
 Open access  Journal Article  DOI:10.1016/S0764-4442(98)80161-4

Fully nonlinear stochastic partial differential equations: non-smooth equations and
applications — Source link 

Pierre-Louis Lions, Panagiotis E. Souganidis

Institutions: University of Paris, University of Wisconsin-Madison

Published on: 01 Oct 1998 - Comptes Rendus De L Academie Des Sciences Serie I-mathematique (Elsevier Masson)

Topics: Stochastic partial differential equation, Numerical partial differential equations, Partial differential equation and
Nonlinear system

Related papers:

 Fully nonlinear stochastic partial differential equations

 Fully nonlinear stochastic PDE with semilinear stochastic dependence

 Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations

 User’s guide to viscosity solutions of second order partial differential equations

 Stochastic viscosity solutions for nonlinear stochastic partial differential equations. Part I

Share this paper:    

View more about this paper here: https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-
2jjd5jo9xs

https://typeset.io/
https://www.doi.org/10.1016/S0764-4442(98)80161-4
https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs
https://typeset.io/authors/pierre-louis-lions-3t7zd8bik1
https://typeset.io/authors/panagiotis-e-souganidis-4pi786m2ys
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/institutions/university-of-wisconsin-madison-1lo9rg1b
https://typeset.io/journals/comptes-rendus-de-l-academie-des-sciences-serie-i-2z9rhmho
https://typeset.io/topics/stochastic-partial-differential-equation-kvtczsyn
https://typeset.io/topics/numerical-partial-differential-equations-2guwoafz
https://typeset.io/topics/partial-differential-equation-2pkjzvri
https://typeset.io/topics/nonlinear-system-2hsrhyzq
https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-42j566vp8a
https://typeset.io/papers/fully-nonlinear-stochastic-pde-with-semilinear-stochastic-2709raeb5v
https://typeset.io/papers/uniqueness-of-weak-solutions-of-fully-nonlinear-stochastic-155pysreds
https://typeset.io/papers/user-s-guide-to-viscosity-solutions-of-second-order-partial-1h54uzci92
https://typeset.io/papers/stochastic-viscosity-solutions-for-nonlinear-stochastic-2jc67j96dk
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs
https://twitter.com/intent/tweet?text=Fully%20nonlinear%20stochastic%20partial%20differential%20equations:%20non-smooth%20equations%20and%20applications&url=https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs
https://typeset.io/papers/fully-nonlinear-stochastic-partial-differential-equations-2jjd5jo9xs


Fully Nonlinear Stochastic Partial Di�erential Equations:Non-Smooth Equations and ApplicationsEquations aux d�eriv�ees partielles stochastiques compl�etementnon lin�eaires : �equations non r�eguli�eres et applicationsPierre Louis LionsCEREMADE{UMR 7534Universit�e de Paris{DauphinePlace de Lattre de Tassigny75775 Paris Cedex 16FRANCE and Panagiotis E. SouganidisDepartment of MathematicsUniversity of Wisconsin{MadisonMadison, WI 53706USA
Abstract : In this note, we extend the result described in a previous note to the caseof non-smooth Hamiltonians for fully nonlinear stochastic partial di�erential equations.And we present some applications of our theory to pathwise stochastic control and tothe propagation of fronts in random environments.R�esum�e : Dans cette note, nous �etendons les r�esultats d�ecrits dans une note pr�ec�edenteau cas d'Hamiltoniens non r�eguliers pour des �equations aux d�eriv�ees partielles stochas-tiques compl�etement nonlin�eaires. Et nous pr�esentons quelques applications de notreth�eorie au contrôle stochastique trajectoriel et �a la propagation de fronts dans des en-vironnements al�eatoires.Version Fran�caise Abr�eg�ee :Nous �etendons ici les r�esultats obtenus dans [LS1] �a des �equations plus g�en�erales(pour des Hamiltoniens peu r�eguliers) et pr�esentons quelques applications de cetteth�eorie. Plus pr�ecis�ement, nous consid�erons des �equations paraboliques sltochastiques,�eventuellement d�eg�en�er�ees, du second ordre, compl�etement nonlin�eaires qui s'�ecrivent1



