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Abstract. We construct the first (key-policy) attribute-based encryp-
tion (ABE) system with short secret keys: the size of keys in our system
depends only on the depth of the policy circuit, not its size. Our con-
structions extend naturally to arithmetic circuits with arbitrary fan-in
gates thereby further reducing the circuit depth. Building on this ABE
system we obtain the first reusable circuit garbling scheme that pro-
duces garbled circuits whose size is the same as the original circuit plus
an additive poly(λ, d) bits, where λ is the security parameter and d is the
circuit depth. All previous constructions incurred a multiplicative poly(λ)
blowup.

We construct our ABE using a new mechanism we call fully key-
homomorphic encryption, a public-key system that lets anyone translate
a ciphertext encrypted under a public-key x into a ciphertext encrypted
under the public-key (f(x), f) of the same plaintext, for any efficiently
computable f . We show that this mechanism gives an ABE with short
keys. Security of our construction relies on the subexponential hardness
of the learning with errors problem.

We also present a second (key-policy) ABE, using multilinear maps,
with short ciphertexts: an encryption to an attribute vector x is the size
of x plus poly(λ, d) additional bits. This gives a reusable circuit garbling
scheme where the garbled input is short.
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1 Introduction

(Key-policy) attribute-based encryption [SW05, GPSW06] is a public-key en-
cryption mechanism where every secret key skf is associated with some function
f : X → Y and an encryption of a message μ is labeled with a public at-
tribute vector x ∈ X . The encryption of μ can be decrypted using skf only if
f(x) = 0 ∈ Y. Intuitively, the security requirement is collusion resistance: a
coalition of users learns nothing about the plaintext message μ if none of their
individual keys are authorized to decrypt the ciphertext.

Attribute-based encryption (ABE) is a powerful generalization of identity-
based encryption [Sha84, BF03, Coc01] and fuzzy IBE [SW05, ABV+12] and is
a special case of functional encryption [BSW11]. It is used as a building-block in
applications that demand complex access control to encrypted data [PTMW06],
in designing protocols for verifiably outsourcing computations [PRV12], and for
single-use functional encryption [GKP+13b]. Here we focus on key-policy ABE
where the access policy is embedded in the secret key. The dual notion called
ciphertext-policy ABE can be realized from this using universal circuits, as ex-
plained in [GPSW06, GGH+13c].

The past few years have seen much progress in constructing secure and ef-
ficient ABE schemes from different assumptions and for different settings. The
first constructions [GPSW06, LOS+10, OT10, LW12, Wat12, Boy13, HW13] ap-
ply to predicates computable by Boolean formulas which are a subclass of log-
space computations. More recently, important progress has been made on con-
structions for the set of all polynomial-size circuits: Gorbunov, Vaikuntanathan,
and Wee [GVW13] gave a construction from the Learning With Errors (LWE)
problem and Garg, Gentry, Halevi, Sahai, and Waters [GGH+13c] gave a con-
struction using multilinear maps. In both constructions the policy functions are
represented as Boolean circuits composed of fan-in 2 gates and the secret key
size is proportional to the size of the circuit.

Our Results. We present two new key-policy ABE systems. Our first system,
which is the centerpiece of this paper, is an ABE based on the learning with errors
problem [Reg05] that supports functions f represented as arithmetic circuits with
large fan-in gates. It has secret keys whose size is proportional to depth of the
circuit for f , not its size. Secret keys in previous ABE constructions contained
an element (such as a matrix) for every gate or wire in the circuit. In our scheme
the secret key is a single matrix corresponding only to the final output wire
from the circuit. We prove selective security of the system and observe that by
a standard complexity leveraging argument (as in [BB11]) the system can be
made adaptively secure.

Theorem 1.1 (Informal). Let λ be the security parameter. Assuming subex-
ponential LWE, there is an ABE scheme for the class of functions with depth-d
circuits where the size of the secret key for a circuit C is poly(λ, d).

Our second ABE system, based on multilinear maps ([BS02],[GGH13a]), op-
timizes the ciphertext size rather than the secret key size. The construction here



Fully Key-Homomorphic Encryption 535

relies on a generalization of broadcast encryption [FN93, BGW05, BW13] and the
attribute-based encryption scheme of [GGH+13c]. Previously, ABE schemes with
short ciphertexts were known only for the class of Boolean formulas [ALdP11].

Theorem 1.2 (Informal). Let λ be the security parameter. Assuming that d-
level multilinear maps exist, there is an ABE scheme for the class of functions
with depth-d circuits where the size of the encryption of an attribute vector x is
|x|+ poly(λ, d).

Our ABE schemes result in a number of applications and have many desirable
features, which we describe next.

Applications to reusable garbled circuits. Over the years, garbled circuits and
variants have found many uses: in two party [Yao86] and multi-party secure pro-
tocols [BMR90], one-time programs [GKR08], verifiable computation [GGP10],
homomorphic computations [GHV10] and many others. Classical circuit garbling
schemes produced single-use garbled circuits which could only be used in con-
junction with one garbled input. Goldwasser et al. [GKP+13b] recently showed
the first fully reusable circuit garbling schemes and used them to construct token-
based program obfuscation schemes and k-time programs [GKP+13b].

Most known constructions of both single-use and reusable garbled circuits
proceed by garbling each gate to produce a garbled truth table, resulting in a
multiplicative size blowup of poly(λ). A fundamental question regarding garbling
schemes is: How small can the garbled circuit be?

There are three exceptions to the gate-by-gate garbling method that we are
aware of. The first is the “free XOR” optimization for single-use garbling schemes
introduced by Kolesnikov and Schneider [KS08] where one produces garbled ta-
bles only for the AND gates in the circuit C. This still results in a multiplicative
poly(λ) overhead but proportional to the number of AND gates (as opposed to
the total number of gates). Secondly, Lu and Ostrovsky [LO13] recently showed
a single-use garbling scheme for RAM programs, where the size of the gar-
bled program grows as poly(λ) times its running time. Finally, Goldwasser et
al. [GKP+13a] show how to (reusably) garble non-uniform Turing machines un-
der a non-standard and non-falsifiable assumption and incurring a multiplicative
poly(λ) overhead in the size of the non-uniformity of the machine. In short, all
known garbling schemes (even in the single-use setting) suffer from a multiplica-
tive overhead of poly(λ) in the circuit size or the running time.

Using our first ABE scheme (based on LWE) in conjunction with the tech-
niques of Goldwasser et al. [GKP+13b], we obtain the first reusable garbled
circuits whose size is |C| + poly(λ, d). For large and shallow circuits, such as
those that arise from database lookup, search and some machine learning appli-
cations, this gives significant bandwidth savings over previous methods (even in
the single use setting).

Theorem 1.3 (Informal). Assuming subexponential LWE, there is a reusable
circuit garbling scheme that garbles a depth-d circuit C into a circuit Ĉ such
that |Ĉ| = |C|+ poly(λ, d), and garbles an input x into an encoded input x̂ such
that |x̂| = |x| · poly(λ, d).



536 D. Boneh et al.

We next ask if we can obtain short garbled inputs of size |x̂| = |x|+poly(λ, d),
analogous to what we achieved for the garbled circuit. In a beautiful recent work,
Applebaum, Ishai, Kushilevitz and Waters [AIKW13] showed constructions of
single-use garbled circuits with short garbled inputs of size |x̂| = |x| + poly(λ).
We remark that while their garbled inputs are short, their garbled circuits still
incur a multiplicative poly(λ) overhead.

Using our second ABE scheme (based on multilinear maps) in conjunction
with the techniques of Goldwasser et al. [GKP+13b], we obtain the first reusable
garbling scheme with garbled inputs of size |x|+ poly(λ, d).

Theorem 1.4 (Informal). Assuming subexponential LWE and the existence of
d-level multilinear maps, there is a reusable circuit garbling scheme that garbles
a depth-d circuit C into a circuit Ĉ such that |Ĉ| = |C| · poly(λ, d), and garbles
an input x into an encoded input x̂ such that |x̂| = |x|+ poly(λ, d).

