2
i = {φ}T

i [K]{φ}i

1 = {φ}T
i [M ]{φ}i,

and ζi is the modal damping of the ith mode that has
been added to the model. The assumption of the ex-
istence of a modal damping parameter supposes that
the damping matrix (which is not included in Equa-
tion 8) is diagonalized by the appropriate pre- and
post-multiplication by [φ]T and [φ].
The structural integrator is based on the decomposi-

tion of each of the modal Equations (9) into a system
of first-order differential equations. Using the trans-
formation

x1i = ηi

ẋ1i = x2i

ẋ2i = Qi − 2ζiωix2i − ω2
i x1i

for each of the modal equations, we can rewrite Equa-
tions 9 in matrix form as

{Ẋi} = [Ai]{Xi}+ {Fi}, i = 1, 2
where

{Xi} =
{
x1i

x2i

}
, [Ai] =

[
0 1

−ω2
i −2ωiζi

]
,

and

{Fi} =
{

0
Qi

}
.

Now, for this system, assume another transformation
{Xi} = [Pi]{Zi}, such that the new system

{Żi} = ([Pi]−1[Ai][Pi]){Zi}+ [Pi]−1{Fi}
is decoupled. That is, the matrices ([Pi]−1[Ai][Pi]) are
diagonal. Then for each mode, the governing equations
of the motion of the structure are

dz1i

dt
= ωi(−ζi +

√
ζ2

i − 1) z1i +
(−ζi +

√
ζ2

i − 1)

2
√

ζ2
i − 1

Qi

dz2i

dt
= ωi(−ζi −

√
ζ2

i − 1) z2i +
(ζi +

√
ζ2

i − 1)

2
√

ζ2
i − 1

Qi.

In these equations, the time derivative operator can
be discretized as in Equation 5 for second-, third-, or
higher-order accuracy. For second order accuracy the
result is the following set of two difference equations
for each mode

3zn+1
1i − 4zn

1i + zn−1
1i

2∆t
=

ωi(−ζi +
√

ζ2
i − 1) zn+1

1i +
(−ζi +

√
ζ2

i − 1)

2
√

ζ2
i − 1

Qn+1
i

3zn+1
2i − 4zn

2i + zn−1
2i

2∆t
=

ωi(−ζi −
√

ζ2
i − 1) zn+1

2i +
(ζi +

√
ζ2

i − 1)

2
√

ζ2
i − 1

Qn+1
i (10)

which as in Equation 6 can be integrated to steady-
state in pseudo-time. This allows for the inclusion
of non-linearities in the structural model. The cur-
rent version of the code employs a second-order ac-
curate discretization of the time derivative operator.
The third-order accurate discretization has been im-
plemented in the three-dimensional version of the pro-
gram. This pseudo-time integration yields the follow-
ing equations

dz1i

dt∗
+R∗

1i(z1i) = 0

dz2i

dt∗
+R∗

2i(z2i) = 0, (11)

where

R∗
1i(z1i) =

{
3

2∆t
− ωi(−ζi +

√
ζ2

i − 1)
}
z1i

− (−ζi +
√

ζ2
i − 1)

2
√

ζ2
i − 1

fi + S1i

R∗
2i(z2i) =

{
3

2∆t
− ωi(−ζi −

√
ζ2

i − 1)
}
z2i

− (ζi +
√

ζ2
i − 1)

2
√

ζ2
i − 1

fi + S2i

and Sji are source terms from the previous iteration
levels. Notice that each of Equations 10 is coupled im-
plicitly to the solution of the Euler equations since Qi

contains both Cl and Cm. The pseudo-time integra-
tions will solve this problem as we shall see in the next
section. For a given Qn+1

i , Equations 10 can be solved
algebraically for the new values of z1i and z2i. The so-
lution of Equations 11 is performed with a four-stage
Runge-Kutta scheme in order to provide for the possi-
ble future inclusion of non-linearities in the structural
model.

Fluid-Structure Coupling
Since the goal is to achieve full convergence of both

Equations 5 and 10 simultaneously, a special strategy
will be used. The solution for all time levels up to n
has been calculated and the flow fields at time levels n
and n−1 are stored in memory. In order to march the
Euler equations forward in time, we will use a number
of multigrid cycles that drive Equations 6 to a steady-
state. If we took this solution, computed Cl and Cm

at time level n + 1, and then used this information
to calculate the new position of the airfoil according
to Equations 10, the new position and velocity of the
airfoil at n + 1 will presumably change the flow solu-
tion (values of Cl and Cm). As a result, the set of
equations will not be fully converged. In order to fully
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converge the system, when marching to a steady-state
in pseudo-time, the two systems exchange information
after every pseudo-time step. We will proceed as fol-
lows:

• At time level n, perform a multigrid iteration of
the pseudo-time Euler equations (6) and calculate
the temporary values of Cl and Cm.