sous la forme8<: du = F (D2u;Du)dt+PMi=1Hi(Du) � dWi in RN � (0;1),u = u0 on RN � f0g.o�u u0 est born�ee, uniform�ement continue sur RN , W est un Brownien standard dansRM , � correspond �a la di��erentielle de Stratonovich, et F est continue sur RN � SN(l'espace des matrices sym�etriques N �N) et elliptique d�eg�en�er�ee, i.e.F (X; p) � F (Y; p) ; 8p 2 RN ; 8X � Y 2 SN :La principale extension, par rapport aux r�esultats de [LS1], est la prise en compted'Hamiltoniens H1; :::; HM non n�ecessairement tr�es r�eguliers (C3 dans [LS1]) puisquenous supposons que Hi est Lipschitzien sur RN et peut s'�ecrire comme la di��erence dedeux fonctions convexes. Cette extension est n�ecessaire pour pouvoir appliquer notreth�eorie �a la propagation de fronts dans des milieux al�eatoires, o�u typiquement M = 1,et H(Du) = jDuj.Dans la premi�ere partie de cette note, nous montrons comment il est possibled'�etendre et adapter les r�esultats de [LS1] et en particulier la convergence des solutionsapproch�ees, obtenus par r�egularisation du mouvement Brownien W , vers une limiteunique ind�ependante de l'approximation choisie.Nous pr�esentons ensuite quelques applications de la th�eorie d�evelopp�ee dans [LS1] etici , et notamment i) au contrôle stochastique trajectoriel, ii) �a la propagation de frontsdans des milieux al�eatoires, et iii) �a des probl�emes asymptotiques pour les questions detransition de phase dans les environnements stochastiques.0. INTRODUCTIONIn this note we extend the theory of parabolic, possibly degenerate, second-order,stochastic partial di�erential equations we introduced in [LS1] to equations with lessregularity and present several applications. In particular we consider equations, which2



written in the Stratonovich sense have the form(0:1) 8<: du = F (D2u;Du)dt+PMi=1Hi(Du) � dWi in RN � (0;1),u = u0 on RN � f0g.As in [LS1], u0 2 BUC(RN ), the space of bounded uniformly continuous on RN ,W = (W1; : : : ;WM ) is the standard M -dimensional Brownian motion in time and,hence, dW = (dW1; : : : ; dWM ) is the \usual" M -dimensional White noise in time andF is continuous and degenerate elliptic, i.e., it satis�es, for all X;Y 2 SN , the space ofN �N symmetric matrices, and p 2 RN ,(0:2) if X � Y , then F (X; p) � F (Y; p).The main di�erence with [LS1] is that, instead of H 2 C3(RN ;RM ), here we onlyassume that(0:3) (H 2 C0;1(RN ;RM ) and, for each i 2 f1; : : : ;Mg,Hi can be written as the di�erence of two convex functions.The second part of assumption (0.3) is a technical one; in Section 1 below we pointout where it is used. Notice, however, that any H 2 C0;1(RN ;RM ) which is positivelyhomogeneous of degree 1, an important class of H's for the applications we presentbelow, satis�es (0.3).Equations like (0.1) appear in a variety of applications like asymptotics of equationswith rapidly oscillating (mixing) coe�cients in time, front propagation and phase tran-sitions in random media, pathwise stochastic control theory, Zakai equations in �lteringand stochastic control with partial observations, mathematical �nance, etc.. In this notewe outline some applications to pathwise stochastic control and to front propagationand phase transitions in random media.Our theory extends to (x; t; !)-dependent equations with dW (t; x) anM -dimensionalwhite noise, which is regular is x. We refer to [LS1] for a discussion of this as well asother possible extensions and to [LS2,3] for the details.3



In spite of their importance very little was known for equations like (0.1) even forsmooth H before [LS1], with the exception of the uniformly elliptic linear theory, i.e.,when both F and H are linear and F is uniformly elliptic | see, for example, Watanabe[W] and the references therein | and some uniformly elliptic quasilinear cases | seePardoux [P].The main di�culty about equations like (0.1) is the well-known fact, even in thedeterministic case, that there are no global smooth solutions in general. Moreover,the fully nonlinear character of the equations seems to make them inaccessible to theclassical martingale theory employed for the linear case. Finally, even when smoothsolutions may exist, the equations can not be described in a pointwise sense, becauseof the everywhere lack of di�erentiability of the Brownian motion. In the deterministiccase the lack of regularity was overcome with the introduction by Crandall and Lions[CL] of the notion of viscosity solutions | we refer to [CIL], [B], [FS] and [BCESS] foran up-to-last year overview of the theory of viscosity solutions and their applications inthe deterministic setting.For H 2 C3(RN ;RM ), the aforementioned di�culties were overcome in [LS1] byproving that all possible deterministic approximations of (0.1) converge uniformly in(x; t) 2 RN � [0; T ], for all T > 0, and a.s. in ! to the same limit, which is theninterpreted as a stochastic viscosity solution of (0.1), which, in some cases, was provedto be unique in its class. Here we extend [LS1] to the case that (0.3) holds. We presentthese results in Section 1, while in Section 2 we present some applications of the theory.1. THE EXISTENCE AND NOTION OF WEAK SOLUTIONSWe consider the following class of approximations to (0.1)(1:1) 8<:u"t = F (D2u"; Du") +PMi=1Hi(Du") _�"i (t) in RN � (0;1),u" = u"0 on RN � f0g,where u"0, u0 2 BUC(RN ) and the smooth functions �" = (�"1 ; : : : ; �"M ) : [0;1]� 
 !RM are such that, as "! 0 and for all T > 0,(1:2) �" !W uniformly in [0; T ] and a.s. and u"0 ! u0.4