A natural open question is to construct a scheme which produces both short
garbled circuits and short garbled inputs. We focus on describing the ABE
schemes in the rest of the paper and postpone the details of the garbling scheme
to the full version.

ABE for arithmetic circuits. For a prime q, our first ABE system (based on
LWE) directly handles arithmetic circuits with weighted addition and multipli-
cation gates over Zq, namely gates of the form

g+(x1, . . . , xk) = α1x1 + . . .+ αkxk and g×(x1, . . . , xk) = α · x1 · · ·xk

where the weights αi can be arbitrary elements in Zq. Previous ABE construc-
tions worked with Boolean circuits.

Addition gates g+ take arbitrary inputs x1, . . . , xk ∈ Zq. However, for mul-
tiplication gates g×, we require that the inputs are somewhat smaller than q,
namely in the range [−p, p] for some p < q. (In fact, our construction allows for
one of the inputs to g× to be arbitrarily large in Zq). Hence, while f : Z�

q → Zq

can be an arbitrary polynomial-size arithmetic circuit, decryption will succeed
only for attribute vectors x for which f(x) = 0 and the inputs to all multiplica-
tion gates in the circuit are in [−p, p]. We discuss the relation between p and q
at the end of the section.

We can in turn apply our arithmetic ABE construction to Boolean circuits
with large fan-in resulting in potentially large savings over constructions re-
stricted to fan-in two gates. An AND gate can be implemented as ∧(x1, . . . , xk) =
x1 · · ·xk and an OR gate as ∨(x1, . . . , xk) = 1−(1−x1) · · · (1−xk). In this setting,
the inputs to the gates g+ and g× are naturally small, namely in {0, 1}. Thus,
unbounded fan-in allows us to consider circuits with smaller size and depth, and
results in smaller overall parameters.

ABE with key delegation. Our first ABE system also supports key delegation.
That is, using the master secret key, user Alice can be given a secret key skf
for a function f that lets her decrypt whenever the attribute vector x satisfies
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f(x) = 0. In our system, for any function g, Alice can then issue a delegated
secret key skf∧g to Bob that lets Bob decrypt if and only if the attribute vector
x satisfies f(x) = g(x) = 0. Bob can further delegate to Charlie, and so on. The
size of the secret key increases quadratically with the number of delegations.

We note that Gorbunov et al. [GVW13] showed that their ABE system for
Boolean circuits supports a somewhat restricted form of delegation. Specifically,
they demonstrated that using a secret key skf for a function f , and a secret key
skg for a function g, it is possible to issue a secret key skf∧g for the function f∧g.
In this light, our work resolves the naturally arising open problem of providing
full delegation capabilities (i.e., issuing skf∧g using only skf ). We postpone a
detailed description of the key delegation capabilities to the full version.

Other Features. In the full version, we state several other extensions of our con-
structions, namely an Attribute-Based Fully Homomorphic Encryption scheme
as well as a method of outsourcing decryption in our ABE scheme.

1.1 Building an ABE for Arithmetic Circuits with Short Keys

Key-homomorphic public-key encryption. We obtain our ABE by constructing a
public-key encryption scheme that supports computations on public keys. Basic
public keys in our system are vectors x in Z

�
q for some �. Now, let x be a tuple in

Z
�
q and let f : Z�

q → Zq be a function represented as a polynomial-size arithmetic
circuit. Key-homomorphism means that:

anyone can transform an encryption under key x into an encryption
under key f(x).

More precisely, suppose c is an encryption of message μ under public-key x ∈ Z
�
q.

There is a public algorithm Evalct(f,x, c) −→ cf that outputs a ciphertext cf
that is an encryption of μ under the public-key f(x) ∈ Zq. In our constructions
Evalct is deterministic and its running time is proportional to the size of the
arithmetic circuit for f .

If we give user Alice the secret-key for the public-key 0 ∈ Zq then Alice can
use Evalct to decrypt c whenever f(x) = 0, as required for ABE. Unfortunately,
this ABE is completely insecure! This is because the secret key is not bound to
the function f : Alice could decrypt any ciphertext encrypted under x by simply
finding some function g such that g(x) = 0.

To construct a secure ABE we slightly extend the basic key-homomorphism
idea. A base encryption public-key is a tuple x ∈ Z

�
q as before, however Evalct

produces ciphertexts encrypted under the public key (f(x), 〈f〉) where f(x) ∈ Zq

and 〈f〉 is an encoding of the circuit computing f . Transforming a ciphertext c
from the public key x to (f(x), 〈f〉) is done using algorithm Evalct(f,x, c) −→ cf
as before. To simplify the notation we write a public-key (y, 〈f〉) as simply (y, f).
The precise syntax and security requirements for key-homomorphic public-key
encryption are provided in Section 3.

To build an ABE we simply publish the parameters of the key-homomorphic
PKE system. A message μ is encrypted with attribute vector x = (x1, . . . , x�) ∈
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Z
�
q that serves as the public key. Let c be the resulting ciphertext. Given an

arithmetic circuit f , the key-homomorphic property lets anyone transform c into
an encryption of μ under key (f(x), f). The point is that now the secret key for
the function f can simply be the decryption key for the public-key (0, f). This
key enables the decryption of c when f(x) = 0 as follows: the decryptor first uses
Evalct(f,x, c) −→ cf to transform the ciphertext to the public key (f(x), f). It
can then decrypt cf using the decryption key it was given whenever f(x) = 0.
We show that this results in a secure ABE.

A construction from learning with errors. Fix some n ∈ Z
+, prime q, and m =

Θ(n log q). Let A, G and B1, . . . ,B� be matrices in Z
n×m
q that will be part

of the system parameters. To encrypt a message μ under the public key x =
(x1, . . . , x�) ∈ Z

�
q we use a variant of dual Regev encryption [Reg05, GPV08]

using the following matrix as the public key:
(
A | x1G+B1 | · · · | x�G+B�

) ∈ Z
n×(�+1)m
q (1)

We obtain a ciphertext cx. We note that this encryption algorithm is the same
as encryption in the hierarchical IBE system of [ABB10] and encryption in the
predicate encryption for inner-products of [AFV11].

We show that, remarkably, this system is key-homomorphic: given a function
f : Z�

q → Zq computed by a poly-size arithmetic circuit, anyone can transform
the ciphertext cx into a dual Regev encryption for the public-key matrix

(
A | f(x) ·G+Bf

) ∈ Z
n×2m
q

where the matrix Bf ∈ Z
n×m
q serves as the encoding of the circuit for the

function f . This Bf is uniquely determined by f and B1, . . . ,B�. The work
needed to compute Bf is proportional to the size of the arithmetic circuit for f .

To illustrate the idea, assume that we have the ciphertext under the public
key (x, y): cx = (c0 | cx | cy). Here c0 = AT s + e, cx = (xG + B1)

T s + e1
and cy = (yG + B2)

T s + e2. To compute the ciphertext under the public key
(x + y, B+) one takes the sum of the ciphertexts cx and cy. The result is the
encryption under the matrix

(x + y)G+ (B1 +B2) ∈ Z
n×m
q

where B+ = B1 + B2. One of the main contributions of this work is a novel
method of multiplying the public keys. Together with addition, described above,
this gives full key-homomorphism. To construct the ciphertext under the public
key (xy, B×), we first compute a small-norm matrix R ∈ Z

m×m
q , s.t. GR =

−B1. With this in mind we compute

RT cy = RT · [(yG+B2)
T s+ e2

] ≈ (−yB1 +B2R)T s, and

y · cx = y
[
(xG+B1)

T s+ e1
] ≈ (xyG+ yB1)

T s

Adding the two expressions above gives us

(xyG+B2R)T s+ noise
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which is a ciphertext under the public key (xy, B×) where B× = B2R. Note
that performing this operation requires that we know y. This is reason why
this method gives an ABE and not (private index) predicate encryption. In
Section 4.1 we show how to generalize this mechanism to arithmetic circuits
with arbitrary fan-in gates.

