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Fully Nonlinear Stochastic Partial Differential Equations:
Non-Smooth Equations and Applications

Equations aux dérivées partielles stochastiques completement
non linéaires : équations non régulieres et applications

Pierre Louis Lions Panagiotis E. Souganidis
CEREMADE-UMR 7534 Department of Mathematics
Université de Paris—Dauphine University of Wisconsin—-Madison
Place de Lattre de Tassigny and Madison, WI 53706

75775 Paris Cedex 16 USA

FRANCE

Abstract : In this note, we extend the result described in a previous note to the case
of non-smooth Hamiltonians for fully nonlinear stochastic partial differential equations.
And we present some applications of our theory to pathwise stochastic control and to

the propagation of fronts in random environments.

Résumé : Dans cette note, nous étendons les résultats décrits dans une note précédente
au cas d’Hamiltoniens non réguliers pour des équations aux dérivées partielles stochas-
tiques completement nonlinéaires. Et nous présentons quelques applications de notre
théorie au controle stochastique trajectoriel et a la propagation de fronts dans des en-

vironnements aléatoires.

Version Francaise Abrégée :

Nous étendons ici les résultats obtenus dans [LS1] a des équations plus générales
(pour des Hamiltoniens peu réguliers) et présentons quelques applications de cette
théorie. Plus précisément, nous considérons des équations paraboliques sltochastiques,

éventuellement dégénérées, du second ordre, compléetement nonlinéaires qui s’écrivent
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sous la forme

du = F(D*u, Du)dt + Zf\il H;(Du) o dW; in RN x (0, 0)

3

U= ug on RN x {0}.

oll ug est bornée, uniformément continue sur RV, W est un Brownien standard dans
RM | o correspond a la différentielle de Stratonovich, et F' est continue sur RV x SV

(I'espace des matrices symétriques N x N) et elliptique dégénérée, i.e.
F(X,p) < F(Y,p), YpeRY, vX<YeSV.

La principale extension, par rapport aux résultats de [L.S1], est la prise en compte
d’Hamiltoniens Hy, ..., Hys non nécessairement tres réguliers (C3 dans [LS1]) puisque
nous supposons que H; est Lipschitzien sur RV et peut s’écrire comme la différence de
deux fonctions convexes. Cette extension est nécessaire pour pouvoir appliquer notre
théorie a la propagation de fronts dans des milieux aléatoires, ou typiquement M = 1,
et H(Du) = |Dul.

Dans la premiere partie de cette note, nous montrons comment il est possible
d’étendre et adapter les résultats de [LLS1] et en particulier la convergence des solutions
approchées, obtenus par régularisation du mouvement Brownien W, vers une limite
unique indépendante de I’approximation choisie.

Nous présentons ensuite quelques applications de la théorie développée dans [1.S1] et
ici , et notamment i) au contréle stochastique trajectoriel, ii) a la propagation de fronts
dans des milieux aléatoires, et iii) & des problemes asymptotiques pour les questions de

transition de phase dans les environnements stochastiques.

0. INTRODUCTION

In this note we extend the theory of parabolic, possibly degenerate, second-order,
stochastic partial differential equations we introduced in [LS1] to equations with less

regularity and present several applications. In particular we consider equations, which



written in the Stratonovich sense have the form

du = F(D*u, Du)dt + Zf\il H;(Du) o dW; in RN x (0, 0)

3

(0.1)
u = ug on RN x {0}.
As in [LS1], ug € BUC(RY), the space of bounded uniformly continuous on R
W = (Wq,...,Wy) is the standard M-dimensional Brownian motion in time and,
hence, dW = (dW1,...,dWy,) is the “usual” M-dimensional White noise in time and
F is continuous and degenerate elliptic, i.e., it satisfies, for all X,Y € SV, the space of

N x N symmetric matrices, and p € RV,
(0.2) if X <Y, then F(X,p) < F(Y,p).