• This information is sent to the structural equa-
tions, which determine the approximate position
and velocity of the airfoil at the end of the real
time step.

• The new position and velocity of the section are
taken into account by the flow equations which
repeat the process.

It is found that after 7 to 10 iterations of the pre-
vious cycle, the solution is fully converged—we have
marched the two sets of equations forward in time
one real time step ∆t. In practice it is found that
a minimum of two multigrid cycles in pseudo-time are
necessary before the exchange of information with the
structural equations of motion.

Results and Discussion
Results were computed with the coupled algorithm

described above for a two-dimensional swept wing
model (Case A of Isogai). The structural parameters
for this case are: xα = 1.8, r2α = 3.48, a = −2.0,
ωh = 100 rad/sec, ωα = 100 rad/sec, and µ = 60.
Notice that the pivot point lies ahead of the leading
edge of the airfoil in question. The airfoil cross sec-
tion is that of the NACA 64A010 taken from.26 These
parameters were empirically chosen by Isogai in order
to simulate the behavior of an outboard section of a
sweptback wing. The normal modes of vibration of
this two-dimensional model closely resemble those of
the swept wing, where the plunging mode is the flutter
mode at the bottom of the “transonic dip”.
In order to validate the unsteady flow code UFLO82,

calculations were done on a 160×32 O-mesh. A detail
of this mesh can be seen in Figure 2. A NACA 64A010
airfoil section was used at a free stream Mach number
M∞ = 0.796, and 36 equal real time steps per period of
forced oscillation were taken. The airfoil was forced in
pitch about the quarter chord at a reduced frequency
of 0.202. Experimental results are taken from.25 As
we can see in Figure 3, the computed results are in
extremely good agreement with the experiment, and
therefore, confidence is gained for the application of
this algorithm to the aeroelastic problem.
Before proceeding to the fully coupled aeroelastic

problem, a series of tests were tried on the same grid
but using the third- and fourth- order accurate dis-
cretizations of the time derivative operator in Equa-
tion 2. The third-order accurate discretization yields a

considerable improvement over the baseline discretiza-
tion. As we can see in Figure 4 the computations with
the third-order accurate discretization using 12 and 8
steps per period are barely distinguishable from the
second order accurate results using 72 steps per pe-
riod. The third-order accurate algorithm has a storage
penalty since one extra level of computations needs to
be stored. For Euler flows, this penalty is greatly out-
weighed by the savings in processor time that result
from a maximum CFL number on the order of 12, 000
in the smallest cells of the domain. The third-order
accurate discretization has been used in the three-
dimensional version of the code. The fourth-order
accurate discretization has been found to be unstable
with the current treatment of the flow equations.
For aeroelastic problems, initial calculations were

done on an O-mesh with 96×16 cells and 36 real time
steps per period of forced oscillation. Variations of
the results with spatial and time grid refinements are
presented later.
In general, the airfoil is forced sinusoidally in pitch

about the elastic axis for three complete cycles at a fre-
quency ωf close to the first mode of vibration of the
structure. At the end of these forced cycles, the imag-
inary pin keeping the airfoil from displacing vertically
is removed, and the system is allowed to evolve forced
by its own self-induced loads. The response is com-
puted for different Mach numbers and different values
of the speed index, V .
For low speed indices, the vibrations are seen to

decay with time as can be seen in Figure 5. As V
increases the system reaches the neutrally stable point
at which self-supported oscillations of constant ampli-
tude appear—this is the flutter point. An example of
the this behavior is found in Figure 6. If the speed
index is increased any further, the system is unstable
and the amplitudes of both the pitching and plung-
ing motions will grow exponentially with time until
the structure fails. An example of divergent behavior
can be seen in Figure 7. The three cases shown cor-
respond to three different Mach numbers simply for
clarity of the solutions, but each of the points on the
flutter boundary was computed by varying the speed
index while holding the Mach number constant.
When this process is repeated for several Mach num-

bers a flutter boundary for the given airfoil can be
computed. Several runs are needed to compute each
point on the boundary until the value of the speed
index that yields a zero damping response is found.
Isogai’s configuration has been the subject of several
investigations. Figure 8 shows a comparison of the
calculated flutter boundaries from the present code
and previous references (6, 9). As we can see, all of
the codes predict fairly well the “transonic dip” phe-
nomenon. The bottom of the dip is placed at a speed
index of V = 0.5332 by the present code. The tran-
sonic small disturbance (TSD) codes deviate less than
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10% from this value. The results from TSD codes lie
at a higher speed index in the low Mach number range
(M∞ ∼ 0.75 − 0.85) possibly due to the inadequate
prediction of the phase lag in the shock wave motion.
As the Mach number approaches unity, both the TSD
and the present Euler codes seem to agree more closely,
probably due to the fact that the TSD is an exact ap-
proximation in the limit M∞ → 1.0. Disagreement
with previous Euler results by Kousen10 in this range
can only be explained by the different spatial meshes
used (C-mesh vs. O-mesh in the present calculations).
Multiple flutter points are observed at a range of