To obtain the convergence of (u")">0 we need the following technical assumptionon F . We refer to [LS1] and the references therein for a discussion of (1.3) and theexistence of �" as in (1.2).
(1:3)

8>>>>>>>>>>><>>>>>>>>>>>:
There exists G 2 C(S2N � RN ) degenerate elliptic such that, for all p 2 RN ,(i) G� �X ��X��X �X ; p� = 0, for all � 2 R and all X 2 SN ,and(ii) F (X; p)� F (Y; p) � G(Z; p),for all X;Y 2 SN and Z 2 S2N such that �X 00 Y � � Z.The result is:Theorem 1.1. Let (�")">0 and (��)�>0 satisfy (1.2). Assume that F satis�es (0.2) and(1.3) and that H satis�es (0.3). If ku"0 � v�0k ! 0, as "; � ! 0, thenlim";�!0 ku" � v�kC(RN�[0;T ]) = 0, for every T > 0 and a.s. in !, where u" and v�solve (1.1) with initial data u"0 and v�0 respectively. In particular, each family (u")">0is Cauchy in RN � [0; T ] a.s. in !, and hence, it converges, uniformly in (x; t) and a.s.in !, to a unique u 2 BUC(RN � [0; T ]).Sketch of the Proof: 1. The theorem follows if we can establish that, a.s. in !,(1:4) lim�!0 sup(x;y;t)2R2N�[0;T ] lim";�!0(u"(x; t)� v�(y; t)� �jx� yj2) = 0:2. Fix � > 0, let �(x; y) = �jx � yj2 and denote by S";�(s; t)�(x; y) the viscositysolution of(1:5) 8<: vs =PMi=1Hi(Dxv) _�"i �Hi(�Dyv) _��i in RN � RN � [t;1),v(�; t) = � on RN � RN .Assumption (0.3) allows us to use Hopf's formula for the unique viscosity solutionof (1.5) to prove that, as "; � ! 0, a.s. in ! and uniformly in x; y; s and t, for (s; t)bounded,(1:6) S";�(t; s)�(x; y)! �jx� yj2:5



3. The classical theory of viscosity solutions (see [CIL]) yields, in view of (1.3),that if, z";�(x; y; t; s) = u"(x; t)� v�(y; t)� S";�(t; s)�(x; y), then(1:7) Z";�t � 0:4. Now (1.6) and (1.7) yield (1.4) arguing by contradiction. �In [LS1] we put forward an intrinsic de�nition for a weak solution of (0.1) which wasbased on the existence, for smooth �, of local time smooth solutions of the stochasticHamilton-Jacobi equation(1:8) 8<: dv =PMi=1Hi(Dv) � dWi in RN � [t;1),v = � on RN � ftg,given by the method of characteristics, provided H is smooth, for example C3. This isnot, however, possible in the case at hand. On the other hand, Theorem 1.1 identi�es,for any �, an a.s. unique function, which can be thought as a global solution of (1.8). Tostate our de�nition for a weak solution of (0.1), we consider functions (for any � 2 R,p 2 RN and x0 2 RN ) �(x) = �jx�x0j2+p(x�x0) and denote by �(x; s; t) the functionobtained by Theorem 1.1 as it applies to (1.8). We have:De�nition 1.1. A function u : RN � [0; T ] � 
 ! R is a subsolution (resp. su-persolution) of (0.1) for F � 0, if u(�; �; !) 2 BUC(RN � [0; T ]) a.s., and, for allt 2 [0; T ), (resp. infx2RN (u(x; s) � �(x; s; t)) is nonincreasing (resp. nondecreasing))s 7! supx2RN (u(x; s)� �(x; s; t))Using Theorem 1.1 and a Trotter-Kato formula-type argument as in the proof ofTheorem 2.3 of [LS1] we can prove the following:Theorem 1.2. Assume that F � 0 and H satis�es (0.3). Then for eachu0 2 BUC(RN ), (0.1) admits a unique weak solution.We conclude this section remarking that stability results analogous to the one'sstated in [LS1] hold here too. 6