The main difference with [L.S1] is that, instead of H € C3(RN; RM), here we only

assume that

H e COYRN:RM) and, for each i € {1,..., M},
(0.3)

H; can be written as the difference of two convex functions.

The second part of assumption (0.3) is a technical one; in Section 1 below we point
out where it is used. Notice, however, that any H € C*!'(RY;RM) which is positively
homogeneous of degree 1, an important class of H’s for the applications we present
below, satisfies (0.3).

Equations like (0.1) appear in a variety of applications like asymptotics of equations
with rapidly oscillating (mixing) coefficients in time, front propagation and phase tran-
sitions in random media, pathwise stochastic control theory, Zakai equations in filtering
and stochastic control with partial observations, mathematical finance, etc.. In this note
we outline some applications to pathwise stochastic control and to front propagation
and phase transitions in random media.

Our theory extends to (z, t, w)-dependent equations with dW (¢, z) an M-dimensional
white noise, which is regular is 2. We refer to [L.S1] for a discussion of this as well as

other possible extensions and to [LS2,3] for the details.
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In spite of their importance very little was known for equations like (0.1) even for
smooth H before [LLS1], with the exception of the uniformly elliptic linear theory, i.e.,
when both F' and H are linear and F' is uniformly elliptic — see, for example, Watanabe
[W] and the references therein — and some uniformly elliptic quasilinear cases — see
Pardoux [P].

The main difficulty about equations like (0.1) is the well-known fact, even in the
deterministic case, that there are no global smooth solutions in general. Moreover,
the fully nonlinear character of the equations seems to make them inaccessible to the
classical martingale theory employed for the linear case. Finally, even when smooth
solutions may exist, the equations can not be described in a pointwise sense, because
of the everywhere lack of differentiability of the Brownian motion. In the deterministic
case the lack of regularity was overcome with the introduction by Crandall and Lions
[CL] of the notion of viscosity solutions — we refer to [CIL], [B], [FS] and [BCESS] for
an up-to-last year overview of the theory of viscosity solutions and their applications in
the deterministic setting.

For H € C3*(RN;RM), the aforementioned difficulties were overcome in [LS1] by
proving that all possible deterministic approximations of (0.1) converge uniformly in
(z,t) € RN x [0,T], for all T > 0, and a.s. in w to the same limit, which is then
interpreted as a stochastic viscosity solution of (0.1), which, in some cases, was proved

to be unique in its class. Here we extend [L.S1] to the case that (0.3) holds. We present

these results in Section 1, while in Section 2 we present some applications of the theory.

1. THE EXISTENCE AND NOTION OF WEAK SOLUTIONS

We consider the following class of approximations to (0.1)
ué = F(D*uf, Duf) + Zf\il H;(Duf)CE(t) in RN x (0, 00),
(1.1)
u® = ug on RN x {0},
where u§, ug € BUC(RY) and the smooth functions (¢ = ((5,...,(5,) : [0,00] x Q —

RM are such that, as € — 0 and for all T > 0,

(1.2) (¢ — W uniformly in [0,7] and a.s. and u§ — uo.
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To obtain the convergence of (u).~o we need the following technical assumption
on F. We refer to [LS1] and the references therein for a discussion of (1.3) and the
existence of (¢ as in (1.2).

( There exists G € C(S?N x RV) degenerate elliptic such that, for all p € RV,

(i) G(_’\;; /\’\)‘(X,p> =0, for all A € R and all X € SV,

(1.3) < and

for all X,Y € SN and Z € 82V such that (‘)g 3) < Z.

\

The result is:

Theorem 1.1. Let ((%)cs0 and (§"),50 satisfy (1.2). Assume that F' satisfies (0.2) and
(1.3) and that H satisfies (0.3). If |ju§ — vl — 0, as e, — 0, then
limg 0 [[u® — v"c@yxio,r) = 0, for every T > 0 and a.s. in w, where u® and v"
solve (1.1) with initial data u§ and v respectively. In particular, each family (uf)esq

is Cauchy in RN x [0,T] a.s. in w, and hence, it converges, uniformly in (z,t) and a.s.

in w, to a unique u € BUC(RYN x [0,T]).