As explained above, this key-homomorphism gives us an ABE for arithmetic
circuits: the public parameters contain random matrices B1, . . . ,B� ∈ Z

n×m
q and

encryption to an attribute vector x in Z
�
q is done using dual Regev encryption

to the matrix (1). A decryption key skf for an arithmetic circuit f : Z�
q → Zq

is a decryption key for the public-key matrix (A | 0 ·G +Bf ) = (A|Bf ). This
key enables decryption whenever f(x) = 0. The key skf can be easily generated
using a short basis for the lattice Λ⊥

q (A) which serves as the master secret key.
We prove selective security from the learning with errors problem (LWE) by

using another homomorphic property of the system implemented in an algorithm
called Evalsim. Using Evalsim the simulator responds to the adversary’s private
key queries and then solves the given LWE challenge.

Parameters and performance. Applying algorithm Evalct(f,x, c) to a ciphertext
c increases the magnitude of the noise in the ciphertext by a factor that depends
on the depth of the circuit for f . A k-way addition gate (g+) increases the norm
of the noise by a factor of O(km). A k-way multiplication gate (g×) where all
(but one) of the inputs are in [−p, p] increases the norm of the noise by a factor
of O(pk−1m). Therefore, if the circuit for f has depth d, the noise in c grows in
the worst case by a factor of O((pk−1m)d). Note that the weights αi used in the
gates g+ and g× have no effect on the amount of noise added.

For decryption to work correctly the modulus q should be slightly larger than
the noise in the ciphertext. Hence, we need q on the order of Ω(B · (pk−1m)d)
where B is the maximum magnitude of the noise added to the ciphertext during
encryption. For security we rely on the hardness of the learning with errors
(LWE) problem, which requires that the ratio q/B is not too large. In particular,
the underlying problem is believed to be hard even when q/B is 2(n

ε) for some
fixed 0 < ε < 1/2. In our settings q/B = Ω

(
(pk−1m)d

)
. Then to support circuits

of depth t(λ) for some polynomial t(·) we choose n such that n ≥ t(λ)(1/ε) ·
(2 log2 n + k log p)1/ε, set q = 2(n

ε), m = Θ(n log q), and the LWE noise bound
to B = O(n). This ensures correctness of decryption and hardness of LWE since
we have Ω((pkm)t(λ)) < q ≤ 2(n

ε), as required. The ABE system of [GVW13]
uses similar parameters due to a similar growth in noise as a function of circuit
depth.

Secret key size. A decryption key in our system is a single 2m × m low-norm
matrix, namely the trapdoor for the matrix (A|Bf ). Since m = Θ(n log q) and
log2 q grows linearly with the circuit depth d, the overall secret key size grows as
O(d2) with the depth. In previous ABE systems for circuits [GVW13, GGH+13c]
secret keys grew as O(d2s) where s is the number of boolean gates or wires in
the circuit.
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Other related work. Predicate encryption [BW07, KSW08] provides a stronger
privacy guarantee than ABE by additionally hiding the attribute vector x. Pred-
icate encryption systems for inner product functionalities can be built from bi-
linear maps [KSW08] and LWE [AFV11]. More recently, Garg et al. [GGH+13b]
constructed functional encryption (which implies predicate encryption) for all
polynomial-size functionalities using indistinguishability obfuscation.

The encryption algorithm in our system is similar to that in the hierarchical-
IBE of Agrawal, Boneh, and Boyen [ABB10]. We show that this system is key-
homomorphic for polynomial-size arithmetic circuits which gives us an ABE for
such circuits. The first hint of the key homomorphic properties of the [ABB10]
system was presented by Agrawal, Freeman, and Vaikuntanathan [AFV11] who
showed that the system is key-homomorphic with respect to low-weight lin-
ear transformations and used this fact to construct a (private index) predicate
encryption system for inner-products. To handle high-weight linear transforma-
tions [AFV11] used bit decomposition to represent the large weights as bits. This
expands the ciphertext by a factor of log2 q, but adds more functionality to the
system. Our ABE, when presented with a circuit containing only linear gates
(i.e. only g+ gates), also provides a predicate encryption system for inner prod-
ucts in the same security model as [AFV11], but can handle high-weight linear
transformations directly, without bit decomposition, thereby obtaining shorter
ciphertexts and public-keys.

A completely different approach to building circuit ABE was presented by
Garg, Gentry, Sahai, and Waters [GGSW13] who showed that a general primitive
they named witness encryption implies circuit ABE when combined with witness
indistinguishable proofs.

2 Preliminaries

2.1 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme for a class of functions Fλ =
{f : Xλ → Yλ} is a quadruple Π = (Setup,Keygen,Enc,Dec) of probabilistic
polynomial-time algorithms. Setup takes a unary representation of the security
parameter λ and outputs public parameters mpk and a master secret key msk;
Keygen(msk, f ∈ Fλ) output a decryption key skf ; Enc(mpk, x ∈ Xλ, μ) out-
puts a ciphertext c, the encryption of message μ labeled with attribute vector
x; Dec(skf , c) outputs a message μ or the special symbol ⊥. (When clear from
the context, we drop the subscript λ from Xλ, Yλ and Fλ.)

Correctness. We require that for every circuit f ∈ F , attribute vector x ∈ X
where f(x) = 0, and message μ, it holds that Dec(skf , c) = μ with an overwhelm-
ing probability over the choice of (mpk,msk) ← Setup(λ), c ← Enc(mpk, x, μ),
and skf ← Keygen(msk, f).

Security. We refer the reader to the full version of this paper or [GPSW06] for
the definition of selective and full security of the ABE scheme.
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2.2 Background on Lattices

Lattices. Let q, n,m be positive integers. For a matrix A ∈ Z
n×m
q we let Λ⊥

q (A)
denote the lattice {x ∈ Z

m : Ax = 0 in Zq}. More generally, for u ∈ Z
n
q we let

Λu
q (A) denote the coset {x ∈ Z

m : Ax = u in Zq}.
We note the following elementary fact: if the columns of TA ∈ Z

m×m are a
basis of the lattice Λ⊥

q (A), then they are also a basis for the lattice Λ⊥
q (xA) for

any nonzero x ∈ Zq.

Learning with errors (LWE) [Reg05]. Fix integers n,m, a prime integer q and a
noise distribution χ over Z. The (n,m, q, χ)-LWE problem is to distinguish the
following two distributions:

(A, ATs+ e) and (A,u)

where A ← Z
n×m
q , s ← Z

n
q , e ← χm, u ← Z

m
q are independently sampled.

Throughout the paper we always set m = Θ(n log q) and simply refer to the
(n, q, χ)-LWE problem.

We say that a noise distribution χ is B-bounded if its support is in [−B,B].
For any fixed d > 0 and sufficiently large q, Regev [Reg05] (through a quantum
reduction) and Peikert [Pei09] (through a classical reduction) show that taking χ
as a certain q/nd-bounded distribution, the (n, q, χ)-LWE problem is as hard as
approximating the worst-case GapSVP to nO(d) factors, which is believed to be
intractable. More generally, let χmax < q be the bound on the noise distribution.
The difficulty of the LWE problem is measured by the ratio q/χmax. This ratio is
always bigger than 1 and the smaller it is the harder the problem. The problem
appears to remain hard even when q/χmax < 2n

ε

for some fixed ε ∈ (0, 1/2).

Matrix norms. For a vector u we let ‖u‖ denote its �2 norm. For a matrix
R ∈ Z

k×m, let R̃ be the result of applying Gram-Schmidt (GS) orthogonalization
to the columns of R. We define three matrix norms:

– ‖R‖ denotes the �2 length of the longest column of R.
– ‖R‖GS = ‖R̃‖ where R̃ is the GS orthogonalization of R.
– ‖R‖2 is the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√
k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Trapdoor generators. The following lemma states properties of algorithms for
generating short basis of lattices.