Mach numbers in the neighborhood of M∞ = 0.85.
Once in the unstable region, further increase in the
speed index past the second flutter point results in a
stable configuration, which will again become unstable
for even higher values of V . Right below M∞ = 0.9, a
sharp rise in the flutter speed index is observed. For
higher values of the Mach number, flutter points exist
but occur at higher speed indices. In fact, as we can
see in Figure 9, the flutter mode is now the second
mode of vibration (with the higher frequency and the
antisymmetric mode).
Although the transonic small disturbance codes

seem to agree closely with the Euler codes, they can
not accurately model all the flow phenomena present
in the calculations. The first Euler code used by
Bendiksen and Kousen showed the existence of limit
cycle behavior11 in the airfoil response at certain Mach
numbers. With the present code, the existence of
these limit cycles (a purely non-linear phenomenon)
has been confirmed, and will be the subject of fur-
ther study. As we can see in Figure 10, the amplitude
of the vibrations initially increases exponentially until
the non-linearities in the aerodynamics limit the am-
plitude of the motion.
Once the validity of the structural integrator has

been established, several numerical experiments were
conducted in order to assess its performance. Using
a baseline case with an O-mesh of 96 × 16 cells and
144 time steps per period (fine time grid), the flutter
boundary for the NACA 64A010 with Isogai’s struc-
tural parameters was computed. The same calculation
was performed on a 96 × 16 grid with only 36 time
steps per period of forced oscillation. As we can see
in Figure 11, both flutter boundaries are in very close
agreement except at the M∞ = 0.9 point. The ex-
planation for this disagreement is simple. Since the
flutter mode at this Mach number is the second mode,
the solution had on the order of only 8 time steps per
period of oscillation. The solution is then largely un-
derresolved, and thus the loss of accuracy.
Next, a second numerical experiment was carried

out in order to investigate the effects of spatial grid
refinement. Now a 192×32 cell mesh was used and 36
time steps per period of forced oscillation were taken.
The results are in extremely close agreement with the

previous two flutter boundary calculations as can be
observed in Figure 12, showing that a 96 × 16 mesh
with 36 steps per period is a valid mesh to obtain flut-
ter boundaries for two-dimensional airfoils. As before,
there is a problem with the M∞ = 0.9 point due to
the same reason explained above.
Finally, the flutter point for M∞ = 0.825 was cal-

culated, but this time we varied the amplitude of the
forcing. From Figure 13 we can see that both the flut-
ter speed index and the flutter reduced frequency are
practically independent of the amplitude of the forcing
motion as opposed to results reported before.9

Computer Requirements

The preceding computations were carried out on a
Convex C3400 with four processors at Princeton Uni-
versity. For a spatial grid of 192 × 32 the total CPU
time required is on the order of 9.4 sec per time-step.
Notice that only about 144 steps are necessary for each
run. The performance of the present code, UFLO82S,
is one or two orders of magnitude better than the ex-
plicit version of the code, depending on the value of
the reduced frequency kc of the response. This is the
major advantage of using the implicit discretization
vs. an explicit one.

Conclusions and Recommendations
The following conclusions can be drawn from the

results of this paper:

1. A procedure to integrate the Euler equations for-
ward in time coupled with a typical section aeroe-
lastic wing model has been developed.

2. Full convergence of the two relevant sets of equa-
tions is achieved at every time step of the calcu-
lation.

3. Proof has been presented that Jameson’s fully-
implicit multigrid-driven algorithm (14) can be
used for aeroelastic analysis with great compu-
tational savings.

4. Extension of the described approach to three-
dimensional wings is necessary in order to treat
practical configurations and to validate the two-
dimensional typical section wing model approxi-
mation. Efforts to complete this project are al-
ready under way.

5. Further refinement of the aerodynamic model
(Navier-Stokes) is required in order to validate the
Euler and TSD results, and to extend the validity
of the model into the separated flow region where
additional physical phenomena are present.
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Fig. 2 Detail of the O-Mesh Used in Calculations.
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Fig. 9 Second Mode Response. M∞ = 0.900, Vf =
2.840, ∆α = 1.0◦, ωf = 100 rad/sec.
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Fig. 10 Limit Cycle Response. M∞ = 0.75, Vf =
1.320, ∆α = 1.0◦, ωf = 100 rad/sec.
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Fig. 12 Spatial Grid Refinement Comparison.
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Fig. 13 Flutter Parameters Dependence on Forc-
ing Amplitude, M∞ = 0.825.
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