Sketch of the Proof: 1. The theorem follows if we can establish that, a.s. in w,

(1.4) lim sup Lm (uf(z,t) — v"(y,t) — Az — y|?) = 0.
A—0 (z,y,t)ER2N x[0,T] e,n—0

2. Fix A > 0, let ¢(z,y) = Az — y|* and denote by S=7(s,t)p(x,y) the viscosity
solution of

Vg = Zf\il Hi(Dyv)¢s — Hi(—Dyv)E)  in RN x RN x [t,00),
(1.5)
v(,t)=¢ on RV x RN,

Assumption (0.3) allows us to use Hopf’s formula for the unique viscosity solution

of (1.5) to prove that, as e,7 — 0, a.s. in w and uniformly in z,y, s and ¢, for (s,t)

bounded,
(1.6) SEN(t, )p(x,y) — Ayl
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3. The classical theory of viscosity solutions (see [CIL]) yields, in view of (1.3),
that if, 257(5,y,1,5) = 02 (,1) — 07y, 1) — S¥(t, 5)p(x, y), then

(1.7) ZEM <0,

4. Now (1.6) and (1.7) yield (1.4) arguing by contradiction. O

In [LS1] we put forward an intrinsic definition for a weak solution of (0.1) which was
based on the existence, for smooth ¢, of local time smooth solutions of the stochastic
Hamilton-Jacobi equation

dv ="M H;(Dv) o dW; in RN x [t,00),
(1.8)

v=2¢ on RN x {t},
given by the method of characteristics, provided H is smooth, for example C3. This is
not, however, possible in the case at hand. On the other hand, Theorem 1.1 identifies,
for any ¢, an a.s. unique function, which can be thought as a global solution of (1.8). To
state our definition for a weak solution of (0.1), we consider functions (for any A € R,
p €RY and 2o € RY) ¢(z) = Az — 20/2+p(z — 20) and denote by ¢(z, s;t) the function

obtained by Theorem 1.1 as it applies to (1.8). We have:

Definition 1.1. A function u : RV x [0,T] x Q — R is a subsolution (resp. su-
persolution) of (0.1) for F = 0, if u(-,-,w) € BUC(RN x [0,T]) a.s., and, for all
t € [0,T), (resp. inf cpn(u(z,s) — ¢(x,s;t)) is nonincreasing (resp. nondecreasing))
s = sup,cpn (u(z, s) — ¢(z, 5:t))

Using Theorem 1.1 and a Trotter-Kato formula-type argument as in the proof of

Theorem 2.3 of [LS1] we can prove the following:

Theorem 1.2. Assume that F = 0 and H satisfies (0.3). Then for each
ug € BUC(RYN), (0.1) admits a unique weak solution.

We conclude this section remarking that stability results analogous to the one’s

stated in [LS1] hold here too.



2. APPLICATIONS
(i) Pathwise stochastic control theory.

In a typical stochastic control problem one is given a stochastic differential equation
dXy = b(zy, a)dt + 5(Xy, o) 0 AWy + o(Xy) 0 dW,, (£ > 0)
X() =T,

where W and W are two independent Brownian motions and «. € A is a control process,

and a pay-off functional

t
J(x,t, ) = g(Xy) +/ f(Xs, ag)ds.
0

In the conventional stochastic control theory the goal is to minimize the mean of
J, i.e., IEJ(m,t,a_), where IE denote the expectation with respect to both Brownian
motions, over all possible controls. This leads to the classical Belman equation.