Lemma 2.1. Let n,m, q > 0 be integers with q prime. There are polynomial
time algorithms with the properties below:

– TrapGen(1n, 1m, q) −→ (A,TA) ([Ajt99, AP09, MP12]): a randomized algo-
rithm that, when m = Θ(n log q), outputs a full-rank matrix A ∈ Z

n×m
q and

basis TA ∈ Z
m×m for Λ⊥

q (A) such that A is negl(n)-close to uniform and

‖T‖GS = O(
√
n log q), with all but negligible probability in n.
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– ExtendRight(A,TA,B) −→ T(A|B) ([CHKP10]): a deterministic algorithm

that given full-rank matrices A,B ∈ Z
n×m
q and a basis TA of Λ⊥

q (A) outputs

a basis T(A|B) of Λ⊥
q (A|B) such that ‖TA‖GS = ‖T(A|B)‖GS.

– ExtendLeft(A,G,TG,S) −→ TH where H = (A | G+AS) ([ABB10]):
a deterministic algorithm that given full-rank matrices A,G ∈ Z

n×m
q and

a basis TG of Λ⊥
q (G) outputs a basis TH of Λ⊥

q (H) such that ‖TH‖GS ≤
‖TG‖GS · (1 + ‖S‖2).

– BD(A) −→ R where m = n�log q�: a deterministic algorithm that takes in
a matrix A ∈ Z

n×m
q and outputs a matrix R ∈ Z

m×m
q , where each element

a ∈ Zq that belongs to the matrix A gets transformed into a column vector

r ∈ Z
�log q�
q , r = [a0, ..., a�log q�−1]

T . Here ai is the i-th bit of the binary
decomposition of a ordered from LSB to MSB. For any matrix A ∈ Z

n×m
q ,

matrix R = BD(A) has the norm ‖R‖2 ≤ m and ‖RT ‖2 ≤ m.
– For m = n�log q� there is a fixed full-rank matrix G ∈ Z

n×m
q s.t. the lattice

Λ⊥
q (G) has a publicly known basis TG ∈ Z

m×m with ‖TG‖GS ≤ √
5. The

matrix G is such that for any matrix A ∈ Z
n×m
q , G · BD(A) = A.

To simplify the notation we will always assume that the matrix R from part 4
and matrix G from part 5 of Lemma 2.1 has the same width m as the matrix
A output by algorithm TrapGen from part 1 of the lemma. We do so without
loss of generality since R (and G) can always be extended to the size of A by
adding zero columns on the right of R (and G).

Discrete Gaussians. Regev [Reg05] defined a natural distribution on Λu
q (A)

called a discrete Gaussian parameterized by a scalar σ > 0. We use Dσ(Λ
u
q (A))

to denote this distribution. For a random matrix A ∈ Z
n×m
q and σ = Ω̃(

√
n), a

vector x sampled from Dσ(Λ
u
q (A)) has �2 norm less than σ

√
m with probability

at least 1− negl(m).

For a matrix U = (u1| · · · |uk) ∈ Z
n×k
q we let Dσ(Λ

U
q (A)) be a distribution on

matrices in Z
m×k where the i-th column is sampled from Dσ(Λ

ui
q (A)) indepen-

dently for i = 1, . . . , k. Clearly if R is sampled from Dσ(Λ
U
q (A)) then AR = U

in Zq.

Solving AX = U. We review algorithms for finding a low-norm matrix X ∈
Z
m×k such that AX = U.

Lemma 2.2. Let A ∈ Z
n×m
q and TA ∈ Z

m×m be a basis for Λ⊥
q (A). Let U ∈

Z
n×k
q . There are polynomial time algorithms that output X ∈ Z

m×k satisfying
AX = U with the properties below:

– SampleD(A,TA,U, σ) −→ X ([GPV08]): a randomized algorithm that, when
σ = ‖TA‖GS ·ω(

√
logm), outputs a random sample X from a distribution that

is statistically close to Dσ(Λ
U
q (A)).

– RandBasis(A,TA, σ) −→ T′
A ([CHKP10]): a randomized algorithm that,

when σ = ‖TA‖GS ·ω(
√
logm), outputs a basis T′

A of Λ⊥
q (A) sampled from a

distribution that is statistically close to (Dσ(Λ
⊥
q (A)))m. Note that ‖T′

A‖GS <
σ
√
m with all but negligible probability.
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3 Fully Key-Homomorphic PKE (FKHE)

Our new ABE constructions are a direct application of fully key-homomorphic
public-key encryption (FKHE), a notion that we introduce. Such systems are
public-key encryption schemes that are homomorphic with respect to the public
encryption key. We begin by precisely defining FKHE and then show that a
key-policy ABE with short keys arises naturally from such a system.

Let {Xλ}λ∈N and {Yλ}λ∈N be sequences of finite sets. Let {Fλ}λ∈N be a
sequence of sets of functions, namely Fλ = {f : X �

λ → Yλ} for some � > 0.
Public keys in an FKHE scheme are pairs (x, f) ∈ Yλ × Fλ. We call x the
“value” and f the associated function. All such pairs are valid public keys. We
also allow tuples x ∈ X �

λ to function as public keys. To simplify the notation we
often drop the subscript λ and simply refer to sets X , Y and F .

In our constructions we set X = Zq for some q and let F be the set of �-variate
functions on Zq computable by polynomial size arithmetic circuits.

Now, an FKHE scheme for the family of functions F consists of five PPT
algorithms:

– SetupFKHE(1
λ) → (mpkFKHE,mskFKHE) : outputs a master secret key mskFKHE

and public parameters mpkFKHE.
– KeyGenFKHE

(
mskFKHE, (y, f)

) → sky,f : outputs a decryption key for the
public key (y, f) ∈ Y × F .

– EFKHE

(
mpkFKHE, x ∈ X �, μ

) −→ cx : encrypts message μ under the public
key x.

– Eval : a deterministic algorithm that implements key-homomorphism. Let c
be an encryption of message μ under public key x ∈ X �. For a function
f : X � → Y ∈ F the algorithm does:

Eval
(
f, x, c

) −→ cf

where if y = f(x1, . . . , x�) then cf is an encryption of message μ under
public-key (y, f).

– DFKHE(sky,f , c) : decrypts a ciphertext c with key sky,f . If c is an encryption
of μ under public key (x, g) then decryption succeeds only when x = y and
f and g are identical arithmetic circuits.

Algorithm Eval captures the key-homomorphic property of the system: ciphertext
c encrypted with key x = (x1, . . . , x�) is transformed to a ciphertext cf encrypted
under key

(
f(x1, . . . , x�), f

)
.

Correctness. The key-homomorphic property is stated formally in the following
requirement: For all (mpk

FKHE
,mskFKHE) output by Setup, all messages μ, all

f ∈ F , and x = (x1, . . . , x�) ∈ X �:

If c ← EFKHE

(
mpkFKHE, x ∈ X �, μ

)
, y = f(x1, . . . , x�),

cf = Eval
(
f, x, c

)
, sk ← KeyGenFKHE(mskFKHE, (y, f))

Then DFKHE(sk, cf ) = μ.



544 D. Boneh et al.

An ABE from a FKHE. A FKHE for a family of functions F = {f : X � → Y}
immediately gives a key-policy ABE. Attribute vectors for the ABE are �-tuples
over X and the supported key-policies are functions in F . The ABE system
works as follows:

– Setup(1λ, �) : Run SetupFKHE(1
λ) to get public parameters mpk and master

secret msk. These function as the ABE public parameters and master secret.
– Keygen(msk, f) : Output skf ← KeyGenFKHE

(
mskFKHE, (0, f)

)
.

Jumping ahead, we remark that in our FKHE instantiation (in Section 4),
the number of bits needed to encode the function f in skf depends only on
the depth of the circuit computing f , not its size. Therefore, the size of skf
depends only on the depth complexity of f .