2. APPLICATIONS(i) Pathwise stochastic control theory.In a typical stochastic control problem one is given a stochastic di�erential equation8<: dXt = b(xt; �t)dt+ e�(Xt; �t) � dfWt + �(Xt) � dWt; (t � 0)X0 = x;wherefW andW are two independent Brownian motions and �: 2 A is a control process,and a pay-o� functional J(x; t; �:) = g(Xt) + Z t0 f(Xs; �s)ds:In the conventional stochastic control theory the goal is to minimize the mean ofJ , i.e., eeE J(x; t; �:), where eeE denote the expectation with respect to both Brownianmotions, over all possible controls. This leads to the classical Belman equation.Our theory of stochastic pde allows for trying to minimize J over all controlspathwise, i.e. in an a.s. sense. Moreover, it allows the coe�cients to be themselvesrandom. More precisely, if eE is the expectation with respect to fW , de�neu(x; t; !) = inf�2A eE J(x; t; �:; !):The following holds:Theorem 2.1. The function u is a weak solution of8>><>>: du = finf�2A[b(x; �; !)�Dxv + tr(e�e�T (x; �; !)D2u) + f(x; �; !)]gdt+ �TDxu � dW in RN � (0;1),u = g on RN � f0g.Moreover, u is the a.s. unique limit of the values of the stochastic control problemsobtained by approximating W . �Since in the above equation H(p) = �T p 2 C3(RN ;R), we use the notion of weaksolution introduced in [LS1]. 7



(ii) Front propagation in random environments.The interest here is in describing the evolution of (open) sets with normal velocity(2:1) V = v1(Dn; n)dt+ v2(n) � dW;where n denotes the normal to the set, past the �rst time that singularities occur. Whenv2 � 0, this goal has been accomplished using the so-called level set approach and itsequivalent reformulations. We refer to [BCESS] and [BS] for a general overview of thetheory and its numerous application.Our theory of stochastic pde like (0.1) with F and H satisfying (0.2) and (0.3)allows for the study of evolutions given by (2.1). The level-set pde in this case has theform(2:2) du = F (D2u;Du)dt+H(Du) � dW;with F and H satisfying(2:3) 8><>:F 2 C(SN � RN nf0g) is degenerate elliptic and geometric,i.e., for all (X; p) 2 SN � RN nf0g, � > 0 and � 2 RF (�X + �(p
 p); �p) = �F (X; p);and(2:4) H 2 C0;1(RN ) is positively homeogeneous of degree one.Consider next the geometric pde of the form(2:5) 8<:u"t = F (D2u"; Du") +H(Du") _�" in RN � (0;1),u" = u"0; on RN � f0g,where �" is any approximation of the Brownian motion. We can now de�ne, usingTheorem 1.1, an a.s. unique function u 2 BUC(RN � [0; T ]�
) obtained as the uniformin (x; t), for t bounded, limit of the u"'s, whose level sets are de�ned to move with normalvelocity given by (2.1). Approximations to (2.3) corresponding to the mean curvature8



operator and H(p) = jpj and for convex initial sets were studied using di�erent methodsby Yip [Y].(iii) Asymptotic problems in phase transitionsWe present here an example of an asymptotic problem arising in phase transitions| see [BCESS] and [BS] for an extended discussion of such problems in the deterministicsetting and [LS2,3] for more general problems in random environments. The problemis about a modi�ed Allen-Cahn equation of the form(2:6) 8<:u"t ��u" + "�2(f 0(u") + " _�"(t)) = 0 in RN � [0; T ],u" = u0 on RN � f0g,where f is a double-well potential with wells at �1 of equal depth and �" is a smoothfunction of time. The asymptotics of (2.6), as " ! 0, when _�"(t) ! c(t), with c(t)continuous, were studied in [BSS]. It was shown that, as " ! 0, u" ! +1, (resp. �1)locally uniformly inside (resp. outside) a front moving with normal velocity V = meancurvature +�c(t), for some � depending on f . When _�" ! dW , this problem wasintroduced by Funaki [F], who studied its asymptotics for N = 2 and only for convexsets.To state our result here we assume that(2:7) @fu0 > 0g = @fu0 < 0g = fu0 = 0gand, for any approximation �" of the Brownian motion, we consider the solutionU" 2 BUC(RN � (0;1)) of(2:8) 8<:U"t � tr[(I � (dDU" 
dDU"))D2U"]� �jDU"j _�" in Rn � (0;1)U" = 1fu0�0g � 1fu0<0g on RN � f0g,where for p 2 RM nf0g, p̂ = jpj�1p, and 1A denotes the characteristic function of theset. Our theory yields the following result.9



Theorem 2.2. Assume (2.7) and f 0(�1) > 0. There exists a constant � such that,as " ! 0, u" ! +1 (resp. �1) locally uniformly in (x; t) and a.s. in ! inside (resp.outside) a front moving with normal velocity V = mean curvature +�dW , i.e., u" ! 1in fU > 0g and u" ! �1 is fU < 0g, where U is the a.s. unique limit of the solutionsU" of (2.8). �Acknowledgements: This work was partially supported by the TMR network "Vis-cosity Solutions and their Applications". The second author was support by NSF andONR.
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