Our theory of stochastic pde allows for trying to minimize J over all controls
pathwise, i.e. in an a.s. sense. Moreover, it allows the coefficients to be themselves
random. More precisely, if E is the expectation with respect to W, define

u(z,t,w) = in&IEJ(m,t,oz_,w).
[e1S

The following holds:

Theorem 2.1. The function u is a weak solution of
du = {inf,ca[b(z, o, w)Dyv + tr(co’ (z, 0, w)D?u) + f(z, a, w)]}dt
+ 0T DyuodW in RN x (0,00),
u=g on RN x {0}.
Moreover, u is the a.s. unique limit of the values of the stochastic control problems
obtained by approrimating W . ]

Since in the above equation H(p) = o”p € C3(RN;R), we use the notion of weak

solution introduced in [LS1].



(ii) Front propagation in random environments.

The interest here is in describing the evolution of (open) sets with normal velocity
(2.1) V =v1(Dn,n)dt + va(n) o dW,

where n denotes the normal to the set, past the first time that singularities occur. When
ve = 0, this goal has been accomplished using the so-called level set approach and its
equivalent reformulations. We refer to [BCESS] and [BS] for a general overview of the
theory and its numerous application.

Our theory of stochastic pde like (0.1) with F' and H satisfying (0.2) and (0.3)
allows for the study of evolutions given by (2.1). The level-set pde in this case has the

form
(2.2) du = F(D?*u, Du)dt + H(Du) o dW,

with F' and H satisfying

F e O(SN x RV\{0}) is degenerate elliptic and geometric,
i.e., for all (X,p) € SV x RM\{0}, A >0and p€R

(2.3)
F(AX + p(p®p), Ap) = AF (X, p),
and
(2.4) H € C%'(RV) is positively homeogeneous of degree one.

Consider next the geometric pde of the form

ué = F(D?uf, Duf) + H(Duf)¢  in RN x (0, 00),
(2.5)

u® = uf, on RV x {0},
where (° is any approximation of the Brownian motion. We can now define, using
Theorem 1.1, an a.s. unique function u € BUC (RN x [0, T] x Q) obtained as the uniform

n (x,t), for t bounded, limit of the u®’s, whose level sets are defined to move with normal

velocity given by (2.1). Approximations to (2.3) corresponding to the mean curvature
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operator and H(p) = |p| and for convex initial sets were studied using different methods

by Yip [Y].
(iii) Asymptotic problems in phase transitions

We present here an example of an asymptotic problem arising in phase transitions

— see [BCESS] and [BS] for an extended discussion of such problems in the deterministic
setting and [1.S2,3] for more general problems in random environments. The problem
is about a modified Allen-Cahn equation of the form

us — Auc + e 2(f"(u) +eC.(t)) =0 in RN x [0,7],
(2.6)

u® = ug on RV x {0},
where f is a double-well potential with wells at £1 of equal depth and (. is a smooth
function of time. The asymptotics of (2.6), as ¢ — 0, when (.(t) — ¢(t), with ¢(t)
continuous, were studied in [BSS]. It was shown that, as ¢ — 0, u® — +1, (resp. —1)
locally uniformly inside (resp. outside) a front moving with normal velocity V' = mean
curvature +ac(t), for some « depending on f. When (¢ — dW, this problem was
introduced by Funaki [F], who studied its asymptotics for N = 2 and only for convex

sets.

To state our result here we assume that
(27) 8{11,0 > 0} = 8{u0 < 0} = {’LL() = 0}

and, for any approximation (¢ of the Brownian motion, we consider the solution

U¢ € BUC(RYN x (0,0¢)) of

Us — tr[(I — (DU ® DU ))D2U¢] — a|DU%|(s in R™ x (0, 00)
(2.8)
U = 1{U020} — 1{U0<0} on RN X {0}/
where for p € RM\{0}, p = |p| " !p, and 14 denotes the characteristic function of the

set.

Our theory yields the following result.



Theorem 2.2. Assume (2.7) and f'(£1) > 0. There exists a constant o such that,
as e = 0, u® — +1 (resp. —1) locally uniformly in (x,t) and a.s. in w inside (resp.
outside) a front moving with normal velocity V- = mean curvature +adW , i.e., u® — 1
in {U >0} and u® — —1 is {U < 0}, where U is the a.s. unique limit of the solutions

U® of (2.8). 0
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