– Enc(mpk, x ∈ X �, μ) : output (x, c) where c ← EFKHE(mpkFKHE, x, μ
)
.

– Dec
(
skf , (x, c)

)
: if f(x) = 0 set cf = Eval

(
f, x, c

)
and output the de-

crypted answer DFKHE(skf , cf ).
Note that cf is the encryption of the plaintext under the public key (f(x), f).
Since skf is the decryption key for the public key (0, f), decryption will suc-
ceed whenever f(x) = 0 as required.

The security of FKHE systems. Security for a fully key-homomorphic encryption
system is defined so as to make the ABE system above secure. More precisely,
we define security as follows.

Definition 3.1 (Selectively-secure FKHE). A fully key homomorphic en-
cryption scheme Π = (SetupFKHE,KeyGenFKHE,EFKHE,Eval) for a class of func-

tions Fλ = {f : X �(λ)
λ → Yλ} is selectively secure if for all p.p.t. adversaries A

where A = (A1,A2,A3), there is a negligible function ν(λ) such that

AdvFKHE

Π,A(λ)
def
=

∣
∣
∣Pr

[
EXP(0)

FKHE,Π,A(λ) = 1
]
− Pr

[
EXP(1)

FKHE,Π,A(λ) = 1
]∣∣
∣ ≤ ν(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment EXP(b)
FKHE,Π,A(λ) is defined as:

1.
(
x∗ ∈ X �(λ)

λ , state1
) ← A1(λ)

2. (mpkFKHE,mskFKHE) ← SetupFKHE(λ)

3. (μ0, μ1, state2) ← AKGKH(mskFKHE,x
∗,·,·)

2 (mpkFKHE, state1)
4. c∗ ← EFKHE(mpkFKHE, x∗, μb)

5. b′ ← AKGKH(mskFKHE,x∗,·,·)
3 (c∗, state2) // A outputs a guess b′ for b

6. output b′ ∈ {0, 1}
where KGKH(mskFKHE, x

∗, y, f) is an oracle that on input f ∈ F and y ∈ Yλ, re-
turns⊥ whenever f(x∗) = y, and otherwise returnsKeyGenFKHE

(
mskFKHE, (y, f)

)
.

With Definition 3.1 the following theorem is now immediate.

Theorem 3.2. The ABE system above is selectively secure provided the under-
lying FKHE is selectively secure.
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4 An FKHE for Arithmetic Circuits from LWE

We now turn to building an FKHE for arithmetic circuits from the learning
with errors (LWE) problem. Our construction follows the key-homomorphism
paradigm outlined in the introduction.

For integers n and q = q(n) let m = Θ(n log q). Let G ∈ Z
n×m
q be the fixed

matrix from Lemma 2.1 (part 5). For x ∈ Zq, B ∈ Z
n×m
q , s ∈ Z

n
q , and δ > 0

define the set

Es,δ(x,B) =
{
(xG+B)Ts+ e ∈ Z

m
q where ‖e‖ < δ

}

For now we will assume the existence of three efficient deterministic algo-
rithms Evalpk,Evalct,Evalsim that implement the key-homomorphic features of
the scheme and are at the heart of the construction. We present them in the
next section. These three algorithms must satisfy the following properties with
respect to some family of functions F = {f : (Zq)

� → Zq} and a function
αF : Z → Z.

– Evalpk( f ∈ F , �B ∈ (Zn×m
q )� ) −→ Bf ∈ Z

n×m
q .

– Evalct( f ∈ F ,
(
(xi,Bi, ci)

)�
i=1

) −→ cf ∈ Z
m
q . Here xi ∈ Zq, Bi ∈

Z
n×m
q and ci ∈ Es,δ(xi,Bi) for some s ∈ Z

n
q and δ > 0. Note that the same

s is used for all ci. The output cf must satisfy

cf ∈ Es,Δ(f(x),Bf ) where Bf = Evalpk(f, (B1, . . . ,B�))

and x = (x1, . . . , x�). We further require that Δ < δ ·αF(n) for some function
αF(n) that measures the increase in the noise magnitude in cf compared to
the input ciphertexts.
This algorithm captures the key-homomorphic property: it translates cipher-
texts encrypted under public-keys {xi}�i=1 into a ciphertext cf encrypted
under public-key (f(x), f).

– Evalsim( f ∈ F ,
(
(x∗

i ,Si)
)�
i=1

, A) −→ Sf ∈ Z
m×m
q . Here x∗

i ∈ Zq and
Si ∈ Z

m×m
q . With x∗ = (x∗

1, . . . , x
∗
n), the output Sf satisfies

ASf−f(x∗)G=Bf where Bf =Evalpk
(
f, (AS1−x∗

1G, . . . ,AS�−x∗
�G)

)
.

We further require that for all f ∈ F , if S1, . . . ,S� are random matrices in
{±1}m×m then ‖Sf‖2 < αF(n) with all but negligible probability.

Definition 4.1. The deterministic algorithms (Evalpk,Evalct,Evalsim) are αF-
FKHE enabling for some family of functions F = {f : (Zq)

� → Zq} if there are
functions q = q(n) and αF = αF(n) for which the properties above are satisfied.

We want αF-FKHE enabling algorithms for a large function family F and
the smallest possible αF . In the next section we build these algorithms for
polynomial-size arithmetic circuits. The function αF(n) will depend on the depth
of circuits in the family.
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The FKHE system. Given FKHE-enabling algorithms (Evalpk,Evalct,Evalsim)
for a family of functions F = {f : (Zq)

� → Zq} we build an FKHE for the same
family of functions F . We prove selective security based on the learning with
errors problem.

– Parameters : Choose n and q = q(n) as needed for (Evalpk,Evalct,Evalsim)
to be αF -FKHE enabling for the function family F . In addition, let χ be a
χmax-bounded noise distribution for which the (n, q, χ)-LWE problem is hard
as discussed in Appendix 2.2. As usual, we set m = Θ(n log q).

Set σ = ω(αF · √logm). We instantiate these parameters concretely in the
next section.
For correctness of the scheme we require that α2

F · m < 1
12 · (q/χmax) and

αF >
√
n logm .

– SetupFKHE(1
λ) → (mpkFKHE,mskFKHE) : Run algorithm TrapGen(1n, 1m, q)

from Lemma 2.1 (part 1) to generate (A,TA) where A is a uniform full-
rank matrix in Z

n×m
q .

Choose random matrices D,B1, . . . ,B� ∈ Z
n×m
q and output a master secret

key mskFKHE and public parameters mpkFKHE:

mpkFKHE = (A,D,B1, . . . ,B�) ; mskFKHE = (TA)

– KeyGenFKHE

(
mskFKHE, (y, f)

) → sky,f : Let Bf = Evalpk(f, (B1, . . . ,B�)).
Output sky,f := Rf where Rf is a low-norm matrix in Z

2m×m sampled from
the discrete Gaussian distribution Dσ(Λ

D
q (A|yG+Bf )) so that (A|yG +

Bf ) ·Rf = D.
To construct Rf build the basis TF for F = (A|yG + Bf ) ∈ Z

n×2m
q as

TF ← ExtendRight(A,TA, yG+Bf ) from Lemma 2.1 (part 2).
Then run Rf ← SampleD( F, TF, D, σ). Here σ is sufficiently large for
algorithm SampleD (Lemma 2.2 part 2) since σ = ‖TF‖GS ·ω(

√
logm). where

‖TF‖GS = ‖TA‖GS = O(
√
n log q).

Note that the secret key sky,f is always in Z
2m×m independent of the com-

plexity of the function f . We assume sky,f also implicitly includes mpkFKHE.
– EFKHE

(
mpkFKHE, x ∈ X �, μ

) −→ cx : Choose a random n dimensional
vector s ← Z

n
q and error vectors e0, e1 ← χm. Choose � uniformly random

matrices Si ← {±1}m×m for i ∈ [�].

Set H ∈ Z
n×(�+1)m
q and e ∈ Z

(�+1)m
q as

H = (A | x1G+B1 | · · · | x�G+B�) ∈ Z
n×(�+1)m
q

e = (Im|S1| . . . |S�)
T · e0 ∈ Z

(�+1)m
q

Let cx = (HT s+ e, DT s+ e1 + �q/2�μ) ∈ Z
(�+2)m
q . Output the ciphertext

cx.
– DFKHE(sky,f , c) : Let c be the encryption of μ under public key (x, g). If x �= y

or f and g are not identical arithmetic circuits, output ⊥. Otherwise, let

c = (cin, c1, . . . , c�, cout) ∈ Z
(�+2)m
q .
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Set cf = Evalct
(
f, {(xi,Bi, ci)}�i=1

) ∈ Z
m
q .

Let c′f = (cin|cf ) ∈ Z
2m
q and output Round(cout −RT

f c
′
f ) ∈ {0, 1}m.

Correctness. The correctness of the scheme follows from our choice of parameters
and, in particular, from the requirement α2

F ·m < 1
12 · (q/χmax). Specifically, to

show correctness, first note that when f(x) = y we know by the requirement on
Evalct that cf is in Es,Δ(y,Bf ) so that cf = yG+BT

f s + e with ‖e‖ < Δ. We
show in the full version of this paper that in this case the secret key Rf correctly
decrypts in algorithm DFKHE.

Security. Next we prove that our FKHE is selectively secure for the family of
functions F for which algorithms (Evalpk,Evalct,Evalsim) are FKHE-enabling.

Theorem 4.2. Given the three algorithms (Evalpk,Evalct,Evalsim) for the family
of functions F , the FKHE system above is selectively secure with respect to F ,
assuming the (n, q, χ)-LWE assumption holds where n, q, χ are the parameters
for the FKHE.

We provide the complete proof in the full version of the paper. Here we sketch
the main idea which hinges on algorithms (Evalpk,Evalct,Evalsim) and also em-
ploys ideas from [CHKP10, ABB10]. We build an LWE algorithm B that uses a
selective FKHE attacker A to solve LWE. B is given an LWE challenge matrix
(A|D) ∈ Z

n×2m
q and two vectors cin, cout ∈ Z

m
q that are either random or their

concatenation equals (A|D)Ts + e for some small noise vector e.
A starts by committing to the target attribute vector x = (x∗

1, . . . , x
∗
� ) ∈ Z

�
q. In

response B constructs the FKHE public parameters by choosing randommatrices
S∗
1, . . . ,S

∗
� in {±1}m×m and setting Bi = AS∗

i − x∗
iG. It gives A the public

parameters mpk
FKHE

= (A,D,B1, . . . ,B�). A standard argument shows that
each of AS∗

i is uniformly distributed in Z
n×m
q so that all Bi are uniform as

required for the public parameters.
Now, consider a private key query from A for a function f ∈ F and attribute

y ∈ Zq. Only functions f and attributes y for which y∗ = f(x∗
1, . . . , x

∗
� ) �= y are

allowed. Let Bf = Evalpk
(
f, (B1, . . . ,B�)

)
. Then B needs to produce a matrix

Rf in Z
2m×m satisfying (A|Bf ) ·Rf = D. To do so B needs a short basis for

the lattice Λ⊥
q (F) where F = (A|Bf ). In the real key generation algorithm this

short basis is derived from a short basis for Λ⊥
q (A) using algorithm ExtendRight.

Unfortunately, B has no short basis for Λ⊥
q (A).

Instead, as explained below, B builds a low-norm matrix Sf ∈ Z
m×m
q such

that Bf = ASf − y∗G. Then F = (A | ASf − y∗G + yG). Because y∗ �=
y, algorithm B can construct the short basis TF for Λ⊥

q (F) using algorithm
ExtendLeft((y − y∗)G,TG,A,Sf ) from Lemma 2.1 part 3. Using TF algorithm
B can now generate the required key as Rf ← SampleD(F,TF,D, σ).

The remaining question is how does algorithm B build a low-norm matrix
Sf ∈ Z

m×m
q such that Bf = ASf − y∗G. To do so B uses Evalsim giving it

the secret matrices S∗
i . More precisely, B runs Evalsim(f,

(
(x∗

i ,S
∗
i )
)�
i=1

, A) and
obtains the required Sf . This lets B answer all private key queries.
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To complete the proof it is not difficult to show that B can build a challenge
ciphertext c∗ for the attribute vector x ∈ Z

�
q that lets it solve the given LWE

instance using adversary A. An important point is that B cannot construct a
key that decrypts c∗. The reason is that it cannot build a secret key sky,f for
functions where f(x∗) = y and these are the only keys that will decrypt c∗.

Remark 4.3. We note that the matrix Rf in KeyGenFKHE can alternatively be
generated using a sampling method from [MP12]. To do so we choose FKHE
public parameters as we do in the security proof by choosing random matrices
Si, . . . ,S� in {±1}m×m and setting Bi = ASi. We then define the matrix Bf

as Bf := ASf where Sf = Evalsim(f, ((0,Si))
�
i=1, A). We could then build the

secret key matrix sky,f = Rf satisfying (A|yG + Bf ) · Rf = D directly from
the bit decomposition of D/y. Adding suitable low-norm noise to the result will
ensure that sky,f is distributed as in the simulation in the security proof. Note
that this approach can only be used to build secret keys sky,f when y �= 0 where
as the method in KeyGenFKHE works for all y.

4.1 Evaluation Algorithms for Arithmetic Circuits

In this section we build the FKHE-enabling algorithms (Evalpk,Evalct,Evalsim)
that are at the heart of the FKHE construction in Section 4. We do so for the
family of polynomial depth, unbounded fan-in arithmetic circuits.

4.2 Evaluation Algorithms for Gates

We first describe Eval algorithms for single gates, i.e. when G is the set of
functions that each takes k inputs and computes either weighted addition or
multiplication:

G =
⋃

α,α1,...,αk∈Zq

⎧
⎨

⎩
g | g : Zk

q → Zq,
g(x1, . . . , xk) = α1x1 + α2x2 + . . .+ αkxk

or
g(x1, . . . , xk) = α · x1 · x2 · . . . · xk

⎫
⎬

⎭

(2)
We assume that all the inputs to a multiplication gate (except possibly one
input) are integers in the interval [−p, p] for some bound p < q.

We present all three deterministic Eval algorithms at once:

Evalpk(g ∈ G, �B ∈ (Zn×m
q )k ) −→ Bg ∈ Z

n×m
q

Evalct(g ∈ G, (
(xi,Bi, ci)

)k
i=1

) −→ cg ∈ Z
m
q

Evalsim(g ∈ G, (
(x∗

i ,Si)
)k
i=1

, A) −→ Sg ∈ Z
m×m
q

– For a weighted addition gate g(x1, . . . , xk) = α1x1 + · · ·+ αkxk do:
For i ∈ [k] generate matrix Ri ∈ Z

m×m
q such that

GRi = αiG : Ri = BD(αiG) (as in Lemma 2.1 part 4). (3)
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Output the following matrices and the ciphertext:

Bg =

k∑

i=1

BiRi, Sg =

k∑

i=1

SiRi, cg =

k∑

i=1

RT
i ci (4)

– For a weighted multiplication gate g(x1, . . . , xk) = αx1 · . . . · xk do:
For i ∈ [k] generate matrices Ri ∈ Z

m×m
q such that

GR1 = αG : R1 = BD(αG) (5)

GRi = −Bi−1Ri−1 : Ri = BD(−Bi−1Ri−1) for all i ∈ {2, 3, . . . , k}
(6)

Output the following matrices and the ciphertext:

Bg = BkRk, Sg =
k∑

j=1

⎛

⎝
k∏

i=j+1

x∗
i

⎞

⎠SjRj, cg =
k∑

j=1

⎛

⎝
k∏

i=j+1

xi

⎞

⎠RT
j cj

(7)

For example, for k = 2, Bg = B2R2, Sg = x∗
2S1R1 + S2R2, cg =

x∗
2R

T
1 c1 +RT

2 c2.

For multiplication gates, the reason we need an upper bound p on all but one of
the inputs xi is that these xi values are used in (7) and we need the norm of Sg

and the norm of the noise in the ciphertext cg to be bounded from above. The
next two lemmas show that these algorithms satisfy the required properties and
are proved in the full version of the paper.

Lemma 4.4. Let βg(m) = km. For a weighted addition gate g(x) = α1x1 +
. . .+ αkxk we have:

1. If ci ∈ Es,δ(xi,Bi) for some s ∈ Z
n
q and δ > 0, then cg ∈ Es,Δ(g(x),Bg) where

Δ ≤ βg(m) · δ and Bg = Evalpk(g, (B1, . . . ,Bk)).
2. The output Sg satisfies ASg − g(x∗)G = Bg where ‖Sg‖2 ≤ βg(m) ·

maxi∈[k] ‖Si‖2

and Bg = Evalpk
(
g, (AS1 − x∗

1G, . . . ,ASk − x∗
kG)

)
.

Lemma 4.5. For a multiplication gate g(x) = α
∏k

i=1 xi we have the same

bounds on cg and Sg as in Lemma 4.4 with βg(m) = pk−1
p−1 m.

4.3 Evaluation Algorithms for Circuits

We will now show how using the algorithms for single gates, that compute
weighted additions and multiplications as described above, to build algorithms
for the depth d, unbounded fan-in circuits.

Let {Cλ}λ∈N be a family of polynomial-size arithmetic circuits. For each C ∈ Cλ
we index the wires of C following the notation in [GVW13]. The input wires are
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indexed 1 to �, the internal wires have indices � + 1, � + 2, . . . , |C| − 1 and the
output wire has index |C|, which also denotes the size of the circuit. Every gate
gw : Zkw

q → Zq (in G as per 2) is indexed as a tuple (w1, . . . , wkw , w) where
kw is the fan-in of the gate. We assume that all (but possibly one) of the input
values to the multiplication gates are bounded by p which is smaller than scheme
modulus q. The “fan-out wires” in the circuit are given a single number. That
is, if the outgoing wire of a gate feeds into the input of multiple gates, then all
these wires are indexed the same. For some λ ∈ N, define the family of functions
F = {f : f can be computed by some C ∈ Cλ}.

We construct the required matrices inductively input to output gate-by-gate.
Consider an arbitrary gate of fan-in kw (we will omit the subscript w where it is
clear from the context): (w1, . . . , wk, w) that computes the function gw : Zk

q →
Zq. Each wire wi caries a value xwi . Suppose we already computedBw1 , . . . ,Bwk

,
Sw1 , . . . ,Swk

and cw1 , . . . , cwk
, note that if w1, . . . , wk are all in {1, 2, . . . , �} then

these matrices and vectors are the inputs of the corresponding Eval functions.
Using Eval algorithms described in Section 4.2, compute

Bw = Evalpk(gw, (Bw1 , . . . , Bwk
))

cw = Evalct(gw,
(
(xwi ,Bwi , cwi)

)k
i=1

)

Sw = Evalsim(gw,
(
(x∗

wi
,Swi)

)k
i=1

, A)

Output Bf := B|C|, cf := c|C|, Sf := S|C|. Correctness follows inductively for
the appropriate choice of parameters (see the full version and paragraph 1.1).

5 ABE with Short Secret Keys for Arithmetic Circuits
from LWE

The FKHE for a family of functions F = {f : (Zq)
� → Zq} constructed in

Section 4 immediately gives a key-policy ABE as discussed in Section 3. In
this section we give a self-contained construction of the ABE system. Given
FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a family of functions F
from Section 4.1, the ABE system works as follows:

– Setup(1λ, �): Choose n, q, χ,m and σ as in “Parameters” in Section 4.
Run algorithm TrapGen(1n, 1m, q) (Lemma 2.1, part 1) to generate (A,TA).
Choose random matrices D,B1, . . . ,B� ∈ Z

n×m
q and output the keys:

mpk = (A,D,B1, . . . ,B�) ; msk = (TA,D,B1, . . . ,B�)

– Keygen(msk, f): Let Bf = Evalpk(f, (B1, . . . ,B�)).
Output skf := Rf where Rf is a low-norm matrix in Z

2m×m sampled from
the discrete Gaussian distribution Dσ(Λ

D
q (A|Bf )) so that (A|Bf ) ·Rf = D.

To construct Rf build the basis TF for F = (A|Bf ) ∈ Z
n×2m
q as TF ←

ExtendRight(A,TA,B) from Lemma 2.1 (part 2).
Then run Rf ← SampleD( F, TF, D, σ).
Note that the secret key skf is always in Z

2m×m independent of the com-
plexity of the function f .
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– Enc(mpk, x ∈ Z
�
q, μ ∈ {0, 1}m): Choose a random vector s ← Z

n
q and error

vectors e0, e1 ← χm. Choose � uniformly random matrices Si ← {±1}m×m

for i ∈ [�]. Set

H = (A | x1G+B1 | · · · | x�G+B�) ∈ Z
n×(�+1)m
q

e = (Im|S1| . . . |S�)
T · e0 ∈ Z

(�+1)m
q

Output c = (HT s+ e, DT s+ e1 + �q/2�μ) ∈ Z
(�+2)m
q .

– Dec
(
skf , (x, c)

)
: If f(x) �= 0 output ⊥. Otherwise, let the ciphertext c =

(cin, c1, . . . , c�, cout) ∈ Z
(�+2)m
q , set cf = Evalct

(
f, {(xi,Bi, ci)}�i=1

) ∈
Z
m
q .

Let c′f = (cin|cf ) ∈ Z
2m
q and output Round(cout −RT

f c
′
f ) ∈ {0, 1}m.

The proof of the following theorem is analogous to that of the FKHE system
which is sketched in Section 4 and given in details in the full version of the paper.

Theorem 5.1. For FKHE-enabling algorithms (Evalpk,Evalct,Evalsim) for a fam-
ily of functions F the ABE system above is correct and selectively-secure.

6 ABE with Short Ciphertexts from Multi-linear Maps

We assume familiarity with multi-linear maps [BS02, GGH13a] and refer the
reader to the full version for definitions.

Intuition. We assume that the circuits consist of and and or gates. To handle
general circuits (with negations), we can apply De Morgan’s rule to transform
it into a monotone circuit, doubling the number of input attributes (similar to
[GGH+13c]).

The inspiration of our construction comes from the beautiful work of Apple-
baum, Ishai, Kushilevitz and Waters [AIKW13] who show a way to compress
the garbled input in a (single use) garbling scheme all the way down to size
|x|+ poly(λ). This is useful to us in the context of ABE schemes due to a simple
connection between ABE and reusable garbled circuits with authenticity ob-
served in [GVW13]. In essence, they observe that the secret key for a function f
in an ABE scheme corresponds to the garbled circuit for f , and the ciphertext
encrypting an attribute vector x corresponds to the garbled input for x in the
reusable garbling scheme. Thus, the problem of compressing ciphertexts down
to size |x|+ poly(λ) boils down to the question of generalizing [AIKW13] to the
setting of reusable garbling schemes. We are able to achieve this using multilinear
maps.

Security of the scheme relies on a generalization of the bilinear Diffie-Hellman
Exponent Assumption to the multi-linear setting (see the full version of our paper
for the precise description of the assumption.) 1 The bilinear Diffie-Hellman Ex-
ponent Assumption was recently used to prove the security of the first broadcast

1 Our construction can be converted to multi-linear graded-encodings, recently
instantiated by Garg et al. [GGH13a] and Coron et al. [CLT13].
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encryption with constant size ciphertexts [BGW05] (which in turn can be thought
of as a special case of ABE with short ciphertexts.)

Theorem 6.1 (Selective security). For all polynomials dmax = dmax(λ),
there exists a selectively-secure attribute-based encryption with ciphertext size
poly(dmax) for any family of polynomial-size circuits with depth at most dmax

and input size �, assuming hardness of (d + 1, �)−Multilinear Diffie-Hellman
Exponent Assumption.

6.1 Our Construction

We describe the construction here, and refer the reader to the full version for
correctness and security proofs.

– Params(1λ, dmax): The parameters generation algorithm takes the security
parameter and the maximum circuit depth. It generates a multi-linear map
G(1λ, k = d + 1) that produces groups (G1, . . . , Gk) along with a set of
generators g1, . . . , gk and map descriptors {eij}. It outputs the public pa-
rameters pp =

({Gi, gi}i∈[k], {eij}i,j∈[k]

)
, which are implicitly known to all

of the algorithms below.
– Setup(1�): For each input bit i ∈ {1, 2, . . . , �}, choose a random element qi

in Zp. Let g = g1 be the generator of the first group. Define hi = gqi . Also,
choose α at random from Zp and let t = gαk . Set the master public key

mpk := (h1, . . . , h�, t)

and the master secret key as msk := α.
– Keygen(msk, C): The key-generation algorithm takes a circuit C with � input

bits and a master secret key msk and outputs a secret key skC defined as
follows.
1. Choose randomly

(
(r1, z1), . . . , (r�, z�)

)
from Z

2
q for each input wire of the

circuit C. In addition, choose
(
(r�+1, a�+1, b�+1), . . . , (rn, an, bn)

)
from Z

3
q

randomly for all internal wires of C.
2. Compute an �×�matrix M̃ , where all diagonal entries (i, i) are of the form

(hi)
zigri and all non-diagonal entries (i, j) are of the form (hi)

zj . Append
g−zi as the last row of the matrix and call the resulting matrix M .

3. Consider a gate Γ = (u, v, w) where wires u, v are at depth j − 1 and w
is at depth j. If Γ is an or gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru
j ,K4

Γ = grw−bwrv
j

)

Else if Γ is an and gate, compute

KΓ =
(
K1

Γ = gaw ,K2
Γ = gbw ,K3

Γ = grw−awru−bwrv
j

)

4. Set σ = gα−rn
k−1

5. Define and output the secret key as

skC :=
(
C, {KΓ }Γ∈C ,M, σ

)



Fully Key-Homomorphic Encryption 553

– Enc(mpk,x, μ): The encryption algorithm takes the master public key mpk,
an index x ∈ {0, 1}� and a message μ ∈ {0, 1}, and outputs a ciphertext
cx defined as follows. Choose a random element s in Zq. Let X be the set
of indices i such that xi = 1. Let γ0 = ts if μ = 1, otherwise let γ0 be a
randomly chosen element from Gk. Output ciphertext as

cx :=

(
x, γ0, gs, γ1 =

( ∏

i∈X

hi

)s
)

– Dec(skC , cx): The decryption algorithm takes the ciphertext cx, and secret
key skC and proceeds as follows. If C(x) = 0, it outputs ⊥. Otherwise,
1. Let X be the set of indices i such that xi = 1. For each input wire i ∈ X ,

using the matrix M compute gri
(∏

j∈X hj

)zi
and then

gris2 = e

(
gs, gri

( ∏

j∈X

hj

)zi
)
· e
(
γ1, g

−zi

)

= e

(
gs, gri

( ∏

j∈X

hj

)zi
)
· e
(( ∏

j∈X

hj

)s
, g−zi

)

2. Now, for each gate Γ = (u, v, w) where w is a wire at level j, (recursively
going from the input to the output) compute grws

j+1 as follows:

- If Γ is an or gate, and C(x)u = 1, compute grws
j+1 = e

(
K1

Γ , g
rus
j

) ·
e
(
gs,K3

Γ

)
.

- Else if C(x)v = 1, compute grws
j+1 = e

(
K2

Γ , g
rvs
j

) · e(gs,K4
Γ

)
.

- Else if Γ is an and gate, compute grws
j+1 = e

(
K1

Γ , g
rus
j

) · e(K2
Γ , g

rvs
j

) ·
e
(
gs,K3

Γ

)
.

3. If C(x) = 1, then the user computes grnsk for the output wire. Finally,
compute

ψ = e
(
gs, σ

) · grnsk = e
(
gs, gα−rn

k−1

) · grnsk

4. Output μ = 1 if ψ = γ0, otherwise output 0.

Acknowledgments. We thank Chris Peikert for his helpful comments and for
suggesting Remark 4.3.

D. Boneh is supported by NSF, the DARPA PROCEED program, an AFOSR
MURI award, a grant from ONR, an IARPA project provided via DoI/NBC, and
Google faculty award. Opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of DARPA or IARPA.

S. Gorbunov is supported by Alexander Graham Bell Canada Graduate Schol-
arship (CGSD3).

G. Segev is supported by the European Union’s Seventh Framework Pro-
gramme (FP7) via a Marie Curie Career Integration Grant, by the Israel Sci-
ence Foundation (Grant No. 483/13), and by the Israeli Centers of Research
Excellence (I-CORE) Program (Center No. 4/11).



554 D. Boneh et al.

V. Vaikuntanathan is supported by an NSERC Discovery Grant, DARPA
Grant number FA8750-11-2-0225, a Connaught New Researcher Award, an Al-
fred P. Sloan Research Fellowship, and a Steven and Renee Finn Career Devel-
opment Chair from MIT.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the stan-
dard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 553–572. Springer, Heidelberg (2010)

[ABV+12] Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Func-
tional encryption for threshold functions (or fuzzy ibe) from lattices.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 280–297. Springer, Heidelberg (2012)

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption
for inner product predicates from learning with errors. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer,
Heidelberg (2011)

[AIKW13] Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding func-
tions with constant online rate or how to compress garbled circuits keys.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS,
vol. 8043, pp. 166–184. Springer, Heidelberg (2013)

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In:
Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

[ALdP11] Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy
attribute-based encryption with constant-size ciphertexts. In: Catalano,
D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 90–108. Springer, Heidelberg (2011)

[AP09] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
In: STACS (2009)

[BB11] Boneh, D., Boyen, X.: Efficient selective identity-based encryption without
random oracles. Journal of Cryptology 24(4), 659–693 (2011)

[BF03] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pair-
ing. SIAM Journal on Computing 32(3), 586–615 (2003)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

[BMR90] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure pro-
tocols (extended abstract). In: STOC (1990)

[BNS] Boneh, D., Nikolaenko, V., Segev, G.: Attribute-based encryption for
arithmetic circuits. Cryptology ePrint Report 2013/669

[Boy13] Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg
(2013)

[BS02] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptogra-
phy. Contemporary Mathematics 324, 71–90 (2002)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011)



Fully Key-Homomorphic Encryption 555

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on en-
crypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
535–554. Springer, Heidelberg (2007)

[BW13] Boneh, D., Waters, B.: Constrained pseudorandom functions and their
applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over
the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: IMA Int. Conf. (2001)

[FN93] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[GGH+] Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayaga-
murthy, D.: How to compress (reusable) garbled circuits. Cryptology
ePrint Report 2013/687

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: FOCS (2013)

[GGH+13c] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer,
Heidelberg (2013)

[GGP10] Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg
(2010)

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: STOC (2013)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryp-
tosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

[GKP+13a] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553.
Springer, Heidelberg (2013)

[GKP+13b] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
STOC (2013)

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:
interactive proofs for muggles. In: STOC (2008)

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: ACM CCS (2006)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)



556 D. Boneh et al.

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption
for circuits. In: STOC (2013)

[HW13] Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryp-
tion. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 162–179. Springer, Heidelberg (2013)

[KS08] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
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